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Abstract— Today pictures are exceptionally imperative, 
totally different applications counting with computerized 
highlights like self-driving cars, partisan imaging and numerous 
more. For all these applications, we require importance from 
people in watching changes within the environment. We know 
that the surface of soil is exceptionally huge to cover physically 
but it is exceptionally troublesome to screen it. Thus, we must 
move into computerization to utilize the restricted proficiently 
accessible assets. Now-a-days, the existing ancient strategies and 
calculations are not valuable enough to illuminate the issue. To 
solve, we utilize profound learning techniques (a portion of 
machine learning). Within the strategy, we make and apply the 
vehicle question discovery to draw a rectangular boundary-box 
over the anticipated vehicle pictures. The training precision of 
our showing model is 96.7%.  

Keywords—Deep learning, Image classification, Satellite 
images 

I. INTRODUCTION 

Vehicle detection using artificial intelligence is using the 
CNN algorithm to detect vehicles either in images or video 
formats. Using labeled dataset training, these models train 
various vehicles like cars, trucks, buses, and motorcycles. This 
method is crucial in traffic management, smart transport 
systems, etc. Its application starts from smart collision avoid 
systems like parking systems etc. By correctly predicting 
vehicles, it saves traffic accidents with efficient traffic flows, 
and improves the capability of surveillance. In artificial 
intelligence methods, the accuracy of vehicle detection 
systems expects to increase smarter transport solutions. The 
paper development of these systems may result in a safe, 
efficient and better society. 

II. PROPOSED METHODOLOGY 

Geospatial satellite vehicle image detection involves 
using machine learning techniques to classify and detect 
vehicles within these images. We divided our proposed work 
into the following phases. They are Data Collection, Data 
Augmentation, Model Training, Model Validation, and 
Model Testing. Figure – 1 shows the possible proposed 
phases.  

FIGURE 1: PROPOSED PHASES 

 

A. Data Collection 

We collect our dataset from a verified online resource 
using web scraping. Our dataset is basically an image based 
dataset. Then, we convert them in to 200 x 200 pixels images. 

B. Data Augmentation 

Data augmentation is a technique used to improve the 
accuracy and amount of data by applying various 
transformations to the existing data. We use the following 
augmentation to improve the accuracy of the model: 

 
 Geometric Transformations: After collecting the 

dataset, we implement geometric transformations such 
as rotation, flipping, etc. 

 Colour Transformations: After geometric 
transformations of the dataset, we use colour 
transformations such as gamma scaling, hue, 
brightness and contrast adjustment respectively. 

 Salt & Pepper Noise Injection: After colour 
transformations, we use salt and pepper noise as noise 
injection in to our proposed dataset. 
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FIGURE 2: IMAGE AUGMENTATION 

 
1) Rotation 

Rotation contains the following steps that helps us 
to rotate an image with respect to center. 

FIGURE 3: IMAGE ROTATION PROCESS 

 
 

a) Input Image 
The initial step of rotating an image is getting input 

from collected image dataset.  
 

b) Translate Image 
Then, we translate the input image with respect to 

the center of the image. Let, consider the coordinate of 
the central image pixel is (xc, yc). Now, we translate 
each pixel of the image from (xc, yc) to (x - xc, y – yc).  

 
c) Apply the rotation matrix 

Then, we apply the translation over the rotation 
matrix. We apply the following formula to compute the 
rotation matrix R is as follows: 

 

𝑅 = ቀ
cos 𝑡 −𝑠𝑖𝑛𝑡
sin 𝑡 𝑐𝑜𝑠𝑡

ቁ  

 
Where, t = rotation angle (from 0 degree to 359 
degree) 
 
Now, we compute new coordinates (x’, y’) after 
rotation: 

൤
𝑥ᇱ

𝑦ᇱ൨ = 𝑅 ∗ ቂ
𝑥
𝑦ቃ 

 
d) Translate the image back 

Now, we translate the rotated image coordinates 
back in to the original coordinates by adding (xc, yc). 

 
e) Save the image 

Lastly, we save the image into our local image 
directory. 

 
2) Horizontal Flipping 

After rotation, we implement the horizontal flipping 
technique. Basically, it used to swap each pixel values (x, 
y) with the pixel (w – 1 – x, y). 

 
Hence, Q (x, y) = O (w – 1 – x, y) 
 
Where Q (x, y) is the new pixel and O (w – 1 – x, y) 
is the original pixel value. 
 

3) Vertical Flipping 
After horizontal flipping, we implement the vertical 

flipping technique. Basically, it used to swap each pixel 
values (x, y) with the pixel (x, h – 1 – y) 

 
Hence, Q (x, y) = O (x, h – 1 – y) 
 
Where Q (x, y) is the new pixel and O (x, h – 1 – y) 
is the original pixel value. 

 
4) Scaling 

After flipping, we apply scaling by changing height 
and width. To compute scaling, we apply the following 
formula for each pixel: 

 
x’ = x * Sx, y’ = y * Sy 

And, Q (x’, y’) = O (x, y) 
 

Where, Q (x’, y’) is the scaled image and O (x, y) is 
the original image, Sx is the scaling factor of x coordinate 
and Sy is the scaling factor of y coordinate. 

 
5) Translation 

After scaling, we do translation for each pixel of 
image dataset. The new coordinate (x’, y’) of any pixel at 
the original coordinate (x, y) is computed as follows: 
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x’ = x + x and y’ = y + y 
Where, (x, y) is a certain offset coordinate. 
 

For homogenous coordinates, we apply the matrix T as 
follows: 

𝑇 =  ൥
1 0 x
0 1 y
0 0 1

൩ 

 
For any sample point (x, y, 1), translated coordinates 

likelihood (x’, y’, 1) is calculated as: 

൥
𝑥ᇱ

𝑦ᇱ

1

൩ = 𝑇 ∗ ቈ

𝑥
𝑦
1

቉  

 
6) Gamma Scaling 

Gamma scaling is a non-linear operational method, 
used to encode and decode the luminance values in image 
processing. To compute gamma scaling, we use the 
following formula: 

𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  ൬
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒

255
൰



∗ 255 

 
Here, γ is the gamma value. If γ < 1, the image will 
be brighter; if γ > 1, the image will be darker. We 
use 0.75 and 1.5 as gamma value respectively. 

 
7) Adjust Hue and Saturation value 

We apply the following calculation to adjust the 
hue and saturation respectively as shown in Figure 
4. 

FIGURE 4: PROCESS FOR ADJUSTMENT OF HUE AND 

SATURATION VALUE 

 
a) Normalize the values 

In this step, we normalize the values by dividing 
255 with to respect to each pixel value. 

 

𝑅ᇱ =  
𝑅

255
, 𝐺ᇱ =  

𝐺

255
, 𝑎𝑛𝑑 𝐵ᇱ =  

𝐵

255
 

 
b) Compute the minimum and maximum value 

Now, we compute the minimum and maximum 
value over R’, G’ and B’, and find out the difference. 

 
𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑅ᇱ, 𝐺ᇱ, 𝐵ᇱ) 

 
𝐶𝑜𝑙𝑜𝑟௠௜௡௜௠௨௠ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑅ᇱ, 𝐺ᇱ, 𝐵ᇱ) 

 
 =  𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠ −  𝐶𝑜𝑙𝑜𝑟௠௜௡௜௠௨௠ 

 
c) Calculate Hue 

After that, we assume difference is zero if and 
only if Hue (H) is zero. Then, we calculate the Hue 
using following formulas: 

 

𝐼𝑓 𝐶௠௔௫௜௠௨௠ = 𝑅ᇱ𝑡ℎ𝑒𝑛, 𝐻 = 60 ∗  ቆ
𝐺ᇱ − 𝐵ᇱ


 𝑚𝑜𝑑𝑢𝑙𝑜 6ቇ 

𝐼𝑓 𝐶௠௔௫௜௠௨௠ = 𝐺ᇱ 𝑡ℎ𝑒𝑛, 𝐻 = 60 ∗ ቆ
𝐵ᇱ − 𝑅ᇱ


+ 2ቇ 

𝐼𝑓 𝐶௠௔௫௜௠௨௠ = 𝐵ᇱ 𝑡ℎ𝑒𝑛, 𝐻 = 60 ∗ ቆ
𝑅ᇱ − 𝐺ᇱ


+ 4ቇ 

 
d) Calculate Saturation 

In this step, we calculate the Saturation using the 
following formula. 

 

𝑆 = ቐ

0,             𝐼𝑓 𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠ = 0


𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠

,   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  

 
8) Brightness Adjustment 

After adjusting the Hue and Saturation, we adjust 
the brightness of each image of the dataset using the 
following formulas: 

 
𝐼ᇱ(𝑥, 𝑦)  = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝐼(𝑥, 𝑦) + 𝐵, 0), 255) 

 
Where, I’ (x, y) is the pixel of the new image, I 

(x, y) is the brightness and B is the brightness factor. 
 

9) Contrast Adjustment 
After adjusting the brightness, we adjust the 

contrast of each image of the dataset using the 
following formulas: 

 
𝐼ᇱ(𝑥, 𝑦) =   ∗  (𝐼(𝑥, 𝑦) −  µ) +  µ 

 
Where, I (x, y) is the original pixel, I’ (x, y) is the 

new pixel value after adjusting contrast,  is the 
contrast factor, and µ is the midpoint in the range 
from 0 to 255, and sets to 128. Also,  must satisfy 
the following condition: 

 

 =  ൜
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1 𝑡ℎ𝑒𝑛, 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠
 0 <  < 1 𝑡ℎ𝑒𝑛, 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠
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10) Salt & Pepper noise injection 

We implement the following formula to compute 
the salt and pepper noises for our color image 
dataset: 

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑎𝑙𝑡 =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ൬
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗  𝑠𝑖𝑧𝑒 ∗ 0.5 

3
൰  

 

𝑛𝑢𝑚 𝑜𝑓 𝑝𝑒𝑝𝑝𝑒𝑟 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ൬
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑖𝑧𝑒 ∗ 0.5

3
൰ 

 

𝐼′ =  

⎩
⎪
⎨

⎪
⎧

    0 𝑖𝑓 ෍ 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 𝑖 − 1)

௡௨௠ ௢௙ ௣௘௣௣௘௥

௜ ୀ ଴

1 𝑖𝑓 ෍ 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑖 − 1)

௡௨௠ ௢௙ ௦௔௟௧

௜ ୀ ଴

 

 
After computing the I’ (noisy image), we convert them in 

to color mode. 
 
C. Model Training 

Model training phase contains three sub-phases such as 
Image Pre-processing, Feature Extraction, and Training 
phase. We split our dataset in to 80% as training and 20% as 
validation. 

FIGURE 5: MODEL TRAINING 

 
 

1) Image Pre-processing 
We pre-process images using 

“image_dataset_from_directory” function by setting 
image size in 200 x 200 pixels. And also, we set the batch 
size to 16 with random seed is to 16. Also, we use bicubic 
interpolation to get smooth image features. 

 
    2) Feature Extraction 

We apply feature extraction after image pre-
processing. In this phase, we convert the images into 

numerical features, and convert labels into categorical 
features. 

FIGURE 6: TRAINING PHASE IN DETAILS 

 
3) Training Phase 

In model training phase, we implement the 
following: 

 
a) Convolution layer: 

Let us assume that, an input image I with the H 
(height) * W (width) dimension and a filter K with 
the dimension of FH * FW, then the convolution is 
computed as 

 

𝑂(𝑖, 𝑗) = ෍ ෍ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛

ிೈିଵ

௡

ிಹିଵ

௠

) ∗ 𝐾(𝑚, 𝑛) 

 
Where, O (I, j) is the position at (i, j), I (i + m, j + 

n) is the input value at position at I (i + M, j + n), and K 
(m, n) is the filter value of (m, n) position. 
 

And also, we compute the output dimensions using 
the following formulas: 
 

𝑂ு =  ඌ
𝐻 + 2 ∗ 𝑃 −  𝐹ு

𝑆
ඐ +   

 

𝑂ௐ =  ඌ
𝑊 + 2 ∗ 𝑃 −  𝐹ௐ

𝑆
ඐ +   
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Where, H = height, W = width, FH = filter height, 
FW = filter width, P = padding, S = Strides, and  = bias 
and it sets to 1. 
b) Tangent Hyperbolic activation function (or TanH) 

Tangent Hyperbolic activation function is used 
to faster convergence on training time and the range 
between the TanH activation function is from -1 to 
1. 

𝑇𝑎𝑛𝐻 (𝑦) =  
𝑒௬ − 𝑒ି௬

𝑒௬ +  𝑒ି௬
 

c) Max pool layer 
To reduce the dimensionality, we use the Max-

pool layer which is computed as: 
 
𝑂(𝑖, 𝑗) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ൫𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)൯; ∀𝑚, 𝑛 ∈ 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 
 

Where, pool-size = the size of the window. 
 

d) Concatenate leyer 
This layer combines the three CNN based Max-

pool layer with respect to axis set to 1. 
 

e) Flatten layer 
This layer is required to perform from 3-

dimension vectors to 1-dimension vectors by 
preserving the batch size. 

 
f) Dense layer 

In this layer we compute output using the 
following formula 

 
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑇𝑎𝑛𝐻 (𝐼𝑛𝑝𝑢𝑡𝑠 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 +  𝐵𝑖𝑎𝑠) 

 
g) Dropout layer 

We use the following formula to compute the 
dropout layer: 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 =  
1

1 −  
 𝑤ℎ𝑒𝑟𝑒  = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 

 
h) Output layer 

In the last step of training phase, we use dense 
layer with Sigmoid activation function. 

 
i) Sigmoid activation function 

     The sigmoid activation function is computed as 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦) =  
1

1 +  𝑒ି௬
 

 
j) Adam Optimizer 

The Adam optimizer updates parameters using 
the following equations: 

 
 Initialization: 

Initialize the parameters first moment m times, 
second moment v times, and timestamp times. 

 
𝑚଴ = 0, 𝑣଴ = 0, 𝑡𝑖𝑚𝑒𝑠 = 0 

 

 Compute Gradients:  
Compute the gradient of the loss with respect to 
the parameter theta of times. 
 

𝑔௧௜௠௘௦ =  ∇௧௛௘௧௔ ∗ 𝐽(𝜃௧௜௠௘௦) 

 Update Biased First Moment Estimate: 

𝑚௧௜௠௘௦ =  𝛽ଵ ∗  𝑚௧௜௠௘௦ ି ଵ + ((1 −  𝛽ଵ) ∗ 𝑔௧௜௠௘௦) 

 Update Biased Second Moment Estimate: 

𝑣௧௜௠௘௦ =  𝛽ଶ ∗  𝑣௧௜௠௘௦ ି ଵ + ((1 −  𝛽ଶ) ∗ 𝑔௧௜௠௘௦
ଶ ) 

 Compute Bias-Corrected First Moment 
Estimate: 

𝑚௧௜௠௘௦
௖ =  

𝑚௧௜௠௘௦

1 −   ଵ
௧௜௠௘௦

 

 
 Compute Bias-Corrected Second Moment 

Estimate: 

𝑣௧௜௠௘௦
௖ =  

𝑣௧௜௠௘௦

1 −   ଶ
௧௜௠௘௦

 

 Update Parameters: 

𝜃௧௜௠௘௦ାଵ =  𝜃௧௜௠௘௦ −   ∗  
𝑚௧௜௠௘௦

௖

ඥ𝑣௧௜௠௘௦
௖ + 

 

where α is the learning rate and  is a small constant 
to prevent division by zero. 
 

The following table – 1 hyper-parameters of Adam 
optimizers are used in our model. 

TABLE 1:  HYPER-PARAMETRS FOR OPTIMIZERS 

Hyper-Parameter Value 
Learning rate 0.0001 
Beta 1 0.9 
Beta 2 0.99 
Epsilon 0.00001 
AMS Gradient True 

 
k) Loss Computation 

The following formula used to compute loss in our proposed 
model. 

Y = -p * log (1 – p) 
Whereas,  

𝑀𝑆𝐸 =  
1

𝑛
෍൫𝑌௜

௢௥௜௚௜௡௔௟
−  𝑌௜

௣௥௘ௗ௜௖௧௘ௗ
൯

௡

௜ ୀ ଵ

 

 
p = threshold value, and n = number of sample points. 
 

Our proposed model uses 40 epochs for training, and get 
96.7% training accuracy. Lastly, we save our model in to 
local computer path. 
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D. Model Validation 

After training phase, we validate our model with the 
validation dataset. We get 92% validation accuracy on our 
proposed dataset. 

E. Model Testing 

Model testing phase contains the accurate prediction of 
the test dataset. 

FIGURE 7: TESTING PHASE IN DETAILS 

 

1) Input Image 

We take test image dataset to check our accuracy of our 
model as input. 

2) Resize the Image 

After taking input images, we resize the image into 200 x 
200 pixels with bicubic interpolation to get smooth features, 

3) Convert the Image 

After resizing the image, we convert image into the 
numerical array with batch size 16. 

4) Load the saved model 

Now, we load the save model along with weights for 
predicting the vehicle. 

5) Find out the Argmax 

After model prediction, we find out the initial argmax 
form the model prediction vector array. 

6) Predict vehicle 

In the last step, we classify the vehicle from the vehicle 
classes and print them. 

III. RESULT ANALYSIS 

The proposed model produces the following results with 
respect to 40 epochs.  

FIGURE 8: ACCURACY CURVE 

 

FIGURE 9: LOSS CURVE 

 

CONCLUSION 

This paper investigated the feasibility of using geospatial 
satellite data for vehicle object detection. By leveraging 
[mention specific techniques used, e.g., high-resolution 
satellite imagery, machine learning algorithms], we achieved 
promising results in identifying vehicles on a large scale. The 
ability to detect vehicles from space opens doors for 
applications in [e.g., remote area monitoring, disaster 
response coordination, infrastructure mapping]. 
 

However, challenges remain. Satellite imagery can limit 
by [mention limitations, e.g., resolution, weather conditions]. 
Additionally, computational demands for processing vast 
amounts of data can be significant. Future work should focus 
on [mention areas for improvement, e.g., developing 
specialized algorithms for satellite imagery, optimizing 
processing efficiency]. 
 

In conclusion, this paper demonstrates the potential of 
geospatial satellite data for vehicle object detection. By 
addressing the current limitations and continuing research 
efforts, this technology has the potential to revolutionize our 
understanding of transportation patterns and infrastructure 
distribution across the globe. 
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FUTURE SCOPE 

The future of geospatial vehicle object detection is bright, 
with potential applications across various sectors. Here are 
some exciting possibilities: 
 
Intelligent Transportation Systems (ITS): 

● Real-time traffic monitoring:  By constantly 
tracking vehicle movement across vast areas, 
authorities can optimize traffic light timing, deploy 
emergency services efficiently, and even predict 
congestion hotspots. 

● Autonomous vehicle navigation:  High-precision 
detection of surrounding vehicles from satellites can 
enhance the safety and situational awareness of self-
driving cars, especially in areas with limited on-
board sensor range.  

● Smart parking management:  Real-time data on 
vehicle occupancy in parking lots can guide drivers 
to available spots, reducing congestion and 
frustration. 

 
Urban Planning and Development: 

● Urban infrastructure mapping:  Vehicle detection in 
satellite imagery can used to create detailed maps of 
road networks, parking spaces, and other 
transportation infrastructure, aiding urban planning 
and development efforts. 

●  Traffic flow analysis:  Long-term data on vehicle 
movement patterns can inform city planners about 
traffic trends and support the development of more 
efficient transportation networks. 

● Land-use optimization:  Understanding traffic 
patterns can help optimize land use by strategically 
placing commercial centres, public transportation 
hubs, and residential areas.  

 
Environmental Monitoring and Sustainability: 

● Emission tracking:  By identifying and tracking 
high-emission vehicles, environmental agencies can 
target specific areas for stricter regulations and 
emission control measures. 

● Urban heat island analysis:  Satellite data on vehicle 
density can used to identify areas with high traffic 
congestion, which can contribute to the urban heat 
island effect. This information can inform strategies 
for mitigating this phenomenon. 

● Disaster response coordination:  Rapid detection of 
vehicles in disaster zones can help emergency 
responders locate survivors, assess damage, and 
deploy resources more effectively.  

 
Security and Law Enforcement: 

● Stolen vehicle tracking:  By integrating geospatial 
vehicle detection with license plate recognition 
systems, stolen vehicles can identify and located 
more quickly.  

● Traffic violation detection:  Real-time monitoring of 
vehicle movement can help identify potential traffic 
violations, leading to improved road safety and 
enforcement. 
 

Border security monitoring:  Satellite detection of vehicles 
can used to monitor remote borders and identify potential 
smuggling or illegal immigration activities. 
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