
AI based Geospatial Vehicle Prediction
Mr. Sumit Kumar Banerjee

Computer Science & Engineering
Guru Nanak Institute of Technology

Kolkata, India
Sumit.banerjee@gnit.ac.in

Mrs. Priyanka Chakraborty
Computer Science & Engineering

Guru Nanak Institute of Technology
Kolkata, India

Priyanka.chakraborty@gnit.ac.in

 Mr. Rafiqul Islam
Computer Science & Engineering

Guru Nanak Institute of Technology
Kolkata, India

Rafiqul.islam@gnit.ac.in

Abstract— Today pictures are exceptionally imperative,
totally different applications counting with computerized
highlights like self-driving cars, partisan imaging and numerous
more. For all these applications, we require importance from
people in watching changes within the environment. We know
that the surface of soil is exceptionally huge to cover physically
but it is exceptionally troublesome to screen it. Thus, we must
move into computerization to utilize the restricted proficiently
accessible assets. Now-a-days, the existing ancient strategies and
calculations are not valuable enough to illuminate the issue. To
solve, we utilize profound learning techniques (a portion of
machine learning). Within the strategy, we make and apply the
vehicle question discovery to draw a rectangular boundary-box
over the anticipated vehicle pictures. The training precision of
our showing model is 96.7%.

Keywords—Deep learning, Image classification, Satellite
images

I. INTRODUCTION

Vehicle detection using artificial intelligence is using the
CNN algorithm to detect vehicles either in images or video
formats. Using labeled dataset training, these models train
various vehicles like cars, trucks, buses, and motorcycles. This
method is crucial in traffic management, smart transport
systems, etc. Its application starts from smart collision avoid
systems like parking systems etc. By correctly predicting
vehicles, it saves traffic accidents with efficient traffic flows,
and improves the capability of surveillance. In artificial
intelligence methods, the accuracy of vehicle detection
systems expects to increase smarter transport solutions. The
paper development of these systems may result in a safe,
efficient and better society.

II. PROPOSED METHODOLOGY

Geospatial satellite vehicle image detection involves
using machine learning techniques to classify and detect
vehicles within these images. We divided our proposed work
into the following phases. They are Data Collection, Data
Augmentation, Model Training, Model Validation, and
Model Testing. Figure – 1 shows the possible proposed
phases.

FIGURE 1: PROPOSED PHASES

A. Data Collection

We collect our dataset from a verified online resource
using web scraping. Our dataset is basically an image based
dataset. Then, we convert them in to 200 x 200 pixels images.

B. Data Augmentation

Data augmentation is a technique used to improve the
accuracy and amount of data by applying various
transformations to the existing data. We use the following
augmentation to improve the accuracy of the model:

 Geometric Transformations: After collecting the

dataset, we implement geometric transformations such
as rotation, flipping, etc.

 Colour Transformations: After geometric
transformations of the dataset, we use colour
transformations such as gamma scaling, hue,
brightness and contrast adjustment respectively.

 Salt & Pepper Noise Injection: After colour
transformations, we use salt and pepper noise as noise
injection in to our proposed dataset.

Data Collection

Data
Augmentation

Model Training

Model Validation

Model Testing

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 101

Tanoy
Textbox

FIGURE 2: IMAGE AUGMENTATION

1) Rotation

Rotation contains the following steps that helps us
to rotate an image with respect to center.

FIGURE 3: IMAGE ROTATION PROCESS

a) Input Image
The initial step of rotating an image is getting input

from collected image dataset.

b) Translate Image
Then, we translate the input image with respect to

the center of the image. Let, consider the coordinate of
the central image pixel is (xc, yc). Now, we translate
each pixel of the image from (xc, yc) to (x - xc, y – yc).

c) Apply the rotation matrix

Then, we apply the translation over the rotation
matrix. We apply the following formula to compute the
rotation matrix R is as follows:

𝑅 = ቀ
cos 𝑡 −𝑠𝑖𝑛𝑡
sin 𝑡 𝑐𝑜𝑠𝑡

ቁ

Where, t = rotation angle (from 0 degree to 359
degree)

Now, we compute new coordinates (x’, y’) after
rotation:

൤
𝑥ᇱ

𝑦ᇱ൨ = 𝑅 ∗ ቂ
𝑥
𝑦ቃ

d) Translate the image back

Now, we translate the rotated image coordinates
back in to the original coordinates by adding (xc, yc).

e) Save the image

Lastly, we save the image into our local image
directory.

2) Horizontal Flipping

After rotation, we implement the horizontal flipping
technique. Basically, it used to swap each pixel values (x,
y) with the pixel (w – 1 – x, y).

Hence, Q (x, y) = O (w – 1 – x, y)

Where Q (x, y) is the new pixel and O (w – 1 – x, y)
is the original pixel value.

3) Vertical Flipping
After horizontal flipping, we implement the vertical

flipping technique. Basically, it used to swap each pixel
values (x, y) with the pixel (x, h – 1 – y)

Hence, Q (x, y) = O (x, h – 1 – y)

Where Q (x, y) is the new pixel and O (x, h – 1 – y)
is the original pixel value.

4) Scaling

After flipping, we apply scaling by changing height
and width. To compute scaling, we apply the following
formula for each pixel:

x’ = x * Sx, y’ = y * Sy

And, Q (x’, y’) = O (x, y)

Where, Q (x’, y’) is the scaled image and O (x, y) is
the original image, Sx is the scaling factor of x coordinate
and Sy is the scaling factor of y coordinate.

5) Translation

After scaling, we do translation for each pixel of
image dataset. The new coordinate (x’, y’) of any pixel at
the original coordinate (x, y) is computed as follows:

Collected
Images

Geometric
Transformation

Colour
Transformation

Salt & Pepper
Noise Injection

Save the
Images

Input Image

Translate the image

Apply the rotation
matrix

Translate the image
back

Save the Image

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 102

x’ = x + x and y’ = y + y
Where, (x, y) is a certain offset coordinate.

For homogenous coordinates, we apply the matrix T as
follows:

𝑇 = ൥
1 0 x
0 1 y
0 0 1

൩

For any sample point (x, y, 1), translated coordinates

likelihood (x’, y’, 1) is calculated as:

൥
𝑥ᇱ

𝑦ᇱ

1

൩ = 𝑇 ∗ ቈ

𝑥
𝑦
1

቉

6) Gamma Scaling

Gamma scaling is a non-linear operational method,
used to encode and decode the luminance values in image
processing. To compute gamma scaling, we use the
following formula:

𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = ൬
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒

255
൰



∗ 255

Here, γ is the gamma value. If γ < 1, the image will
be brighter; if γ > 1, the image will be darker. We
use 0.75 and 1.5 as gamma value respectively.

7) Adjust Hue and Saturation value

We apply the following calculation to adjust the
hue and saturation respectively as shown in Figure
4.

FIGURE 4: PROCESS FOR ADJUSTMENT OF HUE AND

SATURATION VALUE

a) Normalize the values

In this step, we normalize the values by dividing
255 with to respect to each pixel value.

𝑅ᇱ =
𝑅

255
, 𝐺ᇱ =

𝐺

255
, 𝑎𝑛𝑑 𝐵ᇱ =

𝐵

255

b) Compute the minimum and maximum value

Now, we compute the minimum and maximum
value over R’, G’ and B’, and find out the difference.

𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑅ᇱ, 𝐺ᇱ, 𝐵ᇱ)

𝐶𝑜𝑙𝑜𝑟௠௜௡௜௠௨௠ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑅ᇱ, 𝐺ᇱ, 𝐵ᇱ)

 = 𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠ − 𝐶𝑜𝑙𝑜𝑟௠௜௡௜௠௨௠

c) Calculate Hue

After that, we assume difference is zero if and
only if Hue (H) is zero. Then, we calculate the Hue
using following formulas:

𝐼𝑓 𝐶௠௔௫௜௠௨௠ = 𝑅ᇱ𝑡ℎ𝑒𝑛, 𝐻 = 60 ∗ ቆ
𝐺ᇱ − 𝐵ᇱ


 𝑚𝑜𝑑𝑢𝑙𝑜 6ቇ

𝐼𝑓 𝐶௠௔௫௜௠௨௠ = 𝐺ᇱ 𝑡ℎ𝑒𝑛, 𝐻 = 60 ∗ ቆ
𝐵ᇱ − 𝑅ᇱ


+ 2ቇ

𝐼𝑓 𝐶௠௔௫௜௠௨௠ = 𝐵ᇱ 𝑡ℎ𝑒𝑛, 𝐻 = 60 ∗ ቆ
𝑅ᇱ − 𝐺ᇱ


+ 4ቇ

d) Calculate Saturation

In this step, we calculate the Saturation using the
following formula.

𝑆 = ቐ

0, 𝐼𝑓 𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠ = 0


𝐶𝑜𝑙𝑜𝑟௠௔௫௜௠௨௠

, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

8) Brightness Adjustment

After adjusting the Hue and Saturation, we adjust
the brightness of each image of the dataset using the
following formulas:

𝐼ᇱ(𝑥, 𝑦) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝐼(𝑥, 𝑦) + 𝐵, 0), 255)

Where, I’ (x, y) is the pixel of the new image, I

(x, y) is the brightness and B is the brightness factor.

9) Contrast Adjustment
After adjusting the brightness, we adjust the

contrast of each image of the dataset using the
following formulas:

𝐼ᇱ(𝑥, 𝑦) =  ∗ (𝐼(𝑥, 𝑦) − µ) + µ

Where, I (x, y) is the original pixel, I’ (x, y) is the

new pixel value after adjusting contrast,  is the
contrast factor, and µ is the midpoint in the range
from 0 to 255, and sets to 128. Also,  must satisfy
the following condition:

 = ൜
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1 𝑡ℎ𝑒𝑛, 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠
 0 <  < 1 𝑡ℎ𝑒𝑛, 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠

Normalize the values

Compute the Minimum
and Maximum values

Calculate Hue

Calculate Saturation

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 103

10) Salt & Pepper noise injection

We implement the following formula to compute
the salt and pepper noises for our color image
dataset:

𝑛𝑢𝑚 𝑜𝑓 𝑠𝑎𝑙𝑡 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ൬
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑖𝑧𝑒 ∗ 0.5

3
൰

𝑛𝑢𝑚 𝑜𝑓 𝑝𝑒𝑝𝑝𝑒𝑟 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ൬
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑖𝑧𝑒 ∗ 0.5

3
൰

𝐼′ =

⎩
⎪
⎨

⎪
⎧

 0 𝑖𝑓 ෍ 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 𝑖 − 1)

௡௨௠ ௢௙ ௣௘௣௣௘௥

௜ ୀ ଴

1 𝑖𝑓 ෍ 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑖 − 1)

௡௨௠ ௢௙ ௦௔௟௧

௜ ୀ ଴

After computing the I’ (noisy image), we convert them in

to color mode.

C. Model Training

Model training phase contains three sub-phases such as
Image Pre-processing, Feature Extraction, and Training
phase. We split our dataset in to 80% as training and 20% as
validation.

FIGURE 5: MODEL TRAINING

1) Image Pre-processing
We pre-process images using

“image_dataset_from_directory” function by setting
image size in 200 x 200 pixels. And also, we set the batch
size to 16 with random seed is to 16. Also, we use bicubic
interpolation to get smooth image features.

 2) Feature Extraction

We apply feature extraction after image pre-
processing. In this phase, we convert the images into

numerical features, and convert labels into categorical
features.

FIGURE 6: TRAINING PHASE IN DETAILS

3) Training Phase

In model training phase, we implement the
following:

a) Convolution layer:

Let us assume that, an input image I with the H
(height) * W (width) dimension and a filter K with
the dimension of FH * FW, then the convolution is
computed as

𝑂(𝑖, 𝑗) = ෍ ෍ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛

ிೈିଵ

௡

ிಹିଵ

௠

) ∗ 𝐾(𝑚, 𝑛)

Where, O (I, j) is the position at (i, j), I (i + m, j +

n) is the input value at position at I (i + M, j + n), and K
(m, n) is the filter value of (m, n) position.

And also, we compute the output dimensions using
the following formulas:

𝑂ு = ඌ
𝐻 + 2 ∗ 𝑃 − 𝐹ு

𝑆
ඐ + 

𝑂ௐ = ඌ
𝑊 + 2 ∗ 𝑃 − 𝐹ௐ

𝑆
ඐ + 

Input Images

Image Pre-
processing

Feature
Extraction

Training the
image dataset

Save the
Model

Output Layer

Dropout Layer

Rate: 0.35

Dense Layer

Units: 128 TanH activation

Flatten Layer

Concatenate
CNN-Max-Pool CNN-Max-Pool CNN-Max-Pool

Max Pool Layer

Pool Size: 3 Padding: Same

Convolution Layer
Filters: 32 Kernel: 3 TanH

Input Layer

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 104

Where, H = height, W = width, FH = filter height,
FW = filter width, P = padding, S = Strides, and  = bias
and it sets to 1.
b) Tangent Hyperbolic activation function (or TanH)

Tangent Hyperbolic activation function is used
to faster convergence on training time and the range
between the TanH activation function is from -1 to
1.

𝑇𝑎𝑛𝐻 (𝑦) =
𝑒௬ − 𝑒ି௬

𝑒௬ + 𝑒ି௬

c) Max pool layer
To reduce the dimensionality, we use the Max-

pool layer which is computed as:

𝑂(𝑖, 𝑗) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ൫𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)൯; ∀𝑚, 𝑛 ∈ 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒

Where, pool-size = the size of the window.

d) Concatenate leyer
This layer combines the three CNN based Max-

pool layer with respect to axis set to 1.

e) Flatten layer
This layer is required to perform from 3-

dimension vectors to 1-dimension vectors by
preserving the batch size.

f) Dense layer

In this layer we compute output using the
following formula

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑇𝑎𝑛𝐻 (𝐼𝑛𝑝𝑢𝑡𝑠 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 + 𝐵𝑖𝑎𝑠)

g) Dropout layer

We use the following formula to compute the
dropout layer:

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 =
1

1 − 
 𝑤ℎ𝑒𝑟𝑒  = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒

h) Output layer

In the last step of training phase, we use dense
layer with Sigmoid activation function.

i) Sigmoid activation function

 The sigmoid activation function is computed as

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦) =
1

1 + 𝑒ି௬

j) Adam Optimizer

The Adam optimizer updates parameters using
the following equations:

 Initialization:

Initialize the parameters first moment m times,
second moment v times, and timestamp times.

𝑚଴ = 0, 𝑣଴ = 0, 𝑡𝑖𝑚𝑒𝑠 = 0

 Compute Gradients:
Compute the gradient of the loss with respect to
the parameter theta of times.

𝑔௧௜௠௘௦ = ∇௧௛௘௧௔ ∗ 𝐽(𝜃௧௜௠௘௦)

 Update Biased First Moment Estimate:

𝑚௧௜௠௘௦ = 𝛽ଵ ∗ 𝑚௧௜௠௘௦ ି ଵ + ((1 − 𝛽ଵ) ∗ 𝑔௧௜௠௘௦)

 Update Biased Second Moment Estimate:

𝑣௧௜௠௘௦ = 𝛽ଶ ∗ 𝑣௧௜௠௘௦ ି ଵ + ((1 − 𝛽ଶ) ∗ 𝑔௧௜௠௘௦
ଶ)

 Compute Bias-Corrected First Moment
Estimate:

𝑚௧௜௠௘௦
௖ =

𝑚௧௜௠௘௦

1 −  ଵ
௧௜௠௘௦

 Compute Bias-Corrected Second Moment

Estimate:

𝑣௧௜௠௘௦
௖ =

𝑣௧௜௠௘௦

1 −  ଶ
௧௜௠௘௦

 Update Parameters:

𝜃௧௜௠௘௦ାଵ = 𝜃௧௜௠௘௦ −  ∗
𝑚௧௜௠௘௦

௖

ඥ𝑣௧௜௠௘௦
௖ + 

where α is the learning rate and  is a small constant
to prevent division by zero.

The following table – 1 hyper-parameters of Adam
optimizers are used in our model.

TABLE 1: HYPER-PARAMETRS FOR OPTIMIZERS

Hyper-Parameter Value
Learning rate 0.0001
Beta 1 0.9
Beta 2 0.99
Epsilon 0.00001
AMS Gradient True

k) Loss Computation

The following formula used to compute loss in our proposed
model.

Y = -p * log (1 – p)
Whereas,

𝑀𝑆𝐸 =
1

𝑛
෍൫𝑌௜

௢௥௜௚௜௡௔௟
− 𝑌௜

௣௥௘ௗ௜௖௧௘ௗ
൯

௡

௜ ୀ ଵ

p = threshold value, and n = number of sample points.

Our proposed model uses 40 epochs for training, and get
96.7% training accuracy. Lastly, we save our model in to
local computer path.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 105

D. Model Validation

After training phase, we validate our model with the
validation dataset. We get 92% validation accuracy on our
proposed dataset.

E. Model Testing

Model testing phase contains the accurate prediction of
the test dataset.

FIGURE 7: TESTING PHASE IN DETAILS

1) Input Image

We take test image dataset to check our accuracy of our
model as input.

2) Resize the Image

After taking input images, we resize the image into 200 x
200 pixels with bicubic interpolation to get smooth features,

3) Convert the Image

After resizing the image, we convert image into the
numerical array with batch size 16.

4) Load the saved model

Now, we load the save model along with weights for
predicting the vehicle.

5) Find out the Argmax

After model prediction, we find out the initial argmax
form the model prediction vector array.

6) Predict vehicle

In the last step, we classify the vehicle from the vehicle
classes and print them.

III. RESULT ANALYSIS

The proposed model produces the following results with
respect to 40 epochs.

FIGURE 8: ACCURACY CURVE

FIGURE 9: LOSS CURVE

CONCLUSION

This paper investigated the feasibility of using geospatial
satellite data for vehicle object detection. By leveraging
[mention specific techniques used, e.g., high-resolution
satellite imagery, machine learning algorithms], we achieved
promising results in identifying vehicles on a large scale. The
ability to detect vehicles from space opens doors for
applications in [e.g., remote area monitoring, disaster
response coordination, infrastructure mapping].

However, challenges remain. Satellite imagery can limit
by [mention limitations, e.g., resolution, weather conditions].
Additionally, computational demands for processing vast
amounts of data can be significant. Future work should focus
on [mention areas for improvement, e.g., developing
specialized algorithms for satellite imagery, optimizing
processing efficiency].

In conclusion, this paper demonstrates the potential of
geospatial satellite data for vehicle object detection. By
addressing the current limitations and continuing research
efforts, this technology has the potential to revolutionize our
understanding of transportation patterns and infrastructure
distribution across the globe.

Input Image

Resize the image

Convert image

Load Saved Model

Find ArgMax

Predict Vehicle

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 106

FUTURE SCOPE

The future of geospatial vehicle object detection is bright,
with potential applications across various sectors. Here are
some exciting possibilities:

Intelligent Transportation Systems (ITS):

● Real-time traffic monitoring: By constantly
tracking vehicle movement across vast areas,
authorities can optimize traffic light timing, deploy
emergency services efficiently, and even predict
congestion hotspots.

● Autonomous vehicle navigation: High-precision
detection of surrounding vehicles from satellites can
enhance the safety and situational awareness of self-
driving cars, especially in areas with limited on-
board sensor range.

● Smart parking management: Real-time data on
vehicle occupancy in parking lots can guide drivers
to available spots, reducing congestion and
frustration.

Urban Planning and Development:

● Urban infrastructure mapping: Vehicle detection in
satellite imagery can used to create detailed maps of
road networks, parking spaces, and other
transportation infrastructure, aiding urban planning
and development efforts.

● Traffic flow analysis: Long-term data on vehicle
movement patterns can inform city planners about
traffic trends and support the development of more
efficient transportation networks.

● Land-use optimization: Understanding traffic
patterns can help optimize land use by strategically
placing commercial centres, public transportation
hubs, and residential areas.

Environmental Monitoring and Sustainability:

● Emission tracking: By identifying and tracking
high-emission vehicles, environmental agencies can
target specific areas for stricter regulations and
emission control measures.

● Urban heat island analysis: Satellite data on vehicle
density can used to identify areas with high traffic
congestion, which can contribute to the urban heat
island effect. This information can inform strategies
for mitigating this phenomenon.

● Disaster response coordination: Rapid detection of
vehicles in disaster zones can help emergency
responders locate survivors, assess damage, and
deploy resources more effectively.

Security and Law Enforcement:

● Stolen vehicle tracking: By integrating geospatial
vehicle detection with license plate recognition
systems, stolen vehicles can identify and located
more quickly.

● Traffic violation detection: Real-time monitoring of
vehicle movement can help identify potential traffic
violations, leading to improved road safety and
enforcement.

Border security monitoring: Satellite detection of vehicles
can used to monitor remote borders and identify potential
smuggling or illegal immigration activities.

REFERENCES

[1] Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best
practices for convolutional neural networks applied to visual
document analysis. IEEE Proceedings of the Seventh
International Conference on Document Analysis and
Recognition, 958-963.
https://doi.org/10.1109/ICDAR.2003.1227801

[2] Mundy, J. L., & Zisserman, A. (1992). The geometry of
multiple images: The laws that govern the formation of
multiple images of a scene and some of their applications.
MIT Press Journal of Computer Vision, 3(2), 101-131.

[3] Zhang, Z., & Xu, Y. (2014). A comprehensive review of
image flipping and its impact on deep learning models.
Journal of Visual Communication and Image Representation,
25(6),1136-1149. https://doi.org/10.1016/j.jvcir.2014.02.001

[4] Jain, A. K. (1989). Fundamentals of digital image
processing. IEEE Transactions on Image Processing, 2(3),
301-305. https://doi.org/10.1109/83.31746

[5] Press, W. H., & Teukolsky, S. A. (1992). Image scaling
algorithms: Theory and practice. Journal of Computational
Physics, 99(1), 165-188. https://doi.org/10.1016/0021-
9991(92)90008-M

[6] Shapiro, L. G., & Stockman, G. C. (2001). Image scaling
and interpolation techniques for digital image processing.
Journal of Electronic Imaging, 10(2), 287-295.
https://doi.org/10.1117/1.1344165

[7] Burt, P. J., & Adelson, E. H. (1983). The Laplacian
Pyramid as a Compact Image Code. IEEE Transactions on
Communications, 31(4), 532-540.
https://doi.org/10.1109/TCOM.1983.1095851

[8] Kingma, D. P., & Ba, J. (2015). Adam: A method for
stochastic optimization. Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San Diego,
USA. https://arxiv.org/abs/1412.6980

[9] Kim, J., & Mooney, R. J. (2018). Deep semantic frame-
based car recognition for geospatial applications. IEEE
Transactions on Geoscience and Remote Sensing, 56(2), 691-
701. https://doi.org/10.1109/TGRS.2017.2746143

[10] Zheng, Y., Liu, F., & Hsieh, H. P. (2013). U-Air: When
urban air quality inference meets big data. Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1436-1444.
https://doi.org/10.1145/2487575.2488188

[11] Yuan, Y., & Cheriyadat, A. M. (2018). An ensemble of
deep convolutional neural networks for vehicle detection in
aerial images. IEEE Geoscience and Remote Sensing Letters,
15(5), 757-761.
https://doi.org/10.1109/LGRS.2018.2818934

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 107

[12] Kang, J., Ma, J., & Chan, J. (2017). Vehicle detection in
satellite images using convolutional neural networks and
aggregated channel features. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 10(7),
3091-3100. https://doi.org/10.1109/JSTARS.2017.2696738

[13] Zhang, L., & Zhang, L. (2018). Road extraction by deep
residual U-Net. IEEE Geoscience and Remote Sensing
Letters, 15(5), 749-753.
https://doi.org/10.1109/LGRS.2018.2806059

[14] Chen, L. C., Papandreou, G., Schroff, F., & Adam, H.
(2018). Encoder-decoder with atrous separable convolution
for semantic image segmentation. Proceedings of the
European Conference on Computer Vision (ECCV), 801-818.
https://doi.org/10.1007/978-3-030-01234-2_49

[15] Li, Z., & Shao, G. (2014). Object-based land-cover
mapping using high-resolution aerial photography and
LIDAR data. International Journal of Remote Sensing, 35(7),
2267-2285. https://doi.org/10.1080/01431161.2014.897615

[16] Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-
CNN: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(6), 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031

[17] Du, S., Zhang, F., & Zhang, X. (2017). Automatic
vehicle counting method based on deep features and video
data. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 46-54.
https://doi.org/10.1109/CVPRW.2017.38

[18] Ciresan, D., Meier, U., Masci, J., & Schmidhuber, J.
(2012). Multi-column deep neural network for traffic sign
classification. Neural Networks, 32, 333-338.
https://doi.org/10.1016/j.neunet.2012.02.023

[19] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).
Rich feature hierarchies for accurate object detection and
semantic segmentation. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 580-
587. https://doi.org/10.1109/CVPR.2014.81

[20] Segmentation. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3431-
3440. https://doi.org/10.1109/CVPR.2015.7298965

[21] Bhattacharyya, A., Bahl, S., Goecks, V. G., et al. (2020).
Traphic: Trajectory Prediction in Dense and Heterogeneous
Traffic Using Weighted Interactions. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 8483-8492.
https://doi.org/10.1109/CVPR42600.2020.00851

[22] Vaswani, A., Shazeer, N., Parmar, N., et al. (2017).
Attention is All You Need. Advances in Neural Information
Processing Systems (NeurIPS), 30, 5998-6008.

[23] Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2019).
Understanding Pedestrian Behavior in Complex Traffic

Scenes. IEEE Transactions on Intelligent Vehicles, 4(1), 61-
70.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 108

