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Abstract 

This research introduces a unique method for detecting and segmenting diseases in 

tomato leaves, utilizing sophisticated computer vision and deep learning techniques. The 

study employs a deep convolutional neural network (DCNN) for image segmentation, 

particularly targeting tomato leaf diseases. The network architecture comprises an 

encoder (ResNet) and a decoder (DeepLabv3), with specific elements such as ResBlocks 

and Atrous Spatial Pyramid Pooling (ASPP). This approach yields promising results in 

achieving precise pixel-wise classification of tomato leaves, a critical aspect of disease 

detection and management. The proposed network’s performance is compared with other 

segmentation algorithms, specifically U-Net and Segnet, and assessed using various 

metrics, including Accuracy, Intersection over Union (IoU), and the Jaccard and Dice 

similarity coefficients. 
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1. Introduction 

Tomato leaf diseases significantly impact agriculture, affecting both plant health and 

crop yield. Accurate detection and segmentation of these diseases are vital for effective 

disease management. In recent years, advanced computer vision and deep learning 

techniques have been increasingly used to tackle this issue. Researchers have emphasized 

the importance of precise disease classification in tomato cultivation through effective 

image-based segmentation methods [1]. Early detection is particularly important as 

diseases like Septoria leaf spot can lead to considerable yield losses, especially during 

warm and wet seasons [2]. 

Deep learning approaches have demonstrated potential in efficiently detecting tomato 

plant diseases [3]. Moreover, discussions about the potential of CNN-based models for 

identifying and categorizing tomato leaf diseases [4] and the importance of accurate 

detection and classification for effective disease management [5] have influenced the 

field. 

Semantic segmentation, a critical image analysis task, assigns class labels to each pixel, 

facilitating a detailed understanding of image content. Segmenting tomato leaves into 

healthy and diseased regions is crucial for disease control [6]. Precise segmentation 

allows for targeted treatment and control measures [1]. Semantic segmentation overcomes 

limitations in disease detection by providing pixel-level classification, aiding in assessing 

disease severity based on the affected leaf area [7]. Models have been enhanced with 

attention mechanisms and dilated convolution feature extractors [8, 9]. Integrating 

semantic segmentation with architectures like MC-UNet and EfficientNet has improved 

disease detection accuracy. The significance of semantic segmentation in plant disease 

detection has been emphasized in various studies [6, 10]. 
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2. Related works 

Numerous studies have delved into the segmentation of tomato leaf diseases using 

various techniques, including clustering, deep learning, feature extraction, and 

segmentation algorithms. A key aspect of tomato leaf disease detection based on 

computer vision is the accurate segmentation of healthy and diseased areas of the tomato 

leaf [11]. The Tomato Leaf Disease Detection (ToLeD) model, which is based on 

convolutional neural networks (CNNs), has achieved high accuracy rates of 91.2% in 

classifying various tomato diseases from leaf images [10]. For disease detection, texture-

based feature extraction using Gabor filters has been applied through Otsu thresholding 

segmentation [12]. 

Deep learning models, especially CNNs, have been widely explored for segmenting 

and classifying tomato leaf diseases, surpassing traditional methods [13]. Comparative 

studies have shown the superiority of CNNs over support vector machines and k-nearest 

neighbor methods [14]. Innovative algorithms, such as Leaf Segmentation Fuzzy CNN 

(LSFCNN) and ant colony-based Mask RCNN, have been developed for detecting tomato 

leaf diseases in complex backgrounds [15]. Hybrid deep learning approaches, which 

combine attention-based dilated convolution feature extractors with logistic regression, 

have also been used for accurate disease detection [8]. Various CNN architectures have 

enhanced tomato leaf disease classification and segmentation, including VGG Nets, Le-

nets, ResNet, R-CNN, Mask R-CNN, FCN, and SSD [16]. Furthermore, restructured deep 

residual dense networks have been used to identify specific tomato leaf diseases, such as 

spot blight, late blight, and yellow leaf curl [17]. 

Semantic segmentation, a crucial task in computer vision, has evolved through deep 

learning models like DeepLab v3+ and ResNet. DeepLab v3+ is commonly used for 

semantic segmentation tasks, and its effectiveness is enhanced by leveraging pre-trained 

models like ResNet-18 and ResNet-50 [18-20]. ResNet, known for its deep architecture 

with residual connections, has also played a significant role in semantic segmentation 

tasks, combining with DeepLab v3+ for various applications [20-22]. The literature 

emphasizes the exploration of different architectures and techniques to enhance semantic 

segmentation. Novel approaches like SegNet, RCC-Net, and PP-NAS have been proposed 

to address challenges in semantic segmentation tasks [23-25]. 

 

3. Methodology 

3.1. Dataset Preparation and Pre-processing 

 

Figure 1. Pre-processing the Dataset for Training the Network 

This study assembled an initial dataset of images depicting tomato leaf diseases from 

the Plant Village dataset. After pre-processing to eliminate background noise, we 

manually segmented the images to create accurate pixel labels. This step involves 
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identifying regions of interest (ROIs) and labeling each pixel within those ROIs. Each 

pixel in an image should be assigned a class label (e.g., foreground, background, or 

specific object classes). In our case, we labeled it as Background, Diseased, and Healthy. 

Using this labeled pixel dataset and pre-processed dataset, we divided it into training, 

validation, and testing subsets. Subsequently, we trained the proposed network for image 

segmentation. The pre-processing steps are illustrated in Figure 1. 

3.2. Semantic Segmentation Network Architecture 

Semantic segmentation is a critical task in computer vision, aiming to assign class 

labels to each pixel in an image. This methodology outlines the design and evaluation of a 

semantic segmentation network. The objective is to achieve accurate pixel-wise 

classification for tomato leaves. The network comprises two main parts: an encoder and a 

decoder. Here, ResNet serves as the backbone of the encoder with a DeepLabv3 decoder. 

The basic architecture is depicted in Figure 2.  

 

Figure 2. Block diagram of Semantic Segmentation Network Architecture 

3.3. Encoder (ResNet) 

The encoder extracts feature from the input image. The code uses pre-trained layers 

from a ResNet architecture. Here, specific layers like convolutional layers, batch 

normalization layers, and ReLU activation layers are used for feature extraction.  

 

Figure 3. Resnet Architecture 

The block diagram in Figure 3 represents a deep-learning model used for image 

recognition and classification. The process begins with the input layer receiving input data 

as 256 x 256. This is followed by a convolutional layer applying filters to create a feature 

map. A batch normalization layer then normalizes this output, which is then passed 

through a Rectified Linear Unit (ReLU) layer to introduce non-linearity. The pooling 

layer reduces the spatial dimensions while preserving important information. Residual 

blocks (ResBlocks) containing multiple convolutional layers and shortcut connections 

follow, helping the model learn complex features and alleviate the problem of vanishing 

gradients in deep networks. An average pooling layer further reduces the spatial 

dimensions, preparing the data for the final classification stage. A fully connected (FC) 

layer then flattens the output. It connects every neuron to every neuron in the next layer, 

allowing the model to learn global patterns. A softmax layer outputs a probability 

distribution over the classes, indicating the model’s confidence for each class. Finally, the 

classification layer provides the model’s output, which is the class prediction for the input 

image. 

The layers up to the average pooling layer will act as the encoder part for the 

segmentation network as they allow the capture of the hierarchical feature representations 

of the input image. The encoder will progressively reduce the spatial dimensions of the 
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input while increasing the depth, capturing high-level semantic information. The output of 

the average pooling layer will then serve as the input to the decoder part of the network, 

which will upsample the feature maps back to the original input size, producing a pixel-

wise classification.  

3.3.1. ResBlocks: The ResBlocks 2a 2b, shown in Figure 4, consist of two primary 

blocks: Block A and Block B. Each block represents a series of layers that data passes 

through in the network. Block A includes convolutional, batch normalization, and ReLU 

activation layers. The output from the ReLU layer in Block A is then added to the input of 

the next block, Block B, which has a similar structure to Block A. Adding the input from 

the previous layer is a form of skip connection or shortcut, which helps mitigate the 

problem of vanishing gradients in deep neural networks. 

 

Figure 4. ResBlocks 2a 2b 

The ResBlocks from 3a, 3b to 5a, 5b, shown in Figure 5, are similar to ResBlocks 2a, 

2b. The only change is that it has another convolutional layer, and the batch normalization 

layer follows. The output from this second batch normalization layer is added to the 

output from the first ReLU layer. This addition operation forms a shortcut or skip 

connection. The result then passes through another ReLU Layer. 

 

Figure 5. ResBlocks from 3a, 3b to 5a, 5b 

3.4. Decoder (DeepLabv3) 

The decoder part refines the extracted features and predicts the pixel-wise class 

probabilities. It utilizes techniques such as Atrous Convolution, which applies 

convolution with dilated kernels to capture long-range dependencies in the features. ASPP 

(Atrous Spatial Pyramid Pooling) aggregates features from different scales using atrous 

convolutions with varying dilation rates. Lastly, Upsampling increases the resolution of 

the feature maps to match the input image size. 

3.4.1. Atrous Spatial Pyramid Pooling (ASPP) and Decoder: Figure 6 represents a 

neural network architecture specifically designed for tasks that require capturing multi-

scale context, such as image segmentation. This architecture utilizes Atrous Spatial 

Pyramid Pooling (ASPP), a technique that has been proven effective in capturing multi-

scale context. The architecture begins with a ResBlock 5a, 5b layer. The output from this 
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layer is then fed into four parallel streams. Each stream consists of three layers: an ASPP 

Convolutional Layer, a Normalization Batch Layer, and an ASPP ReLu Layer. 

 

Figure 6. Atrous Spatial Pyramid Pooling Network Structure 

The ASPP Convolutional Layer applies a set of convolutional operations to the input 

data. These operations are designed to extract features from the input at multiple scales, 

which is crucial for tasks like image segmentation. Following the ASPP Convolutional 

Layer is the Normalization Batch Layer. This layer normalizes the output from the 

convolutional layer, which can help improve the stability and performance of the neural 

network. The ASPP ReLu Layer applies the ReLu (Rectified Linear Unit) activation 

function to the output from the normalization batch layer. This introduces non-linearity 

into the model, allowing it to learn more complex patterns in the data. Finally, the outputs 

from the four parallel streams are combined in the ASPP Depth Concatenation Layer. 

This layer concatenates the outputs from the four streams along the depth dimension, 

effectively combining the multi-scale features extracted by each stream into a single 

output. This architecture is designed to be highly flexible and adaptable, making it 

suitable for a wide range of tasks that require capturing multi-scale context. 

 

Figure 7. Decoder Block 

The decoder architecture consists of Convolution, batch Normalization, and Relu 

layers, as shown in Figure 7. This sequence of layers is typical in the decoding phase of a 

convolutional neural network, where the goal is to upsample the feature maps to generate 

an output of the same size as the original input. 

3.5. Proposed Network 

Our methodology utilizes a convolutional neural network (CNN) architecture for image 

segmentation, as shown in Figure 8. The network follows a DeepLabv3+ inspired 

structure, incorporating residual learning blocks for improved depth, atrous spatial 

pyramid pooling for multi-scale information capture, and decoder blocks for upsampling 

feature maps. The network processes the input image through residual stages, extracts 

feature at multiple scales through the ASPP block, and progressively upsamples and 
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refines these features in the decoder stages. Finally, the output layer predicts the 

probability distribution of each pixel belonging to specific classes. 

 

Figure 8. Proposed Network Architecture 

3.6. Evaluation Metrics 

An evaluation metric quantifies the performance of the predictive model. The Jaccard 

and Dice similarity coefficients are used to evaluate segmentation models. Several metrics 

are used to accurately measure the performance of segmentation models, including 

Accuracy, Precision, Recall, F1-score, the Dice coefficient, and Mean IoU. The Jaccard 

similarity coefficient, also known as the Jaccard Index [26], is returned as a numeric 

scalar or a numeric vector ranging from [0, 1]. The segmentations in the two images 

(segmented images using the network and hand-drawn segmentation) are matched if the 

similarity value is 1. The Jaccard similarity coefficient is defined as follows: 

 

               (1) 

Where P* and P are the two sets for comparing, Nij represents the number of elements 

common to both sets (the intersection). Ni  and Nj represent the total number of elements 

in each set. 

The Dice similarity coefficient value is a straightforward and practical summary metric 

of spatial overlap that can be used to investigate the reliability and accuracy of image 

segmentation. This metric can be modified for tasks related to validation. A DSC’s value 

ranges from 0, which denotes complete spatial overlap between two sets of results from 

binary segmentation, to 1, which denotes total spatial overlap [27]. The most popular 

evaluation index in semantic segmentation is the Dice coefficient. The greater the 

similarity between the two samples, the higher the Dice coefficient.  

 

                (2) 

Where A is the predicted segmentation, and B is the ground truth. TP stands for True 

Positives, FP for False Positives, TN for True Negative and FN for False Negatives. 

 

                (3) 

IoU(A, B) represents the Intersection over Union between two sets A and B. |A ∩  B| 

represents the intersection of sets A and B. |A ∪ B| represents the union of sets A and B. 

Mean-IoU is a metric that takes the IoU over all of the classes and takes the mean of 

them: 

 

                (4) 
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Where, MIoU stands for Mean Intersection over Union and k is the number of classes 

in segmentation task. 

Indeed, a confusion matrix is a powerful tool for evaluating the performance of a 

classification model, where N represents the total number of target classes. This N × N 

matrix contrasts the actual target values with the predictions made by the machine 

learning model. The four fundamental elements of a confusion matrix are: 

True Positives (TP): These are cases in which the model predicted the positive class 

correctly. 

True Negatives (TN): These are cases in which the model predicted the negative class 

correctly. 

False Positives (FP): These are cases in which the model incorrectly predicted the 

positive class. 

False Negatives (FN): These are cases in which the model incorrectly predicted the 

negative class. 

With these values, we can calculate several performance metrics to assess the 

effectiveness of a classification model [28]: 

Accuracy (ACC): This is the proportion of true results (both true positives and true 

negatives) among the total number of cases examined. It is calculated as follows: 

 

                 (5) 

Precision: This is the proportion of true positive results among the total predicted 

positive (both true and false positives). It is calculated as follows: 

 

                  (6) 

Recall: This is the proportion of true positive results among the total actual positives 

(both true positives and false negatives). It is also known as sensitivity, hit rate, or true 

positive rate (TPR). It is calculated as follows: 

 

                  (7) 

F1-score (F1): This is the harmonic mean of precision and recall, and it provides a 

balance between them. An F1 score reaches its best value at 1 (perfect precision and 

recall) and worst at 0. It is calculated as follows: 

 

                (8) 

Specificity: This is the proportion of true negative results out of all actual negative 

results in the population. 

 

                 (9) 

These metrics provide a comprehensive view of the model’s performance and can help 

identify the areas where the model needs improvement.  
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4. Result and Discussion 

This experiment was conducted using the MATLAB 2022b environment on a 

Windows 11, 64-bit operating system. The hardware setup comprises an AMD Ryzen 

Threadripper processor and an NVIDIA RTX A5000 GPU. The proposed network was 

trained using Stochastic Gradient Descent with Momentum (SGDM) optimization. The 

learning rate, initially set at 0.01, was reduced by a factor of 10 every ten epochs. The 

network underwent training for 100 epochs, with the training speed enhanced by setting a 

high learning rate. 

4.1. Comparing the trained network with other networks 

The performance of the trained network was benchmarked against other segmentation 

algorithms, such as U-Net and Segnet. After numerous trials and adjustments with various 

epochs and batch sizes, we discovered that superior accuracy was achieved with the 

following hyper-tuned settings.  

4.1.1. Impact of Batch sizes 

To optimize the network, we set the learning rate at 0.01 and the number of epochs at 

100. The results show that our Proposed Network surpasses both U-Net and Segnet in 

terms of Batch Accuracy. Notably, the Proposed Network achieved a Batch Accuracy of 

97.74% with a Batch Size of 8, significantly outperforming the maximum Batch Accuracy 

of U-Net (88.72%) and Segnet (92.61%) as shown in Table 1. 

Table 1. Comparison of Network by Different Batch Sizes 

S. 

No 
Network 

Batch 

Size 

Batch 

Accuracy 

Validation 

Accuracy 

Graphical 

Accuracy 

1 U-Net 16 88.72 88.5 88.65 

2 U-Net 8 88.46 87.11 87.31 

3 Segnet 16 91.76 91.94 92.39 

4 Segnet 8 92.61 91.6 91.49 

5 Proposed Network 16 97.44 89.59 89.58 

6 Proposed Network 8 97.74 92.63 92.61 

Interestingly, despite the high batch accuracy, the proposed network’s validation and 

graphic accuracy do not match its batch accuracy. This discrepancy may be attributed to 

overfitting, where the model excels on the training data but underperforms on unseen 

data. However, it is noteworthy that the Proposed Network, with a Batch Size of 8, 

achieved the highest Validation Accuracy and Graphical Accuracy among all models, 

indicating its superior performance. 

Regarding the impact of Batch Size, it seems that a smaller Batch Size generally 

improves performance across all networks. This could be due to the regularizing effect of 

smaller batches, which can help prevent overfitting. Future studies could further 

investigate the influence of other hyperparameters, such as the number of epochs, on the 

performance of the Proposed Network. 

4.1.2. Impact of Epochs in training network 

The previous Table 1 reveals that a batch size of 8 yields optimal results. With this 

batch size, we evaluated the network across different epoch rates. The Proposed Network 

consistently outperforms both U-Net and Segnet in terms of Batch Accuracy across all 

epochs. Specifically, with 100 epochs, the Proposed Network achieved a Batch Accuracy 

of 97.74%, significantly surpassing the maximum Batch Accuracy of U-Net (90.2%) and 

Segnet (93.88%) as shown in Table 2. 

Interestingly, despite the high batch accuracy, the proposed network’s validation and 

graphic accuracy do not match its batch accuracy. This discrepancy may be due to 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 8



 

 

overfitting, where the model performs well on the training data but underperforms on 

unseen data. However, it is noteworthy that the Proposed Network, with 50 epochs, 

achieved the highest Validation Accuracy and Graphical Accuracy among all models, 

indicating its superior performance. 

Table 2. Comparison of Networks by Different Epochs 

S. 

No 
Network Epochs 

Batch 

Accuracy 

Validation 

Accuracy 

Graphical 

Accuracy 

1 U-Net 100 88.46 87.11 87.31 

2 U-Net 50 87.44 86.8 86.73 

3 U-Net 25 87.7 87.66 88.03 

4 U-Net 10 90.2 88.96 89.02 

5 Segnet 100 92.61 91.6 91.49 

6 Segnet 50 93.88 91.59 92.27 

7 Segnet 25 91.82 92.38 93.19 

8 Segnet 10 92.68 88.37 89.44 

9 Proposed Network 100 97.74 92.63 92.61 

10 Proposed Network 50 97.31 93.05 94.3 

11 Proposed Network 25 97.35 90.16 92.65 

12 Proposed Network 10 95.16 92.74 93.26 

Regarding the impact of epochs, it appears that a moderate number of epochs (50 for 

the Proposed Network) generally leads to better performance across all networks. This 

could be because a larger number of epochs may lead to overfitting. In comparison, a 

smaller number of epochs may lead to underfitting. These findings suggest that the 

Proposed Network, particularly with 50 epochs, provides promising results for 

segmenting tomato leaf diseases. 

4.1.3. Evaluation of networks Accuracy based on individual classes.  

Table 3 evaluates the accuracy of different trained networks based on individual 

classes. The Proposed Network boasts the highest mean accuracy of 0.9493. It excels in 

identifying the background with an accuracy of 0.99243. Also, it demonstrates high 

accuracy in identifying disease and healthy classes, with accuracies of 0.90267 and 

0.9528, respectively. Segnet has a mean accuracy of 0.89999 and a high background 

accuracy of 0.97851. The accuracies for disease and healthy classes are 0.87239 and 

0.84906, respectively. Unet, with the lowest mean accuracy of 0.78789 among the three, 

has a high background accuracy of 0.96969. However, its accuracy for disease and 

healthy classes is significantly lower, with values of 0.64562 and 0.74837, respectively.  

Table 3: Comparison of Networks based on accuracy of individual classes 

S. 

No 

Trained 

Network 

Mean 

Accuracy 

Background 

Accuracy 

Disease 

Accuracy 

Healthy 

Accuracy 

1 
Proposed 

Network 
0.9493 0.99243 0.90267 0.9528 

2 Segnet 0.89999 0.97851 0.87239 0.84906 

3 U-Net 0.78789 0.96969 0.64562 0.74837 

The Proposed Network outperforms Segnet and Unet in terms of mean accuracy in 

identifying disease and healthy classes. However, all three networks demonstrate high 

accuracy in identifying the background class. 

4.1.4. Evaluation of networks IoU based on individual classes.  

Table 4 evaluates the Intersection over Union (IoU) of different trained networks 

based on individual classes. The Proposed Network has the highest mean IoU of 0.90413 

and the highest weighted IoU of 0.93678. It excels in identifying the background with an 
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IoU of 0.98259. It also demonstrates high IoUs for disease and healthy classes, with 

values of 0.87414 and 0.85566, respectively.  

Table 4. Comparison of Various Networks IoU based on individual classes 

S. 

No 

Trained 

Network 

Mean 

IoU 

Weighted 

IoU 

Background 

IoU 

Disease 

IoU 

Healthy 

IoU 

1 
Proposed 

Network 
0.90413 0.93678 0.98259 0.87414 0.85566 

2 Segnet 0.82504 0.87865 0.95486 0.76077 0.75948 

3 U-Net 0.67604 0.75171 0.8914 0.49993 0.6368 

Segnet has a mean IoU of 0.82504 and a weighted IoU of 0.87865. It has a high 

background IoU of 0.95486. The IoUs for disease and healthy classes are 0.76077 and 

0.75948, respectively. Unet, with the lowest mean IoU of 0.67604 and the lowest 

weighted IoU of 0.75171 among the three, has a high background IoU of 0.8914. 

However, its IoUs for disease and healthy classes are significantly lower, with values of 

0.49993 and 0.6368, respectively. The Proposed Network outperforms Segnet and Unet in 

terms of mean IoU, weighted IoU, and IoUs for disease and healthy classes. However, all 

three networks demonstrate high IoUs for the background class. 

4.2. Segmentation results of proposed network vs. Manual segmentation 

The comparison in Table 5 offers a valuable visual representation of the segmentation 

results from the proposed network against manual segmentation for four different 

samples. Each sample has an input image, a segmented image, and A hand-drawn image.  

Table 5. Segmentation Results of The Proposed Algorithm 

S. 

No 

Image 

Name 

Input Image Segmented image using 

Proposed network 

Hand drawn Image 

1 4 

 

 

 

 

    

2 14 

 

 

 

 

    

3 20 

 

 

 

 

    

4 37 

 

 

 

 

    

The Input Image presents the original image of a leaf against a plain background. The 

Segmented Image displays the outcome of the automated segmentation process executed 
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by the proposed network. In this image, the diseased region is highlighted in grey, the 

healthy areas in white, and the background in black, indicating the areas identified by the 

network. The hand-drawn image appears to be manually segmented images of leaves in 

white against a black background. This comparison visually illustrates how the automated 

segmentation network can emulate manual segmentation. This is particularly relevant in 

fields such as computer vision and machine learning, where such networks are utilized for 

image analysis. However, the performance may vary depending on the images’ 

characteristics and the complexity of the segmentation task.  

4.3. Evaluation based on the Jaccard and Dice similarity Coefficient 

We employed the Jaccard index and the Dice Coefficient method to assess our 

segmentation model. This approach involves overlapping one image over another to 

verify the model’s segmentation similarity. In our case, we overlapped network-

segmented images on human-segmented images. According to the evaluation metric, the 

value should range from 0 to 1, where 1 signifies exact overlap, and 0 indicates a 

mismatch. 

For the proposed model, we segmented tomato leaves into the background, disease, 

and healthy areas. The Jaccard index and Dice coefficient were calculated for these three 

classes, as shown in Table 6. This table reveals a higher similarity in segmenting the 

background and healthy regions by both Jaccard and Dice. However, there is a loss in the 

diseased area, which might be due to manual segmentation. 

Manual segmentation is prone to errors compared to neural network-based 

segmentation. Upon zooming in on the image, it is evident that the network-based 

segmentation precisely segments the affected region, while the human-segmented region 

includes areas slightly affected by diseases. This observation underscores the accuracy 

and precision of network-based segmentation. 

Table 6. Jaccard and Dice Similarity of Proposed Network vs. Drawn Segmentation 

S: 

no 

Image 

Name 

Jaccard 

background 

Jaccard 

Disease 

Jaccard 

Healthy 

Dice 

Background 

Dice 

Disease 

Dice 

Healthy 

1 4 0.9838 0.6437 0.89622 0.99183 0.7833 0.94527 

2 14 0.98586 0.77728 0.96731 0.99288 0.87468 0.98339 

3 20 0.98234 0.83314 0.9145 0.99109 0.90898 0.95534 

4 37 0.98685 0.97332 0.80714 0.99338 0.98648 0.89328 

The network was assessed using various random images, and the results were 

quantified using the Jaccard index and Dice coefficients for the background, disease, and 

healthy classes. The network consistently demonstrated high performance in identifying 

the background class, as evidenced by high Jaccard and Dice coefficients. The 

performance of disease and healthy classes varied across images, with some images 

yielding higher coefficients than others. 

4.4. Evaluation based on other metrics 

Table 7 evaluates the network based on various metrics for different images. The 

network was tested on images 14, 20, 37, and 4. The Intersection over Union (IoU) for the 

background (BG) class was consistently high across all images, ranging from 0.98326 to 

0.98736. The IoU for the disease class showed more variation, ranging from 0.64637 to 

0.97549. The IoU for the healthy class also varied, ranging from 0.86334 to 0.96665. 

The Accuracy (Acc), precision (Prec), recall (Recl), F-score (Fscore) and Specificity 

(Spe) were all high across the images, indicating the network’s overall strong 

performance. The specificity, a measure of the true negative rate, was also high across all 

images, ranging from 0.9801 to 0.9954. The network demonstrated robust performance 

across different images and classes, as indicated by the high values of the various metrics.  
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Table 7. Other Evaluation Metrics for Proposed Segmentation Network 

Input 

Image 
BG IoU 

Disease 

IoU 

Healthy 

IoU 
Acc Prec Recl Fscore Spe 

14 0.98736 0.79989 0.96665 0.9934 0.9902 0.9902 0.9902 0.9951 

20 0.98364 0.815 0.91244 0.9806 0.9709 0.9709 0.9709 0.9854 

37 0.98326 0.97549 0.86334 0.9939 0.9909 0.9909 0.9909 0.9954 

4 0.98376 0.64637 0.90003 0.9734 0.9602 0.9602 0.9602 0.9801 

However, the performance on the disease class, as measured by the IoU, showed more 

variation across images. This suggests that the network’s ability to identify the disease 

class may depend on specific characteristics of the images. 

 

5. Conclusion 

The proposed network demonstrated robust performance across different images and 

classes, as indicated by the high values of various metrics. It achieved a high mean 

accuracy and Intersection over Union (IoU) for the background, disease, and healthy 

classes. However, the performance of the disease class showed more variation across 

images, suggesting that the network’s ability to identify the disease class may depend on 

the specific characteristics of the images. Despite this, the proposed network, particularly 

with a batch size of 8 and 50 epochs, offers promising results for segmenting tomato leaf 

diseases. Future research may focus on improving the validation and graphical accuracy 

of the proposed network, possibly through techniques such as regularization, early 

stopping, or data augmentation. Additionally, the impact of other hyperparameters, such 

as learning rate and number of epochs, on the performance of the proposed network could 

be explored. 
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