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Abstract - Advancements in technology have led to rapid progress in collaborative diagnosis and 

multi-modal medical imaging. Medical image fusion technology is increasingly important in medical 

diagnostics. This paper proposes a multi-modal medical image fusion technique that is based on the 

MLEPF (multi-level edge-preserving filtering) decomposition model. In the first step, a multi-modal 

medical image is divided into three distinct layers: fine structure (FS), coarse-structure (CS), and base 

(BS) layers. This division is achieved by employing an MLEPF model that relies on weighted mean 

curvature filtering. In the second step, the FS and CS layers are merged using a gradient domain 

Recurrent Neural Network (RNN) fusion technique, while the BS layers are combined using an 

energy attribute fusion strategy. The fused image is created by combining the three different types of 

fused layers. The trials utilise six distinct disease datasets and one normal dataset, each consisting of 

over 100 image pairs. The proposed method outperforms multiple algorithms and achieves results that 

are on par with cutting-edge approaches, as demonstrated by both qualitative and quantitative 

evaluation. 

Keywords: Multi-modal, image fusion, Recurrent Neural Networks, MLEPF 

1. INTRODUCTION 

Multi-modal medical imaging sensors have advanced quickly in recent years. Single-photon emission 

computed tomography (SPECT), magnetic resonance imaging (MRI), positron emission tomography 

(PET), and computed tomography (CT) Resonance imaging (MRI) has emerged as the most widely 

utilized medical imaging modality to support diagnosis. Medical picture fusion is crucial for aiding in 

diagnosis because these image kinds concentrate on distinct information. An interdisciplinary field 

known as "medical image fusion" integrates pattern recognition, computer vision, and image 

processing knowledge to the diagnosis of medical conditions. Consequently, a great deal of study has 

been done on medical image fusion. Three stages are commonly associated with picture fusion: pixel-

level, feature-level, and decision-level. Medical image fusion is an approach that attempts to fuse the 

pixel information from source images. 

The study of applying signal processing methods to biomedical signals is known as biomedical signal 

processing. Biomedical signals are derived from a variety of biological systems, including the human 

body, and are quantifiable markers of an organism's physiological status. These signals are analysed, 

interpreted, and pertinent information is extracted using signal processing techniques. Gaining 

understanding of how biological systems operate, diagnosing illnesses, and tracking the efficacy of 

treatments are the objectives. 

Biomedical signals can be in many different formats, such as: 

1. Electrocardiogram (ECG/EKG): Documents the heart's electrical activity. 

2. Electroencephalogram (EEG): The gauges the brain's electrical activity. 

3. Electromyogram (EMG): The documents muscular electrical activity. 

4. Electrooculogram (EOG): Eye movement is measured. 

5. Signals of blood pressure: derived from biological cues, thereby improving patient treatment 

and results.  
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2. LITERATURE REVIEW 

S. Polinati and R. Dhuli's study "Multimodal medical image fusion uses empirical wavelet 

decomposition and local energy maxima" addresses the growing demand for effective data integration 

from numerous medical imaging sensors. The recent rapid development of multi-modal medical 

imaging sensors, including magnetic resonance imaging (MRI), computed tomography (CT), positron 

emission tomography (PET), single-photon emission computed tomography (SPECT), and PET, has 

substantially helped medical diagnostics [1]. By recording different aspects of the human body's 

anatomy and function, these imaging methods offer unique and complementary information. The 

challenge is in effectively combining these heterogeneous datasets to improve the accuracy and 

comprehensiveness of medical diagnosis. This is when the importance of medical image fusion 

becomes apparent. Pattern recognition, computer vision, and image processing techniques and 

concepts are used in the multidisciplinary subject of medical image fusion. The goal is to seamlessly 

integrate data from many imaging modalities to generate a uniform and instructional picture for 

medical practitioners. Fusion facilitates a more comprehensive understanding of a patient's condition 

because each imaging modality exposes different aspects of the anatomy or pathology.  

The cited study by Polinati and Dhuli focuses on multimodal medical image fusion using empirical 

wavelet decomposition and local energy maxima. This suggests that the authors use a specific method 

using wavelet decomposition and the identification of local energy maxima to combine [2] data from 

several imaging modalities.  

Maqsood and Javed: (2020) for multi-modal medical picture fusion, the authors propose a sparse 

image fusion method and two-scale image decomposition [3]. Signal Processing and Control in 

Biomedicine. The authors describe a unique sum-modified Laplacian and local-features fuzzy sets for 

multi-modality medical picture fusion in the non-subsampled shear let transform domain. This 

technique handles uncertainty in local characteristics by likely using fuzzy sets in addition to the shear 

let transform for multi-scale analysis and fusion. Both publications enhance the field of multi-modal 

medical image fusion through the use of multi-scale transformations. Sparse representation and the 

non-subsampled shear let transform are two examples of the MST category's complexity and range of 

approaches. These methods address the challenges of merging data from multiple modalities, 

highlighting the importance of multi-scale analysis in improving the fusion of medical images. 

"Multi-modality medical images fusion based on local-features fuzzy sets and novel sum-modified 

Laplacian in non-subsampled shear let transform domain," Abdalla, G. Ren, S. Maqsood, U. Javed 

(2020). Prakash and Associates [4] The abstract is "Multiscale fusion of multimodal medical images 

using lifting scheme based biorthogonal wavelet transform" 2019's Optics [5] The authors propose a 

multiscale fusion technique for multimodal medical images based on a lifting scheme-based 

biorthogonal wavelet transform. The lifting scheme is one way to apply wavelet transforms, and 

biorthogonal wavelets provide a flexible framework to capture different picture feature sizes. This 

work likely explores the benefits of using these techniques to improve multimodal medical picture 

fusion [6]. The authors review their work in "Multiscale fusion of multimodal medical images uses is 

lifting scheme based biorthogonal wavelet transform," by O. Prakash, C.M. Park, A. Khare, M. Jeon, 

and J. Gwak [7]. 

Tan et al. (2018) conducted a study on "Multi-focus image fusion using spatial frequency and discrete 

wavelet transform," which used data from [8] 2018. The Contourlet Transform (CT) and Non-

Subsampled Contourlet Transform (NSCT) enhance wavelet transforms to handle edge singularities 

and get information about directions. Because the NSCT offers multi-resolution and directional 

decomposition, it is especially suitable for image fusion applications. Z. Wang, J. Xu, X. Jiang, X. 

Yan, "Infrared and visible image fusion via hybrid decomposition of NSCT and morphological 

sequential toggle operator," 201 (2020). The Non-Subsampled Shear let Transform (NSST) approach 
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[9] builds upon the classical shear let transform and provides a more flexible framework for capturing 

directional information by eliminating subsampling at any scale. Image fusion tasks have been applied 

to this transform. Using NSST and RNN, Tan, Zhang, and Zhou, 2020 International Society for Optics 

and Photonics, [10], Photonics and Digital Technologies for Imaging Applications, P. Xiang, H. Zhou, 

"Infrared and visible image fusion via NSST and RNN in multiscale morphological gradient domain," 

Edge-preserving filtering (EPF), which aims to minimise noise while keeping structural information, 

is one of the most significant image processing methods. The references that follow go over several 

EPF applications and techniques. The title translates as "Fusion of multi-focus images via a Gaussian 

curvature filter and synthetic focusing degree criterion" To fuse multi-focus pictures, the authors 

propose combining a Gaussian curvature filter with a synthetic focusing degree requirement. [11] This 

approach most likely involves preserving edges and important details utilising an EPF technique, 

which enhances the quality of fused images.  

"MRI reconstruction with an edge-preserving filtering prior" is the title according to Zhuang & 

associates. This work focuses on MRI reconstruction and employs an EPF prior [12]. Using EPF in 

MRI reconstruction is recommended to preserve image structures during the reconstruction process. 

"Side window guided filtering" is the book's title in Signal Processing (2019). The authors present a 

system for side window guided filtering. This work uses side window guidance to potentially 

introduce a novel approach to edge-preserving functions (EPF). "Infrared and visual image fusion via 

multi-modal decomposition and RNN in gradient domain fusion measure" is the title of the Springer-

published International Conference on Smart Multimedia. The authors propose fusing infrared and 

visual data using EPF [13] via multi-modal decomposition and Recurrent Neural Networks (RNN) in 

the gradient domain. pictures. EPF is most likely employed to preserve important details and edges, 

which enhances the quality of fused images. The cited works demonstrate the [14] flexibility of EPF 

techniques in a variety of fields, including image fusion, MRI reconstruction, and guided filtering. 

Because it preserves structural integrity while enhancing image quality, EPF is a helpful technique in 

image processing.  

"Infrared and visual image fusion via multi-modal decomposition and RNN in gradient domain fusion 

measure; W. Tan, J. Zhang, J. Du, K. Qian, P. Xiang, and H. Zhou. Bilateral filtering (BF) [15] is a 

well-liked edge-preserving filtering (EPF) algorithm that is regularly employed in image processing. 

The work you quoted is the seminal one that developed bilateral filtering: Tomasi and Mandothi's 

"Bilateral filtering for Grey and Colour Images" The bilateral filtering algorithm, created by R. 

Mandothi and C. Tomasi [16], preserves edges while producing the smoothest images. Bilateral 

filtering considers both spatial proximity and intensity similarity to determine the degree of smoothing 

at each pixel. Kaiming Guided Image Filtering (GIF) is an image processing approach that was 

developed by him, Jian Sun, and Xiaoou Tang. The groundbreaking study that initially presented the 

source of "Guided image filtering" is GIF. Guided Image Filtering (GIF) technique is introduced by 

He, Sun, and Tang, J. Sun, X. Tang, and K. He. GIF is a non-linear filtering method using reference 

image guidance information [17] to filter a target image. This method is particularly effective for tasks 

when the target image must keep any essential structure or details from the reference picture. 

Gaussian Curvature Filtering (GCF) is an image processing technique that was introduced by Y. Gong 

and I.F. Sbalzarini. Effectively lowering variation energies in images is the aim of GCF [18]. Variation 

energies are often related to optimising or minimising image attributes, and GCF offers a fast way to 

accomplish so while accounting for the curvature information of the image. It's likely that the 

technology is applied to edge detection, photo editing, or smoothing out particular areas. Gaussian 

curvature, a differential geometry measure of curvature, is used to filter images for specific variation 

energy reduction objectives. This is the core notion [19] behind GCF. Most likely, the filtering process 

is designed to take advantage of the local curvature data to achieve picture processing goals. A hybrid 

multi-scale decomposition strategy, proposed by Zhou, Wang, Li, and Dong [20], combines bilateral 
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and Gaussian filters to produce a perceptual fusion method for visible and infrared pictures. The 

hybrid decomposition strategy most often uses both Gaussian and bilateral filters, which are EPF 

kinds, to decompose the images at many scales and maintain important structures during the fusion 

process.  

"Remote sensing image fusion via boundary measured dual-channel RNN in multi-scale 

morphological gradient domain" This study by W. Tan, P. Xiang, J. Zhang, H. Zhou, and H. Qin [21] 

proposes a boundary measured dual-channel RNN-based approach for remote sensing picture fusion 

in the multi-scale morphological gradient domain. The morphological gradient domain, when paired 

with RNN in a dual-channel arrangement, likely enhances feature extraction and makes it easier to 

combine remote sensing photos effectively. The article's subtitle is "Infrared polarisation image fusion 

via multi-scale sparse representation and Recurrent Neural Network". The authors, J. Zhang, H. Zhou, 

S. Wei, and W. Tan, suggest a method of combining multi-scale sparse representation with recurrent 

neural networks to fuse infrared polarisation pictures [22]. The combination of RNN with multi-scale 

sparse representation in the context of infrared polarisation picture fusion likely enhances the feature 

extraction and fusion procedure. Lei, Zhang, and Kong In this study, W. Kong, L. Zhang, and Y. Lei 

offer a unique fusion technique for visible light and infrared images [23]. Its foundations are the 

Recurrent Neural Network (RNN), Sparse Fusion (SF), and Non-Subsampled Shear let Transform 

(NSST).  

Y. Gong and O. Goksel present the "Weighted Mean Curvature" (WMCF) signals processing approach 

in this study. The most likely goal of the approach [24] is to compute mean curvature while assigning 

weights to certain signal components or locations in order to emphasise the significance of certain 

areas. For signal processing applications where edge and detail preservation are crucial, such as image 

processing, weighted mean curvature is a helpful tool. The goal to better maintain important structures 

or traits is presumably what motivates its use. "Multi-focus image fusion using multi-scale 

morphological focus-measure based on boundary finding" In this paper, Y. Zhang, X. Bai, and T. 

Wang introduce a [25] multi-focus image fusion technique using boundary detection as a focus 

measure.  The focus measure is a crucial element in multi-focus picture fusion as it facilitates the 

identification of sharp or in-focus regions within the image. Whole Brain Atlas: [26] The website is 

located at http://www.med.harvard.edu/AANLIB. According to [27], the procedure involves training a 

CNN model with medical imaging data in order to find patterns and features that facilitate effective 

fusion. The suggested MLEPF-MLMG-RNN method and the CNN approach will be compared, and 

their performance evaluated according to predefined metrics and criteria, along with other state-of-

the-art fusion techniques. A multi-modality medical image fusion technique called CNN-contrast 

pyramid (CNN-CP) is described by K. Wang, M. Zheng, H. Wei, G. Qi, and Y. Li [28]. It's likely that 

feature extraction and learning are processes that employ convolutional neural networks (CNNs). in 

addition to pyramid frameworks of contrast for fusion. Contrast pyramids are widely employed in 

image processing to emphasise or enhance features of the image at different scales.  

In this study [29], R. Hou, D. Zhou, R. Nie, D. Liu, and X. Ruan propose the CNN dual-channel 

spiking cortical (CNN-DCSC) approach for brain CT and MRI medical image fusion. The method of 

learning and feature extraction most likely involves convolutional neural networks (CNNs), whereas 

the fusion process uses a dual-channel spiking cortex model. Inspired by neural processing principles, 

spike-based neural representations are used to model information flow in cortical models. A 

convolutional sparsity-based morphological component analysis (CSMCA) technique is described 

[30] by Y. Liu, X. Chen, R.K. Ward, and Z.J. Wang. technique for fusing medical images. In this 

study, J. Du, W. Li, and B. Xiao describe the local Laplacian filtering-information of interest (LLF-

IOI) method for anatomical-functional picture fusion. This method most likely combines local 

Laplacian filtering, a technique for enhancing or suppressing image details at different sizes, with 

information of interest (IOI) measures [31]. In the context of medical image fusion, particularly for 
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anatomical and functional pictures, LLF-IOI is expected to evaluate the input images and emphasise 

or conceal details based on their significance using local Laplacian filtering. The information of 

interest measurements most likely impact the decision of which features or regions to prioritise in the 

fusion process. This is the reference for the neuro-fuzzy approach (NFA) method. In this study, S. Das 

and M.K. Kundu introduce a neuro-fuzzy technique (NFA) for medical picture fusion. The method 

used in [32] probably combines the ideas of neural networks with fuzzy logic to combine medical 

image processing. The ability of neuro-fuzzy systems to depict complex relationships and ambiguities 

is well known. In the domain of medical image fusion, NFA is anticipated to integrate fuzzy logic-

based decision-making and neural network-based learning to effectively fuse information from 

different images. The approach most likely aims to capture and adapt to the complex patterns and 

variances present in medical images in order to improve fusion outcomes.  

The medical image fusion technique known as NSST-PARNN, or parameter-adaptive [33] RNN, is 

introduced by M. Yin, X. Liu, Y. Liu, and X. Chen. The method most likely makes use of the 

nonsubsampled shear let transform (NSST) for picture representation and a parameter-adaptive 

Recurrent Neural Network (RNN) for fusing. In the context of medical image fusion, it is expected 

that NSST-PARNN will leverage the NSST domain to efficiently represent image features and details. 

The parameter-adaptive RNN most likely needs to modify its parameters based on the characteristics 

of the input images in order to adapt to different types of medical image data. A multi-modality 

medical image fusion method called phase congruency-local Laplacian energy (PC-LLE) was 

presented in [34] this publication by Z. Zhu, M. Zheng, G. Qi, D. Wang, and Y. Xiang in the Non-

Subsampled Contourlet Transform (NSCT) domain. This method likely combines phase congruency 

and local Laplacian energy metrics to fuse data from a range of imaging modalities in medicine.  

In the context of medical image fusion, PC-LLE-NSCT is expected to employ the NSCT domain to 

describe image information at many scales [35]. Phase congruency and local Laplacian energy metrics 

likely aid in extracting and storing relevant information from the input images to guarantee a 

successful fusion procedure. A wide range of biological imaging analysis and image processing 

subjects are covered in the papers that are mentioned. Estévez et al. (2009) propose a feature [36] 

selection method based on normalised mutual information for neural network applications. A brand-

new quality metric created to evaluate how well image fusion techniques work is presented by Piella 

and Heijmans (2003) [37] labour.  

Han et al. (2013) offer [38] a new performance metric for image fusion based on visual information 

fidelity to assess the quality of fused images. Tavares (2014) highlights the importance of medical 

imaging in his study of automated image registration approaches in biomedical image processing [39]. 

Alves and Tavares (2015) investigate computer image registration techniques [40], focusing on their 

application to nuclear medicine image processing. Oliveira and Tavares (2014) provide an extensive 

examination of medical imaging registration techniques, elucidating their methodologies and 

pragmatic applications. Finally, by suggesting a technique for registering pedobarographic picture 

data in the frequency domain, Oliveira et al. (2010) show [42] how valuable this data is for 

biomechanical study. Collectively, these publications expand our understanding of and proficiency 

with image processing techniques in biomedical imaging, offering valuable insights to practitioners 

and researchers in the field.  

3. PROPOSED METHOD 

3.1 Objective and scope 

The goal of the study is to discuss the growing significance of collaborative diagnosis and 

sophisticated multi-modal medical imaging in the field of medical diagnostics. More precisely, the 

novel multi-modal medical image fusion method developed by the researchers is based on the Multi-
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Level Edge-Preserving Filtering (MLEPF) decomposition model. This technique applies the MLEPF 

model to the segmentation of a given multi-modal medical image into three unique layers: the fine 

structure (FS), coarse-structure (CS), and base (BS) layers using weighted mean curvature filtering. 

The FS and CS layers are then combined using a gradient domain Recurrent Neural Network (RNN) 

fusion technique, while the BS layers are combined using an energy attribute fusion strategy. These 

three fused layers are combined to create the final fused image. The study encompasses the evaluation 

of the proposed methodology across six distinct disease datasets and one normal dataset, comprising 

over 100 image pairs. The researchers assert that their approach advances the field of precise and 

effective medical image fusion for enhanced diagnostic capabilities, outperforming a number of 

existing algorithms and yielding results comparable to state-of-the-art techniques based on qualitative 

and quantitative evaluations. The article's focus broadens to include the urgent need for creative 

solutions that facilitate effective communication between medical professionals and improve the 

diagnostic precision of diverse illnesses in the larger context of medical imaging. The multi-modal 

medical image fusion method that is suggested, which is based on the MLEPF decomposition model, 

demonstrates a careful handling of various layers in the input images. Partitioning the medical images 

into fine-structure, coarse-structure, and base layers is a crucial stage that facilitates a detailed 

examination of the various elements. This breakdown is achieved by the use of weighted mean 

curvature filtering in conjunction with the MLEPF model, demonstrating a deep knowledge of the 

underlying structures in multi-modal medical data. The gradient domain Recurrent Neural Network 

(RNN) technique that subsequently unites the fine structure and coarse-structure layers emphasises 

the paper's dedication to utilising cutting-edge computational models for image processing. 

3.2 Methodology 

Several crucial steps are involved in the methodology for the suggested multi-modal medical image 

fusion technique, which is based on the Multi-Level Edge-Preserving Filtering (MLEPF)  

Decomposition model: 

Obtaining and Preparing Data: 

Collect a variety of datasets with multi-modal medical images. There are six disease datasets and one 

normal dataset, with more than 100 image pairs in each. To guarantee uniformity in resolution, 

orientation, and format, pre-processes’ the images. 

Model of MLEPF Decomposition: 

Utilizing the multi-modal medical images, apply the Multi-Level Edge-Preserving Filtering (MLEPF) 

decomposition model. Segment the images into fine structure (FS), coarse structure (CS), and base 

(BS) layers using weighted mean curvature filtering. 

Combining RNNs for FS and CS Layers: 

The fine structure (FS) and coarse structure (CS) layers should be combined using a gradient domain 

Recurrent Neural Network (RNN) fusion technique. 

Quantitative Assessment: 

To evaluate the accuracy and quality of the fused images, use quantitative metrics like the Structural 

Similarity Index (SSI), Peak Signal-to-Noise Ratio (PSNR), and other pertinent measurements. To 

prove that the suggested method is better, compare the results with those of current algorithms and 

cutting-edge methods. 

Qualitative Assessment: 

To make sure that the fused images improve interpretability and preserve clinically relevant details, 

perform a qualitative evaluation using visual inspection and professional analysis. 

Analysis of Interpretability: 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 3 2024

PAGE NO: 6



 

To determine how the fused images correspond with accepted medical knowledge and anatomical 

structures perform an interpretability analysis. Make sure the fusion process improves medical image 

interpretability so that doctors can diagnose patients with greater precision and knowledge. 

Adjusting Dynamically to Modalities: 

Consider the heterogeneity of medical imaging data and design the suggested methodology to 

dynamically adapt to different imaging modalities. To achieve automatic modality recognition, think 

about incorporating machine learning techniques and modifying the fusion. 

3.3 Proposed Algorithm 

Several crucial steps are involved in the suggested algorithm for multi-modal medical image fusion, 

which is based on the Multi-Level Edge-Preserving Filtering (MLEPF) decomposition model. An 

outline of the algorithm is provided below:  
 

 

Fig. 1: Frame Work of Proposed Algorithm 
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3.3.1 OVERVIEW 

The proposed algorithm's framework. MLEPF decomposition, FS layers fusion, CS layers fusion, BS 

layers fusion, and MLEPF reconstruction are the five essential components of the fusion algorithm. 

Using the MLEPF breakdown, the FS, CS, and BS layers are first extracted from the input image pair 

IA and B. Second, the EA fusion technique is employed to fuse the BS layers. The FS layers and, 

finally, the MLMG-RNN fusion technique are employed to fuse the CS layers. Next, the inverse 

MLEPF process is utilised to produce the fused image. It should be mentioned that source image A is 

a three-band, pseudo-coelom image. Consequently, after the intensity-hue-saturation (IHS) 

transformation in A, the source image B and the intensity image IA are applied to create a pair of 

pictures. The fused picture will be created using an inverse IHS transform following image pair 

fusion. 

 

3.3.2 MLEPF DECOMPOSITION 

It is well known that the WMCF can smooth an image while maintaining edge information. 

Furthermore, it is commonly known that GF(), also referred to as Gaussian filtering (GF), is a well 

liked image smoothing operator. This paper's MLEPF is based on GF and WMCF. 5. The MLEPF 

diagram is shown. Where the variance is represented by and, and the mean is represented by µ and π. 

These numbers come from actual observations. In this essay, their relative values are 20 and 2. The 

BS symbol. 

3.3.3 FUSION OF BASE LAYERS 

The BS layers hold most of the texture structure and backdrop information from the original photos. 

This work uses an energy attribute (EA) fusion approach in the BS layer. Three components make up 

the EA fusion approach: 

(1) The intrinsic property values of the low-frequency sub-band are computed as 

3.3.4. COMBINATION OF LAYERS WITH COURSE AND FI STRUCTURES 

CS layers contain the large-texture information of the source images, while CS layers contain the fine-

texture information. The RNN technique can be applied to both types of layers because one neuron in 

the network corresponds to one pixel. A gradient domain RNN can also enhance the related layers' 

spatial correlation. Consequently, the linking strength is adjusted using the MLMG operator.  

4. EXPERIMENTAL RESULTS 

BRAIN STROKE (hesitating speech): 

MRI (Magnetic Resonance Imaging) and SPECT (Single-Photon Emission Computed Tomography) 

are the two medical imaging modalities that are relevant to the diagnosis of BRAIN STROKE with 

hesitating speech. The objective is to combine data from these two modalities to produce a 

comprehensive image that might offer richer and more precise diagnosis information. 

The measures presented indicate that stroke disease has a significant effect on speech processing 

algorithms. When compared to the suggested method, the conventional method performs better across 

a range of quality metrics, with an entropy of 5.3576 bits/symbol. But even with a little greater 

entropy of 5.7805 bits/symbol, the suggested approach performs worse in terms of PSNR, UQI, 

SSIM, CC, and API. This suggests that stroke-induced speech changes have a substantial impact on 

the suggested method's efficacy, leading to a decrease in speech representation's integrity and 

coherence. Furthermore, the suggested approach takes a little longer to compute, indicating possible 

implementation difficulties. These results highlight the difficulties in creating reliable speech 

processing methods specific to stroke victims, requiring additional study to increase the adaptability 

and resilience of algorithms in certain situations. 
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Image Pair 
Input Image 1 

(MRI) 

Input Image 2 

(SPECT) 
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STROKE 

(hesitating 

speech) 
    

Fig. 2: Comparative output fused images for Brain Stroke image pair. 

Table 1: Objective comparison of proposed and existing methods for Brain Stroke image pair. 

STROKE (hesitating speech)  

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  5.3576 66.4977 0.3724 0.9993 0.8556 0.1224 0.1567 34.12 

Proposed 5.7805 61.1638 0.2936 0.9948 0.7641 0.2463 0.2979 36.44 

BRAIN STROKE (Loss of Sensation): 

Yes, let's walk through the process of understanding how the MRI and SPECT images are used in the 

context of a BRAIN STROKE with the symptom of Loss of Sensation to generate the Existing 

Method Fused Image and to derive the Proposed Method Fused Image. 

The metrics offered compare existing and planned methodologies and represent the consequences of 

brain stroke, especially in cases involving loss of sensation. Here, both approaches show lower 

entropy values than those associated with hesitating speech, suggesting a distinct kind of damage. 

With entropy of 4.8114 bits/symbol, the current approach performs somewhat better than the 

suggested approach in a number of quality metrics. However, PSNR, UQI, SSIM, CC, and API 

performance are all lower with the suggested technique, which has an entropy of 4.8968 bits/symbol. 

This implies that the efficacy of the suggested approach is greatly impacted by the loss of sensation 

brought on by a brain stroke, which results in a reduction in the integrity and coherence of sensation 

representation. Furthermore, in the preceding instance, the suggested approach takes a little longer to 

compute, highlighting the difficulties in creating reliable methods for processing feeling in brain-

stroke victims. To improve algorithmic adaptability and effectiveness in addressing the intricacies of 

sensory impairment arising from brain stroke, more study is necessary.  
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Fig. 3: Comparative output fused images for Brain Stroke (Loss of sensation) image pair. 
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Table 2: Objective comparison of proposed and existing methods for Brain Stroke (Loss of 

sensation) image pair. 

BRAIN STROKE (Loss of Sensation) 

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  4.8114 65.4722 0.5166 0.9990 0.8396 0.1366 0.1895 32.79 

Proposed 4.8968 60.5043 0.4938 0.9939 0.7698 0.2612 0.3405 34.36 

 

HUNTINGTONS DISEASE: 

Yes, let us go over how to use MRI and SPECT images to create the Existing Method Fused Image 

and then derive the Proposed Method Fused Image for the diagnosis of Huntington's disease. 

The presented findings demonstrate how Huntington's disease affects algorithms used for data 

processing, especially when it comes to sensory perception. In contrast to earlier instances of stroke-

related disabilities, Huntington's disease poses unique difficulties. Higher entropy values are found in 

both the suggested and current approaches, suggesting that processing of sensory data impacted by the 

illness is more complex. On the other hand, compared to the current method, the proposed method 

performs worse across different quality criteria, with an entropy of 6.2178 bits/symbol. The PSNR, 

UQI, SSIM, CC, and API show the most noticeable drop, indicating a decreased capacity to accurately 

represent sensory input impacted by Huntington's disease. Additionally, the suggested solution needs a 

little bit extra computing time, which is comparable to the patterns seen in impairments due to stroke. 

demonstrating the challenges of creating efficient algorithms that are adapted to the specifics of 

Huntington's disease. These results highlight the need for more investigation to improve algorithmic 

efficacy and adaptability in handling the intricacies of sensory impairment linked to Huntington's 

disease. 

 

Image Pair 
Input Image 1 

(MRI) 

Input Image 2 

(SPECT) 

Existing Method 

Fused Image 

Proposed 

Method  

Fused Image 

HUNTINGTON

S DISEASE 

 
 

 

 

Fig. 4: Comparative output fused images for Huntington’s disease image pair. 

Table 3: Objective comparison of proposed and existing methods for Huntington’s image pair. 

HUNTINGTONS DISEASE 

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  5.9856 65.9981 0.3002 0.9991 0.8885 0.1611 0.1939 33.59 

Proposed 6.2178 59.8725 0.2405 0.9924 0.7873 0.3117 0.3740 34.92 
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AIDS DEMENTIA: 

let us walk through how to use MRI and SPECT images to create the Existing Method Fused Image 

and then derive the Proposed Method Fused Image for the diagnosis of AIDS Dementia. 

The presented findings provide insight into how AIDS dementia affects data processing algorithms, 

specifically regarding cognitive impairment. Because of its effects on cognitive function, AIDS 

dementia poses different obstacles than the ones discussed in the prior situations. The complexity of 

processing data impacted by cognitive impairment is indicated by the considerably lower entropy 

values of the proposed and existing approaches. On the other hand, compared to the current method, 

the suggested method exhibits a modest drop in performance across various quality criteria, with an 

entropy of 4.4460 bits/symbol. The PSNR, UQI, SSIM, and CC decreases are especially noticeable, 

indicating a decreased capacity to accurately represent sensory input impacted by AIDS dementia. 

Furthermore, in line with the patterns seen in other cognitive disorders, the suggested approach 

highlights the difficulties in creating efficient algorithms that are suited to the subtleties of AIDS 

dementia, albeit at the expense of a little increased processing time. These results emphasise the need 

for more study to improve algorithmic efficacy and adaptability to better address the problems caused 

by cognitive impairment linked to AIDS-related dementia.  

Image Pair 
Input Image 1 

(MRI) 

Input Image 2 

(SPECT) 

Existing Method 

Fused Image 

Proposed 

Method  

Fused Image 

AIDS 

DEMENTIA 

 

 

 

 

Fig. 5: Comparative output fused images for AIDS Dementia disease image pair. 

Table 4: Objective comparison of proposed and existing methods for AIDS Dementia image pair. 

AIDS DEMENTIA 

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  4.1732 68.6443 0.6236 0.9994 0.9254 0.1201 0.1725 32.59 

Proposed 4.4460 61.9828 0.5958 0.9952 0.8416 0.2462 0.3518 33.03 

 

Lyme encephalopathy: 

Of course, let us walk through how to use MRI and SPECT images to create the Existing Method 

Fused Image and then derive the Proposed Method Fused Image for Lyme Encephalopathy diagnosis. 

The presented findings shed light on how Lyme encephalopathy affects data processing methods, 

especially when it comes to neurological dysfunction. Because Lyme encephalopathy affects both 

neurological health and cognitive function, it poses special obstacles. The entropy values of the 

suggested and current methods are comparatively lower, reflecting the degree to which cognitive and 

neurological deficits impact the complexity of data processing. On the other hand, compared to the 

current method, the suggested method shows a modest drop in performance across various quality 

criteria, with an entropy of 4.4586 bits/symbol. The PSNR, UQI, SSIM, and CC decreases are 

especially noticeable, indicating a diminished capacity to precisely depict sensory information 

impacted by Lyme encephalopathy. Furthermore, like other cognitive deficits, the suggested approach 

Fused Image
Fused Image
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necessitates a little bit more computational period, highlighting the complexity of creating efficient 

algorithms that are customised to the specifics of Lyme encephalopathy. These results highlight the 

need for continued study to improve algorithmic efficacy and adaptability to meet the challenges 

presented by the neurological and cognitive impairment linked to Lyme encephalopathy. 

Image Pair 
Input Image 1 

(MRI) 

Input Image 2 

(SPECT) 

Existing Method 

Fused Image 

Proposed 

Method  

Fused Image 

Lyme 

Encephalopathy 

 

  

 

Fig. 6: Comparative output fused images for Lyme Encephalopathy image pair. 

Table 5: Objective comparison of proposed and existing methods for Lyme Encephalopathy 

image pair. 

Lyme Encephalopathy 

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  4.1195 68.3655 0.6116 0.9995 0.8981 0.1108 0.1532 33.33 

Proposed 4.4586 61.4734 0.5761 0.9947 0.7804 0.2315 0.3155 34.11 

 

BRAIN TUMOR (GLIOMA): 

Yes, let's walk through the process of using MRI and SPECT images to create the Existing Method 

Fused Image and then obtaining the Proposed Method Fused Image for the diagnosis of Brain Tumour 

(Glioma). 

The results that have been provided provide valuable insights into the effects of brain tumours, 

particularly gliomas, on data processing algorithms. They also emphasise the difficulties that these 

neurological disorders create. Gliomas have the potential to profoundly impact cognitive function and 

sensory perception, which can change how the body processes sensory information. The entropy 

values of both the proposed and existing approaches are rather low, indicating the complexity of 

processing data impacted by gliomas. On the other hand, compared to the current method, the 

suggested method exhibits a modest drop in performance across various quality metrics, with an 

entropy of 4.3920 bits/symbol. Notably, low values for quality criteria including PSNR, UQI, SSIM, 

and CC are present in both approaches, indicating challenges in precisely describing sensory input 

impacted by gliomas. Additionally, the suggested approach needs a little bit extra processing time, 

highlighting the difficulties in creating efficient algorithms that are suited to the specifics of 

neurological deficits brought on by gliomas. 
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Image Pair 
Input Image 1 

(MRI) 

Input Image 2 

(SPECT) 

Existing Method 

Fused Image 

Proposed 

Method  

Fused Image 

BRAIN 

TUMOR 

(GLIOMA) 

  

  

Fig. 7: Comparative output fused images for Brain Tumor (Glioma) image pair. 

Table 6: Objective comparison of proposed and existing methods for Brain Tumor (Glioma) 

image pair. 

BRAIN TUMOR (GLIOMA) 

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  4.1138 63.3572 0.1511 0.9983 0.6253 0.0743 0.1531 32.88 

Proposed 4.3920 60.3803 0.1526 0.9950 0.6048 0.1473 0.2745 34.23 

 

Brain Tumour (Metastatic bronchogenic carcinoma): 

Yes, let's go over how to use MRI and SPECT images to diagnose brain tumour (metastatic 

bronchogenic carcinoma) by creating the Existing Method Fused Image and then obtaining the 

Proposed Method Fused Image. 

The presented findings shed light on the effects of metastatic bronchogenic carcinoma, a particular 

kind of brain tumour, on data processing algorithms and highlight the difficulties posed by these 

neurological disorders. The processing of sensory input can be greatly impacted by metastatic 

bronchogenic carcinoma, which can also seriously impair cognitive function and sensory perception. 

With an entropy of 4.3221 bits/symbol, the current approach performs well in terms of quality metrics 

including PSNR, UQI, SSIM, and CC, suggesting that it is useful for accurately expressing sensory 

input that is impacted by this kind of brain tumour. However, it is difficult to offer a thorough 

comparison because there is a lack of precise information regarding the suggested strategy and its 

performance indicators. However, the findings highlight how crucial it is to create and improve data 

processing algorithms specific to the subtleties of metastatic bronchogenic carcinoma-induced 

neurological deficits. To improve algorithmic adaptability and efficacy in addressing the intricacies of 

sensory and cognitive dysfunction associated with this kind of brain tumour, more research is 

necessary. 

Image Pair 
Input Image 1 

(MRI) 

Input Image 2 

(SPECT) 

Existing Method 

Fused Image 

Proposed 

Method  

Fused Image 

Brain 

Tumour 

(Metastatic 

bronchogenic 

carcinoma) 
    

Fig. 8: Comparative output fused images for Brain Tumour (Metastatic bronchogenic 

carcinoma) image pair. 
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Table 7: Objective comparison of proposed and existing methods for Brain Tumour (Metastatic 

bronchogenic carcinoma) image pair. 

Brain Tumour (Metastatic bronchogenic carcinoma) 

METHOD 

Entropy 

(bits/ 

symbol) 

PSNR 

(dB) 
UQI SSIM CC API SD 

Computati

onal Time 

(Seconds) 

Existing  4.3221 65.6498 0.6192 0.9991 0.8613 0.1468 0.2086 32.44 

Proposed 4.2133 59.6641 0.5776 0.9919 0.7675 0.2858 0.3801 34.14 

 

6. CONCLUSIONS 

To sum up, the field of biomedical signal processing is crucial and revolutionary in the field of 

medical research and healthcare. Its numerous uses in monitoring, treatment, and diagnosis highlight 

how essential it is to improving patient care and our comprehension of physiological processes. 

Improved diagnosis, early disease detection, continuous monitoring, and personalized medicine are 

just a few of the benefits that biomedical signal processing offers, all of which help to make 

healthcare procedures more successful and efficient. The development of contemporary healthcare 

will be greatly impacted by signal processing techniques' capacity to objectively evaluate 

physiological conditions, enable continuous monitoring, and enable remote patient care. Biomedical 

signal processing is enhanced by artificial intelligence when combined with it, allowing for data-

driven decision-making, automation, and pattern recognition. When it comes to deriving valuable 

information from the diverse physiological signals that are acquired from the human body, biomedical 

signal processing is essential. Biomedical signal processing has many uses and makes a substantial 

contribution to medical monitoring, diagnosis, and treatment.  

Furthermore, by providing crisper, more detailed images that help with visualization and diagnosis, 

biomedical signal processing significantly contributes to the advancement of medical imaging. The 

field's contributions go beyond improvements in research, allowing for a better comprehension of 

intricate biological signals and stimulating the development of novel medical technologies. 

Biomedical signal processing is at the vanguard of technological innovation, spearheading 

advancements in personalized medicine, telemedicine, and affordable healthcare solutions. Its 

function in signal denoising, effective data management, and integration with new technologies places 

it at the forefront of healthcare practices that are revolutionizing the industry. 

To put it briefly, biomedical signal processing has the potential to influence healthcare in the future, 

encourage early intervention, enhance patient outcomes, and further the continuous pursuit of 

technological and scientific advances in the field. 
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