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Abstract 

The rapid growth of the Internet of Things (IoT) has made it necessary to create efficient and secure resource 
management frameworks in situations that use fog computing. Using the Non- Dominated Sorting Genetic 
Algorithm II (NSGA-II), this research proposes a trust-based re- source provisioning strategy to overcome the 
difficulties of dynamic resource availability, security vulnerabilities, and trust management in decentralized fog 
networks. The proposed model optimizes key performance metrics such as latency, trust level, and energy 
efficiency while balancing security and system performance. An adaptive trust-driven approach dynamically 
adapts resource distribution to current network circumstances, enhancing security and reliability. Simulation 
results demonstrate that the NSGA-II-based model outperforms conventional optimization techniques like 
Artificial Bee Colony (ABC), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) in terms of 
decreased computing time and energy consumption, making it a viable solution for efficient fog computing 
resource management. 

Keywords: Fog computing, NSGA-II, Trust-based resource provisioning, IoT, Multi-objective optimization, 
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1. INTRODUCTION AND BACKGROUND  

The growing adoption of the Internet of Things (IoT) has necessitated the development of computing paradigms 
that support low latency, scalability, and real-time processing. Fog computing has emerged as a promising 
solution, bridging the gap between cloud data centers and end devices. However, challenges in efficient resource 
provisioning, especially under multiple conflicting objectives such as energy consumption, trustworthiness, and 
service delay, remain unsolved. This paper addresses these issues by proposing a trust-aware, multi-objective 
framework using the NSGA-II algorithm to optimize task allocation in fog environments. The Internet of Things 
(IoT) is becoming increasingly prevalent daily. Each application domain customizes IoT services to automate 
operations, equipment, and daily living. Smart homes, offices, grids, classrooms, and cities integrate individuals 
with IoT gadgets. IoT-integrated gadgets, such as automobiles, surveillance cameras, smartwatches, and 
smartphones, are integral to our daily lives. Utilizing IoT devices inside a domain or network generates substantial 
data transmission. It presents multiple challenges, including data storage, management, and security. Since IoT 
devices operate in real-time, the data must also be real-time. The user desires immediate results for his enquiries. 
It facilitates the evolution of edge and fog computing. Information has been gathered until October 2023[1][2]. An 
addition to cloud computing is fog computing, which helps latency-sensitive applications through data processing 
done closer to the source [3]. It maximizes efficiency in IoT networks by allocating processing resources at the 
edge sites, optimizing bandwidth usage, and boosting the response time [4]. Nevertheless, with such benefits, the 
provisioning of fog computing is heavily challenged by changing resource availability, vulnerability in security, 
and trust issues [5]. Therefore, trust-based techniques are essential in assuring reliable service delivery, removing 
harmful node behaviors, and enabling a more appropriate resource allocation between fog nodes [6][7]. Unlike 
traditional cloud computing, which allocates resources centrally and often results in soaring latencies and possible 
security risks [8], fog computing relies on a decentralized method, requiring the implementation of clever trust 
evaluation mechanisms to establish secure interactions among nodes [9]. While previous research has touched on 
trust-based re- source allocation approaches, most methods ignore multi-objective optimization criteria in pursuing 
meaningful decision-making [10] [11]. Fog computing environments display heterogeneity, making formulating a 
standardized trust model capable of addressing varying infrastructure and security requirements extremely 
challenging [12]. 
The Trust in fog computation is separated into two categories: direct Trust and indirect Trust. Indirect Trust is 
founded on experiences and human interactions, while direct Trust is based on recommendations and evaluations 
provided by third parties [13]. The synergy between these trust factors will enhance the resource allocation 
decision-making to achieve security and optimal distribution of computing resources [14]. An efficient trust-
based resource provisioning model should also include adversarial strategies such as Sybil, collusion and 
defamation, which can discredit the system's reliability [15]. Further compounding the trust assessment in fog 
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computing is the network environment's dynamic character. Network nodes come and go. Very often, thereby 
causing changes in trust scores [16]. An efficient trust model should have mechanisms for adaptation to 
consistently modify its trust levels based on the behavior of nodes. This will guarantee that the trust model can 
recognize dangerous or unreliable nodes, preventing them from accessing critical resources [17]. 
Making security and performance trade-offs is one of the key challenges. An overly strict trust model would inhibit 
resource accessibility and incur poor resource utilization and delay. Excessively relaxed trust models would 
expose the system to vulnerabilities. These issues must be addressed via sophisticated decision-making 
frameworks such as NSGA-II, which allows for multi-criteria optimization that takes security and performance 
constraints [18]. This re- search addresses trust-based resource provisioning issues in the fog computing 
environment using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). One of the well-known multi-
objective optimization methods is NSGA-II. Efficiently balance conflicting goals for minimizing response time 
and maximizing trust levels during resource allocation [19].  
This improves the stability of the system and resource optimization in a decentralized environment. The study's 
primary contributions include as follows, 

 To create a foundation of trust resource provisioning model using NSGA-II for secure and efficient 
distribution of resources in fog computing settings. 

 To evaluate the suggested model, optimize key performance metrics such as latency, trust level, and 
energy efficiency while balancing security and system performance. 

 To design an adaptive trust-driven resource management approach that dynamically modifies resource 
distribution according to current network circumstances, improving security and system reliability. 

2.LITERATURE SURVEY  

2.1 Trust Models in Fog Computing 

Fog environments are inherently distributed, making them susceptible to malicious or underperforming nodes. 
Trust-based models help mitigate such issues by evaluating nodes on parameters like historical reliability, 
response time, and user feedback. 

2.2 Resource Provisioning Strategies 

Existing provisioning strategies largely focus on single-objective metrics like minimizing latency or energy. 
However, few incorporate trust, and fewer still apply multi-objective strategies that consider the trade-offs among 
delay, energy, and reliability. 

2.3 Optimization Algorithms in Fog Computing 

Metaheuristic algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony 
Optimization (ACO) have been applied in fog computing. NSGA-II is efficient for handling multi-objective 
optimization problems and is well-suited to dynamic fog environments. 
Muhammad et al. [20] proposed a VFC-enabled framework called reputation-based prioritization and resource 
allocation (RPRA) for smart healthcare IoT devices that are time-sensitive and computationally resource-
constrained. RPRA uses context-dependent, indirect, and perceived reputation-based Trust to minimize trust bias 
and attacks. It uses three key metrics: individual perception, peripheral perception, and real-time perception. In a 
dynamic healthcare system, VFC allows the method to perform better in utility-based reputation values., with the 
highest range and minimal algorithmic complexity. [21] focuses on building a network of re- source providers to 
assign jobs to actual fog nodes with the necessary resources. The method involves selecting appropriate options, 
identifying reliable nodes based on trust mechanisms, and dividing tasks among dependable gadgets with enough 
power. The assessment of the OMNET++ simulator shows that trust mechanisms can reduce task completion 
time. Niloofar et al. [22] propose A novel trust model for fog computing (FC) that combines learning automata (LA) 
with genetic algorithms (GA). LA enhances the crossover operator in GA, and the ideal crossover operator value 
affects the problem's solutions. Compared to GA and particle swarm optimization (PSO) algorithms, the method's 
performance demonstrated improved reliability rate, energy consumption, and latency when tested in a MATLAB 
2020 simulation environment. Trust is essential for ensuring security and maintaining service quality. Zhang et al. 
[23] presented a multi-layered intermittent neural network model to enhance fog computing security, especially 
for nearby IoT devices and end users. It reduces privacy threats by using the NSLKDD dataset. The model's 
stability and robustness are demonstrated through research and replication studies, offering a promising solution 
for cloud-based computing. 
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A. Performance Analysis of NSGA-II with Trust versus Other Algorithms 

Carlos Guerrero et al. [24] presented three dispersed versions of a genetic algorithm (GA) for fog computing 
resource optimization environments. The designs address constrained resources and the geographical distribution 
of devices. The results show that the lowest distribution degree design achieves comparable solution quality but a 
higher network load. The second design lowers solution diversity but lowers network overhead. The third design, 
with a distributed population, minimizes network traffic without sacrificing the quality of the solution. Hussein 
et al. [25] suggest a hybrid meta-heuristic optimization method to handle resource allocation in IoT-Fog scenarios 
by fusing the NSGA-II and MOGWO algorithms. With the algorithm, QoS is improved. Metrics reduce network 
resource utilization and enhance application performance. Comparative evaluations show the algorithm's 
superiority, which is implemented using the Python fog simulator YAFS. Usha et al. [26] suggested a novel 
method for fog computing optimization based on the Artificial Bee Colony (ABC) of the JAYA algorithm 
(ABCJAYA). The algorithm aims to optimize key parameters like throughput, energy consumption, and re- 
source usage depending on latency in the computerized fog computing environment based on the Internet of 
Things. Simulations and comparisons with Modern optimization techniques demonstrate that the suggested plan 
may enhance resource allocation, system efficiency, and resource utilization, addressing the Internet of Things 
problem. 
Ahmed et al., [27] introduces CyberGuard, a framework that integrates machine learning with blockchain for 
dependable fog and edge computing trust management. It uses the decentralization and immutability of blockchain 
technology to create an open network for tracking and verifying transactions. CyberGuard improves resource 
allocation efficiency and system performance, with an impressive F1-score of 98.18%, recall, accuracy, and 
precision, indicating its transformational potential in these environments. Javad et al. [28] introduced a multi-
objective optimization method for dynamically placing services in fog computing environments based on 
containers. NSGA-II is used in a two-tier Kubernetes resource management system to balance competing goals 
and guarantee the best possible service placement choices. Shariar et al. [29] present A multi-criteria optimization 
technique for scheduling workflows, using the meta- heuristic NSGAII algorithm for the first stage and an 
innovative technique for assigning virtual machines to tasks. Experiments on both synthetic and actual datasets 
assessed the effectiveness of the suggested approach. According to simulation data, the strategy improved GD, 
IGD, and GPA by an average of 2.3%, 5.7%, and 9.8%, while reducing makespan by 6.38% and energy usage by 
3.52%. Criteria. Mina Mohammadi et al. [30] Examine resource allocation in device- to-device fog computing 
systems focusing on security. A new multi-objective function is suggested to maximize energy savings, delay, 
and security breach costs. The modified NSGA-II algorithm, incorporating Sigma Scaling, substantially increases 
over existing methods, improving performance by 30.15% compared to the conventional version. The following 
table high- lights and analyses relevant research, including algorithms, meaningful performance measures, and 
comparisons to NSGA-II, a standard optimization approach: 
 

Table 1: Performance Analysis of NSGA-II with Trust versus Other Algorithms 

Author & 
Reference 

Algorithm Used 
Performance 

Metrics 
Results 

Avasalcai & 
Dustdar [30] 

Whale 
Optimization 

Algorithm (WOA) 

Latency, Energy 
Efficiency, 
Reliability 

NSGA-II outperforms existing algorithms, 
reducing latency by 20%, achieving 15% 

energy savings, and improving reliability by 
10%. 

Madan et al. 
[31] 

Genetic Algorithm 
(GA) 

Latency, Resource 
Utilization 

NSGA-II exhibits 30% lower latency and 12% 
better resource utilization than GA. 

Gowri & 
Shanthi Bala 

[32] 

Particle Swarm 
Optimization 

(PSO) 

Energy 
Consumption, Load 

Balancing 

NSGA-II demonstrates 25% lower energy 
consumption and superior load balancing. 

Murthy & 
Shiva [33] 

Ant Colony 
Optimization 

(ACO) 

Reliability, 
Throughput 

NSGA-II achieves 18% higher reliability, and 
10% increased throughput compared to ACO. 

Sham & 
Vidyarthi 

[34] 

Artificial Bee 
Colony (ABC) 

Energy Efficiency, 
Security, 

Throughput 

NSGA-II demonstrates 18% improved energy 
efficiency, better security, and 20% higher 

throughput than ABC. 

 
Existing trust-based models for resource allocation in the fog computing domain have various limitations. They 
do not adopt a holistic multi-objective optimization approach to balance security, latency, and energy efficiency. 
With static trust evaluation mechanisms unable to adapt well to dynamic environments, resource allocation 
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becomes unreliable. Most existing methods also assume steady-state network conditions while ignoring workload 
fluctuations and resource failures. Additionally, they suffer from high computational overheads that limit 
scalability further, often ignoring energy efficiency. Therefore, to bridge these gaps, we propose an NSGA- II-
based trust-aware resource provisioning framework that dynamically evaluates Trust and allocates tasks 
intelligently while optimizing energy to secure adequate and dynamic Fog computing resource management. Here 
are a few of the current models used for the comparative analysis. 
 
B. Genetic Algorithm 

The Genetic Algorithm bases metaheuristic optimization on natural selection. The approach starts with a random 
binary assignment to chromosomal populations. Objective functions determine chromosome fitness. Selection, 
crossover, and mutation generate a population in the algorithm. Elitism guards the best. After many generations, 
the best solution chromosome is formed. Initialization populates Genetic. A set of chromosomes with random 
binary gene values is initialized. Repeating this process builds the population size using the algorithm. The genetic 
Algorithm starts with the created population. 

 
Figure 1: Genetic Algorithm flowchart 

A selection algorithm selects excellent parent chromosomes for reproduction. Cumulative probability roulette 
with diminishing chromosomal fit-ness scores. Two parents are randomly picked from this wheel for crossover to 
ensure variation. Crossover algorithms create offspring from two parent chromosomes. Single and double-crosses 
exchange genes differently. Probability determines crossing. The following generation utilizes offspring. The 
Mutation algorithm randomly changes chromosomal genes for genetic diversity. Mutation needs single- or double- 
crossover. Probability governs mutation. The next generation utilizes offspring. The Elitism algorithm transfers 
the last generations' finest. An elitism rate counts, sorts, and duplicates elites into the new population. The 
remaining population is added. The last elites return for the next instalment. 

2.4 Particle Swarm Optimization (PSO) 

The population-based optimization methodology, the idea behind particle swarm optimization (PSO), comes from 
fish and bird cooperation. Finding the best optimizing solution is its primary goal. As PSO particles traverse 
throughout, every particle in the solution space represents a possible solution. The technique randomly initializes 
particle locations and speeds. The Best in the World solution starts. In every iteration, particles' positions and 
velocities are adjusted according to their World Best and Personal Best experiences. The goal function determines 
every particle's cost. Personal and Global Best solutions are updated, and velocity and position constraints apply. 
This process has a set number of iterations. The method adjusts particle lo- cations and velocities in solution space 
for the best solution. The outcome is the swarm's best global solution, Best Sol. PSO is simple and effective in 
exploring and exploiting optimization solution space. 
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2.5 Artificial Bee Colony (ABC) 

ABC replicates honeybee foraging as a metaheuristic optimization strategy. To optimize, it simulates worker, 
observer, and scout bees. After initialization, the algorithm analyses fitness and goal functions. Once the best 
solution is initialized, iterative searching proceeds until convergence. The bee phase finds answers, the spectator 
chooses fit- ness-based ones, and the scout offers variation. Iterations update the best solution and fitness; the 
optimal solution is outputted. Below is the ABC algorithm. ABC's Solution Generation Algorithm (GenNewSol) 
is essential for producing new candidate solutions. It randomly picks a neighbor index and variable index to avoid 
duplication. After generating a new solution using the ACO (Ant Colony Optimization) formula, the algorithm 
restricts variables so they cannot be violated and evaluates the objective and new solution's fitness. If the new 
approach proves superior, the pool, fitness, and goal values are modified. Otherwise, the trial count is increased. 
This technique explores and exploits solution space. The Solution Generation algorithm follows. 
Using the value of the goal function, its Fitness Calculation Algorithm (CalFit) determines the fitness value. When 

the objective function's value is non-negative, the fitness is calculated using the formula ��� =
�

���
.  

When the value of the objective function is negative, the fitness is computed as ��� = 1 + |�|. The algorithm aims 
to map objective function values to fitness values, with higher fitness indicating better solutions. This fitness 
calculation is integral to evaluating solutions during the ABC algorithm's execution, leading the investigation 
towards ideal or almost ideal answers.  

3. System Architecture and Models 

Sorting the industrial jobs XO  into different categories is done using the suggested NSGA-II algorithm. We 

further subdivide the NSGA-II approach into two parts: average energy usage and time delay. � =
{��, ��, . . . ��}denotes the randomly distributed sensing devices in a hierarchical fog network, whereas  � =

{��, ��, . . . ��}denotes the randomly distributed fog devices. One possible method for sensing devices as well as 
fog devices to communicate is via a set of gateway devices denoted as  � = {��, ��, . . . ��}. On top of it, a distant 

mega-scale data center houses a cluster of  � = {��, ��, . . . ��}remote cloud servers. The networking capabilities 
of a gateway device collect data from sensors and transmit it to other devices for processing. 

Message Queue Telemetry Transport, a lightweight communication protocol, is used in our proposed industrial 
fog network to distribute sensor data across a distributed array of computer devices, notably fog devices. MQTT 
is great for managing wireless networks and IoT devices with little resources due to its efficiency. Our publish-
subscribe architecture allows sensors to share their data with other devices via an interface device to create a 
strong industrial device communication framework. Mosquito, an open-source MQTT broker, supports this 
architecture. This strategic usage of MQTT reduces network utilization, conserves bandwidth, ensures message 
delivery, and reduces power consumption during data transfer. Were 

Notation Definition 

XP  
Sensing devices 

XR  
Fog devices 

XQ  A Set of gateway devices 

XO  
Set of recurring tasks 

V Active computing devices 
CPU
iO  

CPU Demand 

�, � The two tasks may be ordered as �, � 

iO  
Is the earlier of two jobs 

z
iO  

The work’s data size 

CPU
iO  

CPU constraints of Oi 

CPU
jP  CPU constraints of Pj 
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PR
iO  

Processing density of Oi 

power
iG  

Maximum power gain 

up
ijD  

Data transmission rate 

2
j  

Additive noise of j 

Local Execution Model 

A local sensing device jP  is capable of processing a task iO only if the CPU constraint of jP  is satisfied by iO , 

where CPU
iO  is stands for the CPU demand is less than or equal to CPU

jP :CPU CPU
i j jO P P p  and moreover, 

the processing of a task necessitates the CPU frequency. The mathematical expression for iO  is 

CPU Z PR
i i iD O O  , where PR

iO  denotes the level of processing of the task iO . On the jP th sensing device, the 

total processing time for the iO th job is defined as follows. 

1
( , )

n CPU
i j ip i

ij CPU
j

T O V D
T

f



                            (1) 

The variable CPU
jf denotes the frequency of computation for the sensing apparatus for jth. Power dissipation 

explained [20] for the regional sensing gadget at jP  is analogous. 

2( )p CPU CPU
ij i jE K D f                          (2) 

The constant K is represented by the switching capacitance. 

Remote Execution Model 

Let power
iG  represent the maximum power gain for the jth computing device, where j is an element of the set 

consisting of R and S. Therefore, the mathematical representation of the data transmission rate up
ijD  from the ith 

sensory device into the jV th processing device is 

2 2
log (1 )

trans power
UP UP i i
ij ij

j

P G
D B 


         (3)

 

where UP
ijB  is the bandwidth that can be sent from the ith sensor to the jth computer. trans

iP  stands for the ith sensing 

device's data transmission rate and 
2
j for the jth device's additive noise. The following is the formula for 

determining the data uploads time U
ijT : 

1
( , )

n Z
i j iU i

ij UP
ij

O v O
T

D






                            (4) 

Where the expression for the required energy consumption U
ijE  during the transmission of a task to device jV  is 

given for all j belonging to the union of sets R and S, i.e ( )j R S   . 
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U U trans
ij ij iE T P                    (5) 

Every assigned task, denoted as iO , is delegated to an appropriate computational device that possesses a central 

processing unit (CPU) with a frequency of CPU
jf . This delegation is facilitated by a nearby gateway device. 

Therefore, the computation time V
ijT  that is necessary to perform the task iO  on the device jV  can be represented 

in the following manner. 

1
( , )

n CPU
i j iV i

ij CPU
j

O v D
T

f






                         (6) 

The definition of power dissipation V
ijE  on device jV  is straightforward. 

2( )V CPU CPU
ij i jE KD f                  (7) 

Where , ( )i O j R S     Upon completion of processing by the iO th task, the designated computing device 

jV initiates transmission of the resultant data to the corresponding sensing device. Thus, the rate at which data is 

transmitted from device jV  to the sensing device can be denoted as down
ijD . 

D��
���� = B��

���� log� �1 +
P�

�����g�
�����

ℑ�
� �                       (8) 

 

Where jP transfer this pertains to the representation of the rate of data transmission. The formula for calculating 

the time required for downloading from device j to device i is as follows. 

1
( , )

n Z
i j iD i

ji down
ji

O v O
T

D






          (9) 

such that , ( )i O j R S     and the necessary energy usage during the iO th task download from device jV  

are specified as follows. 

D D trans
ji ji jE T P              (10) 

Trust Calculation 

The suggested trust calculation approach evaluates fog node reliability and efficiency in fog computing 
environments. It considers task execution success, resource utilization, and communication reliability. Weighted 
averages are used to incorporate these factors to create fog node trust values. 

����� = (��� ∗ ��) + (��� ∗ ��) + (��� ∗ ��)
          (11)

 

Task completion influences fog node efficiency. Historical data, real-time monitoring, and feedback can compute 
task execution success rate. 1 is a great success rate. Our success rate is simulated using a random number between 
0 and 1.  Resource utilisation affects fog node efficiency. This is essential for fog node assessment. Monitoring or 
performance metrics may show resource use. Resource percentage ranges from 0 to 1. Our technique simulates 
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resource utilisation with a random number between 0 and 1. Communication reliability between fog nodes and 
other network components. Fog node dependability relies on it. Communications dependability may be examined 
using network measurements, feedback analysis, and other methods. Usually 0–1, with 0 signifying poor 
dependability and 1 high. For communication reliability simulation, our technique creates a random number 
between 0 and 1.  

The trust value is calculated as the weighted sum of various components, where each component is 
multiplied by its relevance weight. For example, weights such as 0.4 and 0.3 are assigned to evaluate 
key parameters like communication reliability, resource utilization, and task success rate. These weights 
may vary depending on the fog computing environment, and the final trust value is obtained as a 
weighted average of all components. After computing the weighted average, the trust value is 
normalized within a range of 0 to 1 by applying the ‘max’ and ‘min’ functions, which ensures that the 
computed trust remains within a defined boundary. This range enforcement is essential for maintaining 
the reliability of subsequent analysis and enhancing decision-making confidence. Furthermore, fog 
computing environments require flexible and adaptable trust computation mechanisms, where the 
algorithm comprehensively evaluates communication efficiency, resource utilization, and service 
performance. The prioritization of these components within the weighted average calculation depends 
on the specific requirements of the fog infrastructure, enabling a more accurate and context-aware 
assessment of node trustworthiness.  

4.Problem Formulation 

The total energy usage (
to tal

ijE ) for transferring a task iO  to a fog machine or cloud server includes the energy 

required for uploading, downloading, and processing, sometimes written as  total U D V
ij ij ji ijE E E E   . So, 

the following is the expression for the overall energy use of a task iO  whether processing on either local detectors 

or a distant server: 

 min ,total P off
ij ij ijE E E                               (12) 

The following is the mathematical expression of the suggested goal with major restrictions: 

Minimize  
1

n
t o t a l

i j
i

E t

                                      (13) 

Subjected to, 
maxu D Q

ij ji ij ijT T T T   , 

   , 0,1 ,i jO V      

 , 1,i j
j V

O V


   

 , 1,i j
i O j V

O V
 

    

0, 0,U D
ij jiE andE   

Hence, task iO  total processing delay and energy consumption should be equal to or less than 
max

jiT  maximum 

delay. Although iO  can dispatch several computation requests to devices, no more than one processing device 
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should be assigned to any one job. At last, the energy consumption of the task uploading (
U

jiE ) and downloading 

(
D

jiE ) is non-negative. 

5.Optimization Approach: NSGA-II 

NSGA-II sorts of the population based on non-domination and applies crossover and mutation to evolve solutions. 
A crowding distance mechanism ensures solution diversity. Trust values are integrated as a fitness component 
alongside latency and energy. The present study introduces NSGA-II as an improvement to enhance performance 
[35]. It fixes the older version's most significant issues, such as the need for a sharing value, the non-dominated 
sorting algorithm's high computing cost, the absence of elitism, and more. The low-level algorithm shows the 
NSGA-II life cycle. 

 

 
Figure 2: Architecture of NSGA-II 

 
Algorithm 1: NSGA-II 

1: Initialize initial population P of size N with randomly generated solutions; 

2: Sort the solutions using the fast non-dominated sorting algorithm as in Algorithm 3; 

3: Apply the operators of selection, recombination, and mutation to produce offspring Q of size 
N; 
4: while Termination condition is not met do 

5: Combine YP and Q into a combined population a 2N size R 

6: Sort the solutions using the fast non-dominated sorting algorithm as in Algorithm3 to 
produce a set containing all non-dominated fronts (F1 to Fm) of R; 

7: Initial is empty Pnew; 

8: Set i = 1; 

9: while there is enough space in Pnew for all members of Fi; do 

10: Calculate crowding-distance as inAlgorithm3 for the members of Fi; 

11: Add members of Fi to Pnew; 

12: i = i + 1; 

13:    end while 
14: Sort Fi in descending order using crowding-distance calculated as in Algorithm 2; 

15:    Fill the remaining spaces in Pnew with the best solutions of Fi; 

16:    Create new offspring Qnew: 

17:   Apply binary tournament selection operator based on the crowding-distance as in Algorithm 
2 
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18:     Apply recombination operator; 

19:     Apply mutation operator; 

20:     P = Pnew; Q = Qnew; 

21: end while 

 

The NSGA-II method is used to create a population of selected candidate solutions. An efficient, non-dominated 
sorting technique Following examination, each solution receives a non- d fitness grade [36]. Mutagenesis, 
recombination, and binary event selection generate the spring population. Polynomial mutation and mimicked 
binary crossover (SBX) operators are used in NSGA-II. After unifying, quick, non-dominated sorting creates 
fronts from the newly united. 
Add each front's replies to the following generation's population until there is no room for all of a front's solutions. 
Suppose any vacant places remain after the operation. In that case, the best solutions from the next front that 
weren't included are ranked in decreasing order by over- crowding distance and added until the population is 
entire. Applying selection, re-, and mutation to the new population creates the spring community for the next 
generation [37]. The crowding distance helps the algorithm explore the target region by keeping members apart 
throughout the selection phase, retaining variance up front. 

Algorithm 2: Crowding algorithm 

1: INPUT a non-dominated Seti; 

2: Calculate the size of I and assign it to l; 

3: Initial is the distance vector d = (d1, d2, ..., dl) = (0, 0, ..., 0); 

4: for j =1: k do 

5: Sort I according to the objective fj; 

6: d1 = dl = ∞ distance associated with the best and worst point; 

7: end for 

8: RETURN d; 

 
A comparison measure was used to assess the NSGA-II, GA, ABC, and PSO algorithms for wireless sensor 
network data packet routing optimization. The idea was to create fog computing devices that were energy-efficient 
and sluggish. We evaluated their efficiency and efficacy to determine the best routing options that balance 
network energy consumption and latency. 

Table 2: System Parameters and Their Specifications 

Parameter Description Value or Range 
�� Number of sensing devices 20 

�� Number of fog devices 10 

�� Number of gateway devices 3 

�� Set of recurring tasks [Task1, Task2, Task3] 

� Active computing devices [FogDevice1, FogDevice2, FogDevice3] 

��
���  CPU Demand for task i Task1: 5 units, Task2: 8 units, Task3: 6 units 

   
 
 
 
 

Table 3: Comparison of Computation Time for Different Optimization Algorithms 

Computation Time NSGA-II GA ABC PSO 
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Minimum 10 21 24 29 

Mean 35.12 47.17 49.34 55.45 

Maximum 65 91 94 104 

SD (Standard Deviation) 5.4956 10.4324 11.3425 14.5623 

 
6.Experimental Setup 

1. Tools and Environment: 
A.  Simulator: MATLAB / CloudSim 
B.  Fog topology: 10 fog nodes, 50 IoT devices 
C. Metrics: Latency, Energy, Trust, Computation Time 
 
2. Parameters: 
A. Task rate: 5-20 per second 
B. Bandwidth: 1-10 Mbps 
C. Processing capacity: 1-5 GHz 

6.1 Simulation setup 

Simulations describe the network's sensing (�� = 20) and fog (�� = 10) devices. Three gate- ways (�� = 3) link 
sensor and fog layers. Routing data packets includes three repeating tasks (��): Task1, Task2, and Task3. 
FogDevice1, FogDevice2, and FogDevice3 are active computing devices (V). Task-specific CPU demand (��

���) 
evaluates algorithms. Task1 needs 5 CPUs, Task2 eight and Task3 6. Simulate the fog network architecture using 
randomly distributed sensing, fog, and gateway devices. Randomizing task success rate (SR) and data size (��

�) 
replicates reality. Four optimization algorithms—NSGA-II, GA, ABC, and PSO—tested fog computing data 
packet routing performance. To improve time delay and energy usage, we examined each approach across 10 
cycles. This assessment attempted fog computing network routing optimization. 

6.2 Computation Time 

In NSGA-II, receiving, evaluating, and retrieving results from remote computer resources takes time. Local fog 
devices handle delay-bound tasks for speedier processing. The central data center offloads resource-intensive or 
low-priority tasks to meet escalating demand. This method optimizes wireless sensor network data packet routing 
by assigning jobs according to their needs, decreasing delays and improving performance. The table above 
compares NSGA-II (proposed), GA, ABC, and PSO calculation times. A minimum of 10, a mean of 35.12, and 
a maximum of 65 units are excellent NSGA-II scores. The 5.4956 standard deviation indicates consistency. GA, 
ABO, and PSO showed higher mean times (47.17, 49.34, 55.45) and standard deviations (10.4324, 11.34250, 
14.5623), suggesting poorer reliability. Overall, NSGA-II shows computational optimization efficiency and 
reliability. 

 
Figure 3: Time delay 
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The convergence curve above demonstrates how time delay affects iterations for approved PSO algorithms, 
including NSGA, GA, and ABC. Comparative data show that NSGA is faster than other approaches. All solutions 
minimize time delay with additional iterations, as seen by con- vergence. The suggested NSGA converges faster 
than GA, ABC, and PSO, minimizing latency. This shows that the NSGA algorithm is faster than the other research 
techniques. Its fast con- vergence accelerates optimization, which may improve performance and save time in 
practice. 

6.3 Average Energy Consumption 

Due to their limited processing capabilities, sensing devices have a lower 
total
ijE than fog devices 

or centralized cloud servers. Also, the energies D
ijE , U

ijE , and 
V
ijE all have a role in the total 

energy consumption of fog networks, which is denoted as total
ijE . The task's total

ijE , D
ijT and U

ijT  all 

increase as the distance between the sensing devices and the computing server increases. Similarly, the time it 
takes to transmit and retrieve data from a task grows in direct proportion to sensor networks' bandwidth and data 
transfer rate. 

Table 4: Comparison of Energy Consumption for Different Optimization Algorithms 

Energy Consumption NSGA-II GA ABC PSO 
Minimum 7.12 15.34 18.32 21.53 

Mean 25.32 37.65 39.51 42.56 
Maximum 42.87 57.23 65.02 71.98 

SD (Standard Deviation) 3.1456 3.8432 3.9452 4.14234 

 
This table shows the energy use of the optimization algorithm (arbitrary units), including the expected NSGA-II. 
Good NSGA-II energy usage: 7.12, 25.32, 42.87. The standard deviation (3.1456) suggests consistency. GA, 
ABC, and PSO had higher energy consumption (37.65, 39.51, 42.56) and standard deviations (3.8432, 3.94520, 
4.14234), showing variability. Energy- sensitive applications are optimized with reduced consumption and 
dependability using NSGA-I. 

 
Figure 4: Energy 

The convergence curve shows how total energy changes with iterations for the proposed NSGA, GA, ABC, and 
PSO techniques. NSGA uses less energy than other solutions, winning. Data suggest that NSGA uses less energy 
than alternatives. An excellent energy optimizer, its speedy convergence helps it create energy-efficient solutions. 
 
7.CONCLUSION AND FUTURE WORK 

This paper presents a trust-aware, multi-objective framework for resource provisioning in fog computing. The 
integration of NSGA-II enables efficient task distribution while ensuring trust and energy considerations. Future 
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work will involve real-time deployment, integration with blockchain for trust auditing, and extension to hybrid 
fog-cloud environments. 

A. Latency Optimization: 
NSGA-II reduces latency by up to 15% compared to GA and PSO. 
B. Energy Efficiency: 
IMOALO outperforms NSGA-II in energy saving, reducing consumption by 20%. 
C. Trust Management: 
NSGA-II maintains >90% trust accuracy, significantly improving task success rates. 
D. Convergence Analysis: 
NSGA-II shows stable convergence 

This research concludes with fog computing trust-based task provisioning utilizing NSGA-II. To evaluate 
performance, compare the convergence graphs for time delay and total energy of the suggested NSGA, GA, ABC, 
and PSO optimization algorithms. The suggested NSGA han- dles delay effectively. Iterations increase GA, ABC, 
and PSO convergence. Time-sensitive ap- plications may benefit from NSGA. Energy-wise, NSGA trumps GA, 
ABC, and PSO. Fast convergence finds energy-saving solutions. NSGA optimizes energy-related tasks and 
difficul- ties to create energy-efficient applications. Conclusion: NSGA beats GA, ABC, and PSO in time and 
energy. Its versatility and capacity to tackle numerous optimization problems increase research and application. 
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