
TRUST-AWARE MULTI-OBJECTIVE RESOURCE
PROVISIONING IN FOG COMPUTING USING NSGA-II: A

COMPARATIVE OPTIMIZATION FRAMEWORK

1Kirandeep Kaur, 2Punjabi University, Patiala, India,147002
2Arjan Singh, Punjabi University, Patiala, India,147002

3Anju Sharma, Punjab State Aeronautical College, Patiala, India, 147007
Abstract

The rapid growth of the Internet of Things (IoT) has made it necessary to create efficient and secure resource
management frameworks in situations that use fog computing. Using the Non- Dominated Sorting Genetic
Algorithm II (NSGA-II), this research proposes a trust-based re- source provisioning strategy to overcome the
difficulties of dynamic resource availability, security vulnerabilities, and trust management in decentralized fog
networks. The proposed model optimizes key performance metrics such as latency, trust level, and energy
efficiency while balancing security and system performance. An adaptive trust-driven approach dynamically
adapts resource distribution to current network circumstances, enhancing security and reliability. Simulation
results demonstrate that the NSGA-II-based model outperforms conventional optimization techniques like
Artificial Bee Colony (ABC), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) in terms of
decreased computing time and energy consumption, making it a viable solution for efficient fog computing
resource management.

Keywords: Fog computing, NSGA-II, Trust-based resource provisioning, IoT, Multi-objective optimization,
Energy efficiency, Latency optimization, Decentralized resource management.

1. INTRODUCTION AND BACKGROUND

The growing adoption of the Internet of Things (IoT) has necessitated the development of computing paradigms
that support low latency, scalability, and real-time processing. Fog computing has emerged as a promising
solution, bridging the gap between cloud data centers and end devices. However, challenges in efficient resource
provisioning, especially under multiple conflicting objectives such as energy consumption, trustworthiness, and
service delay, remain unsolved. This paper addresses these issues by proposing a trust-aware, multi-objective
framework using the NSGA-II algorithm to optimize task allocation in fog environments. The Internet of Things
(IoT) is becoming increasingly prevalent daily. Each application domain customizes IoT services to automate
operations, equipment, and daily living. Smart homes, offices, grids, classrooms, and cities integrate individuals
with IoT gadgets. IoT-integrated gadgets, such as automobiles, surveillance cameras, smartwatches, and
smartphones, are integral to our daily lives. Utilizing IoT devices inside a domain or network generates substantial
data transmission. It presents multiple challenges, including data storage, management, and security. Since IoT
devices operate in real-time, the data must also be real-time. The user desires immediate results for his enquiries.
It facilitates the evolution of edge and fog computing. Information has been gathered until October 2023[1][2]. An
addition to cloud computing is fog computing, which helps latency-sensitive applications through data processing
done closer to the source [3]. It maximizes efficiency in IoT networks by allocating processing resources at the
edge sites, optimizing bandwidth usage, and boosting the response time [4]. Nevertheless, with such benefits, the
provisioning of fog computing is heavily challenged by changing resource availability, vulnerability in security,
and trust issues [5]. Therefore, trust-based techniques are essential in assuring reliable service delivery, removing
harmful node behaviors, and enabling a more appropriate resource allocation between fog nodes [6][7]. Unlike
traditional cloud computing, which allocates resources centrally and often results in soaring latencies and possible
security risks [8], fog computing relies on a decentralized method, requiring the implementation of clever trust
evaluation mechanisms to establish secure interactions among nodes [9]. While previous research has touched on
trust-based re- source allocation approaches, most methods ignore multi-objective optimization criteria in pursuing
meaningful decision-making [10] [11]. Fog computing environments display heterogeneity, making formulating a
standardized trust model capable of addressing varying infrastructure and security requirements extremely
challenging [12].
The Trust in fog computation is separated into two categories: direct Trust and indirect Trust. Indirect Trust is
founded on experiences and human interactions, while direct Trust is based on recommendations and evaluations
provided by third parties [13]. The synergy between these trust factors will enhance the resource allocation
decision-making to achieve security and optimal distribution of computing resources [14]. An efficient trust-
based resource provisioning model should also include adversarial strategies such as Sybil, collusion and
defamation, which can discredit the system's reliability [15]. Further compounding the trust assessment in fog

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 1

computing is the network environment's dynamic character. Network nodes come and go. Very often, thereby
causing changes in trust scores [16]. An efficient trust model should have mechanisms for adaptation to
consistently modify its trust levels based on the behavior of nodes. This will guarantee that the trust model can
recognize dangerous or unreliable nodes, preventing them from accessing critical resources [17].
Making security and performance trade-offs is one of the key challenges. An overly strict trust model would inhibit
resource accessibility and incur poor resource utilization and delay. Excessively relaxed trust models would
expose the system to vulnerabilities. These issues must be addressed via sophisticated decision-making
frameworks such as NSGA-II, which allows for multi-criteria optimization that takes security and performance
constraints [18]. This re- search addresses trust-based resource provisioning issues in the fog computing
environment using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). One of the well-known multi-
objective optimization methods is NSGA-II. Efficiently balance conflicting goals for minimizing response time
and maximizing trust levels during resource allocation [19].
This improves the stability of the system and resource optimization in a decentralized environment. The study's
primary contributions include as follows,

 To create a foundation of trust resource provisioning model using NSGA-II for secure and efficient
distribution of resources in fog computing settings.

 To evaluate the suggested model, optimize key performance metrics such as latency, trust level, and
energy efficiency while balancing security and system performance.

 To design an adaptive trust-driven resource management approach that dynamically modifies resource
distribution according to current network circumstances, improving security and system reliability.

2.LITERATURE SURVEY

2.1 Trust Models in Fog Computing

Fog environments are inherently distributed, making them susceptible to malicious or underperforming nodes.
Trust-based models help mitigate such issues by evaluating nodes on parameters like historical reliability,
response time, and user feedback.

2.2 Resource Provisioning Strategies

Existing provisioning strategies largely focus on single-objective metrics like minimizing latency or energy.
However, few incorporate trust, and fewer still apply multi-objective strategies that consider the trade-offs among
delay, energy, and reliability.

2.3 Optimization Algorithms in Fog Computing

Metaheuristic algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO) have been applied in fog computing. NSGA-II is efficient for handling multi-objective
optimization problems and is well-suited to dynamic fog environments.
Muhammad et al. [20] proposed a VFC-enabled framework called reputation-based prioritization and resource
allocation (RPRA) for smart healthcare IoT devices that are time-sensitive and computationally resource-
constrained. RPRA uses context-dependent, indirect, and perceived reputation-based Trust to minimize trust bias
and attacks. It uses three key metrics: individual perception, peripheral perception, and real-time perception. In a
dynamic healthcare system, VFC allows the method to perform better in utility-based reputation values., with the
highest range and minimal algorithmic complexity. [21] focuses on building a network of re- source providers to
assign jobs to actual fog nodes with the necessary resources. The method involves selecting appropriate options,
identifying reliable nodes based on trust mechanisms, and dividing tasks among dependable gadgets with enough
power. The assessment of the OMNET++ simulator shows that trust mechanisms can reduce task completion
time. Niloofar et al. [22] propose A novel trust model for fog computing (FC) that combines learning automata (LA)
with genetic algorithms (GA). LA enhances the crossover operator in GA, and the ideal crossover operator value
affects the problem's solutions. Compared to GA and particle swarm optimization (PSO) algorithms, the method's
performance demonstrated improved reliability rate, energy consumption, and latency when tested in a MATLAB
2020 simulation environment. Trust is essential for ensuring security and maintaining service quality. Zhang et al.
[23] presented a multi-layered intermittent neural network model to enhance fog computing security, especially
for nearby IoT devices and end users. It reduces privacy threats by using the NSLKDD dataset. The model's
stability and robustness are demonstrated through research and replication studies, offering a promising solution
for cloud-based computing.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 2

A. Performance Analysis of NSGA-II with Trust versus Other Algorithms

Carlos Guerrero et al. [24] presented three dispersed versions of a genetic algorithm (GA) for fog computing
resource optimization environments. The designs address constrained resources and the geographical distribution
of devices. The results show that the lowest distribution degree design achieves comparable solution quality but a
higher network load. The second design lowers solution diversity but lowers network overhead. The third design,
with a distributed population, minimizes network traffic without sacrificing the quality of the solution. Hussein
et al. [25] suggest a hybrid meta-heuristic optimization method to handle resource allocation in IoT-Fog scenarios
by fusing the NSGA-II and MOGWO algorithms. With the algorithm, QoS is improved. Metrics reduce network
resource utilization and enhance application performance. Comparative evaluations show the algorithm's
superiority, which is implemented using the Python fog simulator YAFS. Usha et al. [26] suggested a novel
method for fog computing optimization based on the Artificial Bee Colony (ABC) of the JAYA algorithm
(ABCJAYA). The algorithm aims to optimize key parameters like throughput, energy consumption, and re-
source usage depending on latency in the computerized fog computing environment based on the Internet of
Things. Simulations and comparisons with Modern optimization techniques demonstrate that the suggested plan
may enhance resource allocation, system efficiency, and resource utilization, addressing the Internet of Things
problem.
Ahmed et al., [27] introduces CyberGuard, a framework that integrates machine learning with blockchain for
dependable fog and edge computing trust management. It uses the decentralization and immutability of blockchain
technology to create an open network for tracking and verifying transactions. CyberGuard improves resource
allocation efficiency and system performance, with an impressive F1-score of 98.18%, recall, accuracy, and
precision, indicating its transformational potential in these environments. Javad et al. [28] introduced a multi-
objective optimization method for dynamically placing services in fog computing environments based on
containers. NSGA-II is used in a two-tier Kubernetes resource management system to balance competing goals
and guarantee the best possible service placement choices. Shariar et al. [29] present A multi-criteria optimization
technique for scheduling workflows, using the meta- heuristic NSGAII algorithm for the first stage and an
innovative technique for assigning virtual machines to tasks. Experiments on both synthetic and actual datasets
assessed the effectiveness of the suggested approach. According to simulation data, the strategy improved GD,
IGD, and GPA by an average of 2.3%, 5.7%, and 9.8%, while reducing makespan by 6.38% and energy usage by
3.52%. Criteria. Mina Mohammadi et al. [30] Examine resource allocation in device- to-device fog computing
systems focusing on security. A new multi-objective function is suggested to maximize energy savings, delay,
and security breach costs. The modified NSGA-II algorithm, incorporating Sigma Scaling, substantially increases
over existing methods, improving performance by 30.15% compared to the conventional version. The following
table high- lights and analyses relevant research, including algorithms, meaningful performance measures, and
comparisons to NSGA-II, a standard optimization approach:

Table 1: Performance Analysis of NSGA-II with Trust versus Other Algorithms

Author &
Reference

Algorithm Used
Performance

Metrics
Results

Avasalcai &
Dustdar [30]

Whale
Optimization

Algorithm (WOA)

Latency, Energy
Efficiency,
Reliability

NSGA-II outperforms existing algorithms,
reducing latency by 20%, achieving 15%

energy savings, and improving reliability by
10%.

Madan et al.
[31]

Genetic Algorithm
(GA)

Latency, Resource
Utilization

NSGA-II exhibits 30% lower latency and 12%
better resource utilization than GA.

Gowri &
Shanthi Bala

[32]

Particle Swarm
Optimization

(PSO)

Energy
Consumption, Load

Balancing

NSGA-II demonstrates 25% lower energy
consumption and superior load balancing.

Murthy &
Shiva [33]

Ant Colony
Optimization

(ACO)

Reliability,
Throughput

NSGA-II achieves 18% higher reliability, and
10% increased throughput compared to ACO.

Sham &
Vidyarthi

[34]

Artificial Bee
Colony (ABC)

Energy Efficiency,
Security,

Throughput

NSGA-II demonstrates 18% improved energy
efficiency, better security, and 20% higher

throughput than ABC.

Existing trust-based models for resource allocation in the fog computing domain have various limitations. They
do not adopt a holistic multi-objective optimization approach to balance security, latency, and energy efficiency.
With static trust evaluation mechanisms unable to adapt well to dynamic environments, resource allocation

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 3

becomes unreliable. Most existing methods also assume steady-state network conditions while ignoring workload
fluctuations and resource failures. Additionally, they suffer from high computational overheads that limit
scalability further, often ignoring energy efficiency. Therefore, to bridge these gaps, we propose an NSGA- II-
based trust-aware resource provisioning framework that dynamically evaluates Trust and allocates tasks
intelligently while optimizing energy to secure adequate and dynamic Fog computing resource management. Here
are a few of the current models used for the comparative analysis.

B. Genetic Algorithm

The Genetic Algorithm bases metaheuristic optimization on natural selection. The approach starts with a random
binary assignment to chromosomal populations. Objective functions determine chromosome fitness. Selection,
crossover, and mutation generate a population in the algorithm. Elitism guards the best. After many generations,
the best solution chromosome is formed. Initialization populates Genetic. A set of chromosomes with random
binary gene values is initialized. Repeating this process builds the population size using the algorithm. The genetic
Algorithm starts with the created population.

Figure 1: Genetic Algorithm flowchart

A selection algorithm selects excellent parent chromosomes for reproduction. Cumulative probability roulette
with diminishing chromosomal fit-ness scores. Two parents are randomly picked from this wheel for crossover to
ensure variation. Crossover algorithms create offspring from two parent chromosomes. Single and double-crosses
exchange genes differently. Probability determines crossing. The following generation utilizes offspring. The
Mutation algorithm randomly changes chromosomal genes for genetic diversity. Mutation needs single- or double-
crossover. Probability governs mutation. The next generation utilizes offspring. The Elitism algorithm transfers
the last generations' finest. An elitism rate counts, sorts, and duplicates elites into the new population. The
remaining population is added. The last elites return for the next instalment.

2.4 Particle Swarm Optimization (PSO)

The population-based optimization methodology, the idea behind particle swarm optimization (PSO), comes from
fish and bird cooperation. Finding the best optimizing solution is its primary goal. As PSO particles traverse
throughout, every particle in the solution space represents a possible solution. The technique randomly initializes
particle locations and speeds. The Best in the World solution starts. In every iteration, particles' positions and
velocities are adjusted according to their World Best and Personal Best experiences. The goal function determines
every particle's cost. Personal and Global Best solutions are updated, and velocity and position constraints apply.
This process has a set number of iterations. The method adjusts particle lo- cations and velocities in solution space
for the best solution. The outcome is the swarm's best global solution, Best Sol. PSO is simple and effective in
exploring and exploiting optimization solution space.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 4

2.5 Artificial Bee Colony (ABC)

ABC replicates honeybee foraging as a metaheuristic optimization strategy. To optimize, it simulates worker,
observer, and scout bees. After initialization, the algorithm analyses fitness and goal functions. Once the best
solution is initialized, iterative searching proceeds until convergence. The bee phase finds answers, the spectator
chooses fit- ness-based ones, and the scout offers variation. Iterations update the best solution and fitness; the
optimal solution is outputted. Below is the ABC algorithm. ABC's Solution Generation Algorithm (GenNewSol)
is essential for producing new candidate solutions. It randomly picks a neighbor index and variable index to avoid
duplication. After generating a new solution using the ACO (Ant Colony Optimization) formula, the algorithm
restricts variables so they cannot be violated and evaluates the objective and new solution's fitness. If the new
approach proves superior, the pool, fitness, and goal values are modified. Otherwise, the trial count is increased.
This technique explores and exploits solution space. The Solution Generation algorithm follows.
Using the value of the goal function, its Fitness Calculation Algorithm (CalFit) determines the fitness value. When

the objective function's value is non-negative, the fitness is calculated using the formula ��� =
�

���
.

When the value of the objective function is negative, the fitness is computed as ��� = 1 + |�|. The algorithm aims
to map objective function values to fitness values, with higher fitness indicating better solutions. This fitness
calculation is integral to evaluating solutions during the ABC algorithm's execution, leading the investigation
towards ideal or almost ideal answers.

3. System Architecture and Models

Sorting the industrial jobs XO into different categories is done using the suggested NSGA-II algorithm. We

further subdivide the NSGA-II approach into two parts: average energy usage and time delay. � =
{��, ��, . . . ��}denotes the randomly distributed sensing devices in a hierarchical fog network, whereas � =

{��, ��, . . . ��}denotes the randomly distributed fog devices. One possible method for sensing devices as well as
fog devices to communicate is via a set of gateway devices denoted as � = {��, ��, . . . ��}. On top of it, a distant

mega-scale data center houses a cluster of � = {��, ��, . . . ��}remote cloud servers. The networking capabilities
of a gateway device collect data from sensors and transmit it to other devices for processing.

Message Queue Telemetry Transport, a lightweight communication protocol, is used in our proposed industrial
fog network to distribute sensor data across a distributed array of computer devices, notably fog devices. MQTT
is great for managing wireless networks and IoT devices with little resources due to its efficiency. Our publish-
subscribe architecture allows sensors to share their data with other devices via an interface device to create a
strong industrial device communication framework. Mosquito, an open-source MQTT broker, supports this
architecture. This strategic usage of MQTT reduces network utilization, conserves bandwidth, ensures message
delivery, and reduces power consumption during data transfer. Were

Notation Definition

XP
Sensing devices

XR
Fog devices

XQ A Set of gateway devices

XO
Set of recurring tasks

V Active computing devices
CPU
iO

CPU Demand

�, � The two tasks may be ordered as �, �

iO
Is the earlier of two jobs

z
iO

The work’s data size

CPU
iO

CPU constraints of Oi

CPU
jP CPU constraints of Pj

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 5

PR
iO

Processing density of Oi

power
iG

Maximum power gain

up
ijD

Data transmission rate

2
j

Additive noise of j

Local Execution Model

A local sensing device jP is capable of processing a task iO only if the CPU constraint of jP is satisfied by iO ,

where CPU
iO is stands for the CPU demand is less than or equal to CPU

jP :CPU CPU
i j jO P P p  and moreover,

the processing of a task necessitates the CPU frequency. The mathematical expression for iO is

CPU Z PR
i i iD O O  , where PR

iO denotes the level of processing of the task iO . On the jP th sensing device, the

total processing time for the iO th job is defined as follows.

1
(,)

n CPU
i j ip i

ij CPU
j

T O V D
T

f



 (1)

The variable CPU
jf denotes the frequency of computation for the sensing apparatus for jth. Power dissipation

explained [20] for the regional sensing gadget at jP is analogous.

2()p CPU CPU
ij i jE K D f (2)

The constant K is represented by the switching capacitance.

Remote Execution Model

Let power
iG represent the maximum power gain for the jth computing device, where j is an element of the set

consisting of R and S. Therefore, the mathematical representation of the data transmission rate up
ijD from the ith

sensory device into the jV th processing device is

2 2
log (1)

trans power
UP UP i i
ij ij

j

P G
D B 


 (3)

where UP
ijB is the bandwidth that can be sent from the ith sensor to the jth computer. trans

iP stands for the ith sensing

device's data transmission rate and
2
j for the jth device's additive noise. The following is the formula for

determining the data uploads time U
ijT :

1
(,)

n Z
i j iU i

ij UP
ij

O v O
T

D






 (4)

Where the expression for the required energy consumption U
ijE during the transmission of a task to device jV is

given for all j belonging to the union of sets R and S, i.e ()j R S   .

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 6

U U trans
ij ij iE T P (5)

Every assigned task, denoted as iO , is delegated to an appropriate computational device that possesses a central

processing unit (CPU) with a frequency of CPU
jf . This delegation is facilitated by a nearby gateway device.

Therefore, the computation time V
ijT that is necessary to perform the task iO on the device jV can be represented

in the following manner.

1
(,)

n CPU
i j iV i

ij CPU
j

O v D
T

f






 (6)

The definition of power dissipation V
ijE on device jV is straightforward.

2()V CPU CPU
ij i jE KD f (7)

Where , ()i O j R S     Upon completion of processing by the iO th task, the designated computing device

jV initiates transmission of the resultant data to the corresponding sensing device. Thus, the rate at which data is

transmitted from device jV to the sensing device can be denoted as down
ijD .

D��
���� = B��

���� log� �1 +
P�

�����g�
�����

ℑ�
� � (8)

Where jP transfer this pertains to the representation of the rate of data transmission. The formula for calculating

the time required for downloading from device j to device i is as follows.

1
(,)

n Z
i j iD i

ji down
ji

O v O
T

D






 (9)

such that , ()i O j R S     and the necessary energy usage during the iO th task download from device jV

are specified as follows.

D D trans
ji ji jE T P (10)

Trust Calculation

The suggested trust calculation approach evaluates fog node reliability and efficiency in fog computing
environments. It considers task execution success, resource utilization, and communication reliability. Weighted
averages are used to incorporate these factors to create fog node trust values.

����� = (��� ∗ ��) + (��� ∗ ��) + (��� ∗ ��)
 (11)

Task completion influences fog node efficiency. Historical data, real-time monitoring, and feedback can compute
task execution success rate. 1 is a great success rate. Our success rate is simulated using a random number between
0 and 1. Resource utilisation affects fog node efficiency. This is essential for fog node assessment. Monitoring or
performance metrics may show resource use. Resource percentage ranges from 0 to 1. Our technique simulates

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 7

resource utilisation with a random number between 0 and 1. Communication reliability between fog nodes and
other network components. Fog node dependability relies on it. Communications dependability may be examined
using network measurements, feedback analysis, and other methods. Usually 0–1, with 0 signifying poor
dependability and 1 high. For communication reliability simulation, our technique creates a random number
between 0 and 1.

The trust value is calculated as the weighted sum of various components, where each component is
multiplied by its relevance weight. For example, weights such as 0.4 and 0.3 are assigned to evaluate
key parameters like communication reliability, resource utilization, and task success rate. These weights
may vary depending on the fog computing environment, and the final trust value is obtained as a
weighted average of all components. After computing the weighted average, the trust value is
normalized within a range of 0 to 1 by applying the ‘max’ and ‘min’ functions, which ensures that the
computed trust remains within a defined boundary. This range enforcement is essential for maintaining
the reliability of subsequent analysis and enhancing decision-making confidence. Furthermore, fog
computing environments require flexible and adaptable trust computation mechanisms, where the
algorithm comprehensively evaluates communication efficiency, resource utilization, and service
performance. The prioritization of these components within the weighted average calculation depends
on the specific requirements of the fog infrastructure, enabling a more accurate and context-aware
assessment of node trustworthiness.

4.Problem Formulation

The total energy usage (
to tal

ijE) for transferring a task iO to a fog machine or cloud server includes the energy

required for uploading, downloading, and processing, sometimes written as  total U D V
ij ij ji ijE E E E   . So,

the following is the expression for the overall energy use of a task iO whether processing on either local detectors

or a distant server:

 min ,total P off
ij ij ijE E E (12)

The following is the mathematical expression of the suggested goal with major restrictions:

Minimize  
1

n
t o t a l

i j
i

E t

 (13)

Subjected to,
maxu D Q

ij ji ij ijT T T T   ,

   , 0,1 ,i jO V 

 , 1,i j
j V

O V


 

 , 1,i j
i O j V

O V
 

  

0, 0,U D
ij jiE andE 

Hence, task iO total processing delay and energy consumption should be equal to or less than
max

jiT maximum

delay. Although iO can dispatch several computation requests to devices, no more than one processing device

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 8

should be assigned to any one job. At last, the energy consumption of the task uploading (
U

jiE) and downloading

(
D

jiE) is non-negative.

5.Optimization Approach: NSGA-II

NSGA-II sorts of the population based on non-domination and applies crossover and mutation to evolve solutions.
A crowding distance mechanism ensures solution diversity. Trust values are integrated as a fitness component
alongside latency and energy. The present study introduces NSGA-II as an improvement to enhance performance
[35]. It fixes the older version's most significant issues, such as the need for a sharing value, the non-dominated
sorting algorithm's high computing cost, the absence of elitism, and more. The low-level algorithm shows the
NSGA-II life cycle.

Figure 2: Architecture of NSGA-II

Algorithm 1: NSGA-II

1: Initialize initial population P of size N with randomly generated solutions;

2: Sort the solutions using the fast non-dominated sorting algorithm as in Algorithm 3;

3: Apply the operators of selection, recombination, and mutation to produce offspring Q of size
N;
4: while Termination condition is not met do

5: Combine YP and Q into a combined population a 2N size R

6: Sort the solutions using the fast non-dominated sorting algorithm as in Algorithm3 to
produce a set containing all non-dominated fronts (F1 to Fm) of R;

7: Initial is empty Pnew;

8: Set i = 1;

9: while there is enough space in Pnew for all members of Fi; do

10: Calculate crowding-distance as inAlgorithm3 for the members of Fi;

11: Add members of Fi to Pnew;

12: i = i + 1;

13: end while
14: Sort Fi in descending order using crowding-distance calculated as in Algorithm 2;

15: Fill the remaining spaces in Pnew with the best solutions of Fi;

16: Create new offspring Qnew:

17: Apply binary tournament selection operator based on the crowding-distance as in Algorithm
2

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 9

18: Apply recombination operator;

19: Apply mutation operator;

20: P = Pnew; Q = Qnew;

21: end while

The NSGA-II method is used to create a population of selected candidate solutions. An efficient, non-dominated
sorting technique Following examination, each solution receives a non- d fitness grade [36]. Mutagenesis,
recombination, and binary event selection generate the spring population. Polynomial mutation and mimicked
binary crossover (SBX) operators are used in NSGA-II. After unifying, quick, non-dominated sorting creates
fronts from the newly united.
Add each front's replies to the following generation's population until there is no room for all of a front's solutions.
Suppose any vacant places remain after the operation. In that case, the best solutions from the next front that
weren't included are ranked in decreasing order by over- crowding distance and added until the population is
entire. Applying selection, re-, and mutation to the new population creates the spring community for the next
generation [37]. The crowding distance helps the algorithm explore the target region by keeping members apart
throughout the selection phase, retaining variance up front.

Algorithm 2: Crowding algorithm

1: INPUT a non-dominated Seti;

2: Calculate the size of I and assign it to l;

3: Initial is the distance vector d = (d1, d2, ..., dl) = (0, 0, ..., 0);

4: for j =1: k do

5: Sort I according to the objective fj;

6: d1 = dl = ∞ distance associated with the best and worst point;

7: end for

8: RETURN d;

A comparison measure was used to assess the NSGA-II, GA, ABC, and PSO algorithms for wireless sensor
network data packet routing optimization. The idea was to create fog computing devices that were energy-efficient
and sluggish. We evaluated their efficiency and efficacy to determine the best routing options that balance
network energy consumption and latency.

Table 2: System Parameters and Their Specifications

Parameter Description Value or Range
�� Number of sensing devices 20

�� Number of fog devices 10

�� Number of gateway devices 3

�� Set of recurring tasks [Task1, Task2, Task3]

� Active computing devices [FogDevice1, FogDevice2, FogDevice3]

��
��� CPU Demand for task i Task1: 5 units, Task2: 8 units, Task3: 6 units

Table 3: Comparison of Computation Time for Different Optimization Algorithms

Computation Time NSGA-II GA ABC PSO

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 10

Minimum 10 21 24 29

Mean 35.12 47.17 49.34 55.45

Maximum 65 91 94 104

SD (Standard Deviation) 5.4956 10.4324 11.3425 14.5623

6.Experimental Setup

1. Tools and Environment:
A. Simulator: MATLAB / CloudSim
B. Fog topology: 10 fog nodes, 50 IoT devices
C. Metrics: Latency, Energy, Trust, Computation Time

2. Parameters:
A. Task rate: 5-20 per second
B. Bandwidth: 1-10 Mbps
C. Processing capacity: 1-5 GHz

6.1 Simulation setup

Simulations describe the network's sensing (�� = 20) and fog (�� = 10) devices. Three gate- ways (�� = 3) link
sensor and fog layers. Routing data packets includes three repeating tasks (��): Task1, Task2, and Task3.
FogDevice1, FogDevice2, and FogDevice3 are active computing devices (V). Task-specific CPU demand (��

���)
evaluates algorithms. Task1 needs 5 CPUs, Task2 eight and Task3 6. Simulate the fog network architecture using
randomly distributed sensing, fog, and gateway devices. Randomizing task success rate (SR) and data size (��

�)
replicates reality. Four optimization algorithms—NSGA-II, GA, ABC, and PSO—tested fog computing data
packet routing performance. To improve time delay and energy usage, we examined each approach across 10
cycles. This assessment attempted fog computing network routing optimization.

6.2 Computation Time

In NSGA-II, receiving, evaluating, and retrieving results from remote computer resources takes time. Local fog
devices handle delay-bound tasks for speedier processing. The central data center offloads resource-intensive or
low-priority tasks to meet escalating demand. This method optimizes wireless sensor network data packet routing
by assigning jobs according to their needs, decreasing delays and improving performance. The table above
compares NSGA-II (proposed), GA, ABC, and PSO calculation times. A minimum of 10, a mean of 35.12, and
a maximum of 65 units are excellent NSGA-II scores. The 5.4956 standard deviation indicates consistency. GA,
ABO, and PSO showed higher mean times (47.17, 49.34, 55.45) and standard deviations (10.4324, 11.34250,
14.5623), suggesting poorer reliability. Overall, NSGA-II shows computational optimization efficiency and
reliability.

Figure 3: Time delay

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 11

The convergence curve above demonstrates how time delay affects iterations for approved PSO algorithms,
including NSGA, GA, and ABC. Comparative data show that NSGA is faster than other approaches. All solutions
minimize time delay with additional iterations, as seen by con- vergence. The suggested NSGA converges faster
than GA, ABC, and PSO, minimizing latency. This shows that the NSGA algorithm is faster than the other research
techniques. Its fast con- vergence accelerates optimization, which may improve performance and save time in
practice.

6.3 Average Energy Consumption

Due to their limited processing capabilities, sensing devices have a lower
total
ijE than fog devices

or centralized cloud servers. Also, the energies D
ijE , U

ijE , and
V
ijE all have a role in the total

energy consumption of fog networks, which is denoted as total
ijE . The task's total

ijE , D
ijT and U

ijT all

increase as the distance between the sensing devices and the computing server increases. Similarly, the time it
takes to transmit and retrieve data from a task grows in direct proportion to sensor networks' bandwidth and data
transfer rate.

Table 4: Comparison of Energy Consumption for Different Optimization Algorithms

Energy Consumption NSGA-II GA ABC PSO
Minimum 7.12 15.34 18.32 21.53

Mean 25.32 37.65 39.51 42.56
Maximum 42.87 57.23 65.02 71.98

SD (Standard Deviation) 3.1456 3.8432 3.9452 4.14234

This table shows the energy use of the optimization algorithm (arbitrary units), including the expected NSGA-II.
Good NSGA-II energy usage: 7.12, 25.32, 42.87. The standard deviation (3.1456) suggests consistency. GA,
ABC, and PSO had higher energy consumption (37.65, 39.51, 42.56) and standard deviations (3.8432, 3.94520,
4.14234), showing variability. Energy- sensitive applications are optimized with reduced consumption and
dependability using NSGA-I.

Figure 4: Energy

The convergence curve shows how total energy changes with iterations for the proposed NSGA, GA, ABC, and
PSO techniques. NSGA uses less energy than other solutions, winning. Data suggest that NSGA uses less energy
than alternatives. An excellent energy optimizer, its speedy convergence helps it create energy-efficient solutions.

7.CONCLUSION AND FUTURE WORK

This paper presents a trust-aware, multi-objective framework for resource provisioning in fog computing. The
integration of NSGA-II enables efficient task distribution while ensuring trust and energy considerations. Future

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 12

work will involve real-time deployment, integration with blockchain for trust auditing, and extension to hybrid
fog-cloud environments.

A. Latency Optimization:
NSGA-II reduces latency by up to 15% compared to GA and PSO.
B. Energy Efficiency:
IMOALO outperforms NSGA-II in energy saving, reducing consumption by 20%.
C. Trust Management:
NSGA-II maintains >90% trust accuracy, significantly improving task success rates.
D. Convergence Analysis:
NSGA-II shows stable convergence

This research concludes with fog computing trust-based task provisioning utilizing NSGA-II. To evaluate
performance, compare the convergence graphs for time delay and total energy of the suggested NSGA, GA, ABC,
and PSO optimization algorithms. The suggested NSGA han- dles delay effectively. Iterations increase GA, ABC,
and PSO convergence. Time-sensitive ap- plications may benefit from NSGA. Energy-wise, NSGA trumps GA,
ABC, and PSO. Fast convergence finds energy-saving solutions. NSGA optimizes energy-related tasks and
difficul- ties to create energy-efficient applications. Conclusion: NSGA beats GA, ABC, and PSO in time and
energy. Its versatility and capacity to tackle numerous optimization problems increase research and application.

Declaration

Funding: Not Applicable

REFERENCE

[1] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, “Fog computing: from architecture to edge computing
and big data processing,” J. Supercomput., vol. 75, no. 4, pp. 2070– 2105, 2019.

[2] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat, and J. J. P. C. Rodrigues, “Fog Computing
for Smart Grid Systems in the 5G Environment: Challenges and Solutions,” IEEE Wirel. Commun., vol.
26, no. 3, pp. 47–53, 2019.

[3] A. V Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, “Chapter 4 - Fog Computing:
principles, architectures, and applications,” R. Buyya and A. B. T.-I. of T. Vahid Dastjerdi, Eds. Morgan
Kaufmann, 2016, pp. 61–75.

[4] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog Computing for the Internet of Things:
A Survey,” ACM Trans. Internet Technol., vol. 19, no. 2, Apr. 2019.

[5] A. Ali, M. Ahmed, M. Imran, and H. A. Khattak, “Security and Privacy Issues in Fog Computing,” in
Fog Computing, 2020, pp. 105–137.

[6] W. Ben Daoud, M. S. Obaidat, A. Meddeb-Makhlouf, F. Zarai, and K.-F. Hsiao, “TACRM: trust access
control and resource management mechanism in fog computing,” Human-centric Comput. Inf. Sci., vol. 9,
no. 1, p. 28, 2019.

[7] K. M. Sadique, R. Rahmani, and P. Johannesson, “Fog Computing for Trust in the Internet of Things
(IoT): A Systematic Literature Review,” in 2020 International Conference on Computer Science,
Engineering and Applications (ICCSEA), 2020, pp. 1–6.

[8] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, and M. Faraji- Mehmandar, “Resource
provisioning in edge/fog computing: A Comprehensive and Systematic Review,” J. Syst. Archit., vol.
122, p. 102362, 2022.

[9] J. Wang, Z. Li, H. Liu, T. Qiu, and H. Luo, “A Trust-Based Computation Offloading Framework in
Mobile Cloud-Edge Computing Networks,” IEEE Trans. Mob. Comput.,
pp. 1–15, 2025.

[10] Y. Sun, F. Lin, and H. Xu, “Multi-objective Optimization of Resource Scheduling in Fog Computing
Using an Improved NSGA-II,” Wirel. Pers. Commun., vol. 102, no. 2,
pp. 1369–1385, 2018.

[11] S. Mangalampalli, G. R. Karri, and A. A. Elngar, “An Efficient Trust-Aware Task Scheduling Algorithm
in Cloud Computing Using Firefly Optimization,” Sensors, vol. 23, no. 3, 2023.

[12] J. Wang, Z. Yan, H. Wang, T. Li, and W. Pedrycz, “A Survey on Trust Models in Heterogeneous
Networks,” IEEE Commun. Surv. Tutorials, vol. 24, no. 4, pp. 2127– 2162, 2022.

[13] M. Aaqib, A. Ali, L. Chen, and O. Nibouche, “IoT trust and reputation: a survey and taxonomy,” J. Cloud
Comput., vol. 12, no. 1, p. 42, 2023.

[14] I. Mokni and S. Yassa, “A multi-objective approach for optimizing IoT applications offloading in fog–

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 13

cloud environments with NSGA-II,” J. Supercomput., vol. 80, no. 19,
pp. 27034–27072, 2024.

[15] E. C. P. Neto, S. Dadkhah, S. Sadeghi, and H. Molyneaux, “Mitigating Adversarial Attacks against IoT
Profiling,” Electron., vol. 13, no. 13, pp. 1–20, 2024.

[16] S. Manvi and N. Gowda, “Trust Management in Fog Computing: A Survey,” 2019, pp. 34–48.
[17] S. Wang, Y. Wang, Y. Wang, and Z. Wang, "Comparison of multi-objective evolutionary algorithms

applied to a watershed management problem," J. Environ. Manage., vol. 324, p. 116255, 2022.
[18] C. Guerrero, I. Lera, and C. Juiz, “Genetic-based optimization in fog computing: Current trends and

research opportunities,” Swarm Evol. Comput., vol. 72, p. 101094, 2022.
[19] S. Verma, M. Pant, and V. Snasel, “A Comprehensive Review on NSGA-II for Multi- Objective

Combinatorial Optimization Problems,” IEEE Access, vol. 9, pp. 57757– 57791, 2021.

[20] M. I. Khattak, Y. Hui, A. Ahmad, A. Khan, and Inamullah, “RPRA: Reputation-based prioritization and
resource allocation leveraging predictive analytics and vehicular fog computing,” Ad Hoc Networks, vol.
155, p. 103401, 2024.

[21] F. Faraji, A. Javadpour, A. K. Sangaiah, and H. Zavieh, “A solution for resource allocation through
complex systems in fog computing for the internet of things,” Computing, vol. 106, no. 7, pp. 2107–2131,
2024.

[22] N. B. Bakhtiari, M. Rafighi, and R. Ahsan, “A trust management system for fog computing using
improved genetic algorithm,” J. Supercomput., vol. 80, no. 14, pp. 20923–20955, 2024.

[23] Z. X. ZHANG Y, “Neural Network-Powered Intrusion Detection in Multi-Cloud and Fog
Environments.,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 6, 2024.

[24] C. Guerrero, I. Lera, and C. Juiz, “Distributed genetic algorithm for application placement in the compute
continuum leveraging infrastructure nodes for optimization,” Futur. Gener. Comput. Syst., vol. 160, pp.
154–170, 2024.

[25] B. A. Hussein and S. H. Hashem, “NSGA-II-MOGWO: A Novel Hybrid Algorithm for IoT-Fog
Environment Resources Allocation BT - Proceedings of Third International Conference on Computing
and Communication Networks,” 2025, pp. 179–193.

[26] V. Usha and T. K. R. K. Rao, “Resource provisioning optimization in fog computing: a hybrid meta-
heuristic algorithm approach,” Int. J. Syst. Assur. Eng. Manag., 2024.

[27] A. M. Alwakeel and A. K. Alnaim, “Trust Management and Resource Optimization in Edge and Fog
Computing Using the CyberGuard Framework,” Sensors, vol. 24, no. 13, 2024.

[28] J. Dogani, A. Yazdanpanah, A. Zare, and F. Khunjush, “A two-tier multi-objective service placement in
container-based fog-cloud computing platforms,” Cluster Comput., vol. 27, no. 4, pp. 4491–4514, 2024.

[29] S. Karami, S. Azizi, and F. Ahmadizar, “A bi-objective workflow scheduling in virtualized fog-cloud
computing using NSGA-II with semi-greedy initialization,” Appl. Soft Comput., vol. 151, 2024.

[30] C. Avasalcai and S. Dustdar, Latency-aware distributed resource provisioning for deploying IoT
applications at the network's edge, vol. 69. Springer International Publishing, 2020.

[31] N. Madan, A. W. Malik, A. U. Rahman, and S. D. Ravana, “On-demand resource provisioning for
vehicular networks using flying fog,” Veh. Commun., vol. 25, p. 100252, 2020.

[32] A. S. Gowri and P. Shanth I Bala, "An agent-based resource provision for IoT through machine learning
in Fog computing," 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, no. January
2022, 2019.

[33] B. K. Murthy and S. G. Shiva, “Double-State-Temporal Difference Learning for Resource Provisioning
in Uncertain Fog Computing Environment,” in 2021 IEEE 12th Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON), 2021, pp. 435–440.

[34] E. E. Sham and D. P. Vidyarthi, “Admission control and resource provisioning in fog- integrated cloud
using modified fuzzy inference system,” J. Supercomput., vol. 78, no. 13, pp. 15463–15503, 2022.

[35] R. Jiang, S. Ci, D. Liu, X. Cheng, and Z. Pan, "A hybrid multi-objective optimization method based on
nsga-ii algorithm and entropy weighted topics for lightweight design of dump truck carriage," Machines,
vol. 9, no. 8, 2021.

[36] A. Lubida, M. Veysipanah, P. Pilesjo, and A. Mansourian, "Land-use planning for sustainable urban
development in Africa: A spatial and multi-objective optimization approach," Good. Cartogr., vol. 45,
no. 1, pp. 1–15, 2019.

[37] M. Zare, M. R. Nikoo, B. Nematollahi, A. H. Gandomi, and R. Farmani, “Multi-variable approach to
groundwater vulnerability elucidation: A risk-based multi-objective optimization model,” J. Environ.
Manage., vol. 338, p. 117842, 2023.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 10 2025

PAGE NO: 14

