Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

Implementation of Automotive Embedded System
Modules using STM32F103 and FreeRTOS

M N Aditya
Electronics and Communication Engineering
R V College of Engineering
Bengaluru, India

Vishnu Skhand Raaj N
Electronics and Communication Engineering
R V College of Engineering
Bengaluru, India

Dr. Kariyappa B S
Electronics and Communication Engineering
R V College of Engineering
Bengaluru, India

Abstract—This paper discusses the design and creation of a
centralized, real-time embedded control system made for today’s
electric vehicles (EVs). The STM32F103 microcontroller is the
main part of the system, and FreeRTOS is used to schedule
tasks and make sure the system behaves in a predictable way. It
includes the integration of important vehicle subsystems, such as
motor control for propulsion, steer-by-wire for better directional
control, and a full battery management system (BMS) for safety
and monitoring. The hardware was made with KiCAD for PCB
design and MATLAB and Simulink for subsystem simulations,
especially for the battery and power management parts, to make
sure it was modular and efficient. Using real-time task manage-
ment helped the control units use their CPUs more efficiently
and find faults. The embedded system showed a big drop in
latency, with steering rates dropping by 35% and SoC update
rates dropping by 30%. This shows how centralized control
is better than traditional distributed architectures. In general,
the platform provides a prototype that is affordable, scalable,
and high-performing. It can also support future additions like
autonomous functions, advanced diagnostics, and compliance
with functional safety standards like ISO 26262.[1]

Keywords—STM32F103, FreeRTOS, Vehicle Control Unit
(VCU), CAN Protocol, Motor Control, Steer-by-Wire,
Battery Management System (BMS), Embedded Systems,
Electric Vehicles.

Pratham B Devadiga
Electronics and Communication Engineering
R V College of Engineering
Bengaluru, India

Uwais Ahmed Khan
Electronics and Communication Engineering
R V College of Engineering
Bengaluru, India

Dr. Rajani Katiyar
Electronics and Communication Engineering
R V College of Engineering
Bengaluru, India

I. INTRODUCTION

Electric vehicles (EVs) are changing the way cars are
designed, controlled, and driven in a big way. Advanced
embedded technologies that control important functions like
propulsion, steering, braking, and energy management are at
the heart of this change. EVs use advanced embedded control
systems that let them run in a precise, flexible, and efficient
way. This is different from traditional vehicles, which rely
heavily on mechanical linkages and analog controls. For vehi-
cles to work safely and smoothly in different situations, these
embedded systems must meet strict standards for deterministic
timing, high reliability, robustness, and fault tolerance. To meet
these needs, you need powerful microcontrollers and real-time
operating systems that can handle complicated multitasking
situations with little delay.[2]

The STM32F103 microcontroller unit (MCU) is the best
choice for these kinds of control architectures because it has
a good mix of processing power, built-in peripherals, and
low power use. The STM32F103 platform, when used with
FreeRTOS, a popular open-source real-time operating system,
makes it possible to run real-time control logic, schedule tasks,
and communicate between processes quickly and easily. This
is important for automotive embedded applications. FreeRTOS
supports preemptive multitasking, which means that multiple
control tasks, like monitoring faults, getting sensor data, and

PAGE NO: 81

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

controlling motor speed, can run at the same time and meet
strict real-time deadlines. This combination not only makes
the system more responsive, but it also makes it easier to find
and fix problems and makes the system more modular.[3]

The main focus of this work is the design and implementa-
tion of a centralized Vehicle Control Unit (VCU) that brings
together important EV subsystems into a single embedded
platform. By putting propulsion control, steer-by-wire systems,
and battery management systems all in one MCU-based VCU,
the hardware is much less complicated. This integration results
in a lower bill of materials (BOM), easier communication
through the Controller Area Network (CAN) protocol, and
easier system maintenance. The consolidation also makes it
easier for subsystems to work together better, which allows
for more advanced features like managing regenerative braking
and adaptive torque vectoring. This method not only lowers
costs and sizes, but it also makes things more reliable and
scalable, which is a great start for the next generation of smart
electric cars.[4]

II. SYSTEM ARCHITECTURE AND METHODOLOGY

There are three main subsystems in the system architecture
that work together: Motor Control, Steer-by-Wire, and Battery
Management System (BMS). Each of these subsystems is very
important for the electric vehicle’s safety and performance.
These subsystems are first designed, built, and thoroughly
tested on their own to make sure they can be used in different
ways and are easy to develop. This method lets you optimize
and debug each functional block without having to worry
about how other parts of the system will affect it. The
subsystems are gradually combined into a single, centralized
Vehicle Control Unit (VCU) after their individual performance
and reliability have been confirmed. FreeRTOS makes this
integration possible by letting tasks run at the same time and
providing efficient ways to schedule tasks, sync them, and talk
to each other.[5]

Figure 1 shows the overall system architecture, which makes
it clear how the Motor Control, Steering, and Battery Manage-
ment tasks are separated from each other. In FreeRTOS, each
subsystem works as its own task, and the priority level of each
task determines how it is managed. Motor Control is the most
important because it directly affects how fast the vehicle goes
and how safe it is to drive in real time. The next most important
task is Steer-by-Wire, which controls electronic steering. This
makes sure that steering inputs are quick and accurate. The
Battery Management task is important for keeping an eye on
the battery’s health, state of charge, and temperature, but it has
a lower priority. It will run on a regular basis to keep energy
safe and efficient.[6]

FreeRTOS primitives like queues and semaphores make it
easier for tasks to talk to each other and work together. Queues
are a thread-safe way to send messages and data between
tasks. This makes it easy to send sensor readings, control
commands, and status updates back and forth. To make sure
that systems are stable and data is safe, semaphores are used
to manage access to shared resources and stop race conditions.

Hall effect sensof— bc Motor 8757960

[HalLefrect sensor | bc motor BT57960}—‘

BTS7960 oC Motor | Halleffect sensor

BTS7960 DC Motor |H Hall effect sensor

Steering
input

Cooling fan Throttle input

I 1
| STM32F103 |—

]

{ stmszri03

ST-link Debugger

Stepper Motor

Liion Liion
Battery [| Battery

5]

1

\\\\\

Liion Liion
Battery [| Battery

Liion Liion
Battery | Battery

Fig. 1. System Architecture Diagram: Motor Control, Steering, and BMS

5]

This framework for multitasking and communication lets the
VCU run multiple complex control algorithms at the same time
without blocking or priority inversion. This keeps the system’s
behavior predictable.[7]

The system uses standard communication protocols like
UART (Universal Asynchronous Receiver-Transmitter) to talk
to other modules and within the same module. UART is mainly
used for debugging, logging, and talking to extra devices or
sensors that don’t need to send data quickly. The integrated EV
control system works reliably, efficiently, and with the speed
that modern electric vehicles need because it uses FreeRTOS
task management and strong communication protocols.[8]

III. HARDWARE AND SOFTWARE IMPLEMENTATION
A. Motor Control

Fig. 2. Hardware Implementation for Motor Control

The heart of the motor control subsystem is a brushed DC
motor. Figure 2 shows how Hall effect sensor feedback and
BTS7960 motor driver modules work together to control the
motor. The Hall effect sensors give accurate information about

PAGE NO: 82

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

the rotor’s position and speed, which makes it possible to use
closed-loop control strategies. This feedback is very important
for keeping the motor’s speed and torque accurate when the
load changes, which makes the whole system more efficient
and responsive. The throttle input is an analog signal that
shows how fast the driver wants to go. The microcontroller’s
Analog-to-Digital Converter (ADC) channels pick it up. This
unprocessed analog input is turned into Pulse Width Modu-
lated (PWM) signals that power the BTS7960 motor drivers.
The motor drivers then control how much power is sent to
the motor. The system can finely control the speed and torque
output of the motor by changing the duty cycle of the PWM
signal. This makes it possible to speed up and slow down
smoothly. Closed-loop control, made possible by Hall sensors’
feedback, makes sure that the motor stays within the desired
performance envelope by dynamically adjusting to changes in
load and disturbances.[9]

B. Steer-by-Wire

[Steering Input]

I}

STM32F103
Reads Input

Transmits Angle Command
via MCP2551 (CAN Bus)

Receives Command at
Rack Slde STM32F103

(Rack & Plnlon)

Provides Steerlng
Motion Electronically

[

[)
[Controls Stepper Motor]
[)

Fig. 3. Flow chart for Steer By Wire

The steer-by-wire system uses an electronic control system
instead of the old-fashioned mechanical steering linkage. A
stepper motor is used to turn the steering wheel. It is connected
to a rack and pinion mechanism that changes rotational motion
into linear steering input, as shown in the flowchart in figure 3.
A high-resolution rotary encoder records the driver’s manual
steering inputs by accurately measuring how much the steering
wheel moves in an angle. The UART sends these encoder
signals to the central control unit, which makes sure that
the input device and the steering actuator can communicate
with each other quickly and reliably. The control unit takes
this input and uses real-time feedback control algorithms to
change the position of the stepper motor so that it provides
the right torque and steering angle. By changing based on
driving conditions, vehicle speed, and driver commands, this
closed-loop system makes steering more accurate, responsive,

and safe. As shown in figure 4, its functional validity was
checked.[10]

b1

%

G ot THEE
T sl
ol TGN

Fig. 4. Hardware Implementation for Steer By Wire

w& L TS LY

C. Battery Management System

[Battery Pack]

Voltage, Current,
Temperature Sensing

STM32F103 Reads |
Sensor Data

|

Computes for
Faults—(SoC)

Monitors for
Faults

|

Safeguards Battery
Operation Electronically

Fig. 5. Flow chart for BMS simulation

The Battery Management System keeps an eye on important
things like the battery pack’s voltage, current, and temperature
all the time to make sure it works safely and efficiently. We
get voltage readings directly from the battery cells and current
readings from Hall effect sensors that give us accurate readings
without getting in the way. DHT sensors are placed in the right
places in the battery pack to keep an eye on the temperature
and look for thermal anomalies that could cause the battery
to overheat or go into thermal runaway. Figure 6 shows a 3D
model of the BMS. The BMS has several ways to protect
the battery, such as overvoltage, undervoltage, overcurrent,
and temperature thresholds. These help the battery last longer
and keep it from getting damaged. Using MATLAB Simulink,
we can estimate the state of charge (SoC) and run battery
performance simulations. This lets us do predictive analytics

PAGE NO: 83

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

and test control strategies before they are put into action.
Figure 5 shows a detailed flowchart of the BMS simulation
model. It shows the control logic and protection algorithm
that the system uses.[11]

NewPack (Pack)

Fig. 6. Battery Pack Simulation in MATLAB

D. PCB Design with KiCAD

Using KiCAD, a single, carefully planned Printed Circuit
Board (PCB) was made to combine all the separate mod-
ules into a small, easy-to-manufacture solution. During the
PCB layout process, important design factors were taken into
account, such as signal integrity to reduce electromagnetic
interference (EMI), power distribution to make sure that all
subsystems get a steady supply of voltage and current, and
thermal management to get rid of heat from power components
like motor drivers and sensors. The design uses a two-layer
PCB architecture that strikes a good balance between cost
and complexity. This makes the board good for both making
prototypes and making large quantities. To cut down on noise
coupling and cross-talk between high-current traces and sen-
sitive signal lines, special care was taken with the placement
of components and routing strategies. The final design for the
PCB shows that it is a strong and flexible platform that can
support the integrated electric vehicle control system.[12][15]

IV. SIMULATION AND VALIDATION
A. MATLAB Simulation

We used MATLAB’s Simscape and Battery Builder tool-
boxes to run a lot of tests on the Battery Management System
(BMS). These toolboxes give us a complete way to model
how electrochemical batteries work. Different charging and
discharging situations were carefully modeled to make them
look like real-life operational conditions. The goal of these
simulations was to test the accuracy of State of Charge (SoC)
estimation algorithms by measuring the battery’s voltage,
current, and thermal responses to different load profiles, as
shown in figures 8 and 9. The thermal behavior of the
battery pack was stressed because changes in temperature
have a big effect on how well the battery works, how long
it lasts, and how efficient it is. Simscape’s physical modeling

L RENCRCREE Y | |

Fig. 7. Schematic for Centralised VCU

environment made it possible to do detailed thermal-electrical
co-simulation, which helped find possible hotspots and thermal
gradients. These insights helped us come up with the protective
measures and thermal management strategies that are built
into the BMS. The simulation results showed that the SoC
tracking algorithm reliably estimates battery charge levels
during different operating cycles, which helps keep the battery
safe and running smoothly.[13]

“ o @®le & |

SOC_Cell1

SOC_Cell2

Sample based T=36000.0000

Fig. 8. SOC Charging Graph

B. Hardware Validation

After the simulation, the system went through a lot of hard-
ware testing to make sure it worked and communicated in real
time. The validation process used UART-based telemetry to
keep an eye on sensor data and system status from a distance.
This made it possible to do full debugging and performance
analysis. We looked at task scheduling and how the real-
time operating system worked by measuring important things
like context switching time, interrupt latency, and semaphore
signaling. These tests showed that the FreeRTOS scheduler
does a good job of managing task priorities and sharing
resources without causing long delays or deadlocks. The

PAGE NO: 84

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

“o0h@®le s

SOC_Cell1

SOC_Cell2

Sample based T=36000.0000

Fig. 9. SOC Discharging Graph

responsiveness and timing accuracy of tasks like motor control,
steering, and battery management were tested. This showed
that the integrated system meets the strict timing standards
needed for safe and reliable electric vehicle operation.[14]

V. RESULTS AND DISCUSSION

We tested the Vehicle Control Unit (VCU) that was made
by looking at a few key performance metrics that show
how the system’s responsiveness, integration efficiency, and
operational reliability have all improved. It was tested by
switching between different contexts and setting flags, and the
results can be seen in figure 10.

Fig. 10. Simulation of Context Switching

e 35% Better Steering Latency: The steer-by-wire sub-
system’s response time dropped a lot, with a 35% im-
provement in latency. This improvement makes it possible
for driver inputs to be translated into steering actuation

more quickly, which makes the vehicle easier to handle
and safer. The main reasons for the lower latency were
better FreeRTOS task scheduling and real-time feedback
control loops that were given higher priority.

e 30% Faster State of Charge (SoC) Update Loop: The
battery management system’s SoC monitoring cycle was
sped up by 30%, which meant that battery status updates
could happen more often and be more accurate. This
upgrade makes energy management more accurate, which
makes it easier to predict when to deliver power and use
regenerative braking strategies. Improved SoC updates
also help batteries last longer by making it easier to find
problems quickly.

o Combining into one STM32F103 microcontroller: One
of the most important results was the merging of three
controllers—Motor Control, Steer-by-Wire, and Battery
Management—into a single STM32F103 microcontroller
platform. This consolidation made the hardware less
complicated, cheaper, and easier to communicate between
systems, creating a more efficient way to control electric
vehicles.

The VCU showed that it could reliably do multiple things at
once, handling multiple tasks with high CPU usage efficiency
while keeping the system stable and responsive. Fault isolation
methods made sure that problems in one subsystem didn’t
spread to others, making the whole system more stable. Also,
using UART with Direct Memory Access (DMA) made it
possible to log data continuously and without blocking, which
made real-time telemetry possible without getting in the way
of control tasks.

On the hardware side, the designed PCB went through
KiCAD’s Design Rule Check (DRC) and practical test bench
evaluations to make sure it worked. These tests showed that
the product met manufacturing standards, that the signals were
clear, that the power was distributed properly, and that the
thermal management strategies worked. These results show
that the integrated control unit can be used in real-world
electric vehicles.

The VCU showed that it could safely do multiple tasks at
once, use the CPU efficiently, and isolate faults. UART DMA
made it possible to log data without blocking. KiCAD DRC
and test benches were used to check the PCB.

VI. CONCLUSION AND FUTURE WORK

This work effectively illustrates the design and execution
of a cohesive embedded control system for electric vehicles
(EVs) utilizing the STM32F103 microcontroller alongside the
FreeRTOS real-time operating system. The Vehicle Control
Unit (VCU) combined several subsystems, such as motor
control, steer-by-wire, and battery management, into one unit.
This made the hardware less complicated, the system faster,
and the overall cost lower.The system showed that it could
handle multiple tasks at once and make good use of its
resources, which proved that it was possible to combine
important EV control functions onto a single microcontroller

PAGE NO: 85

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

platform. This method not only simplifies the structure of
vehicles, but it also makes them easier to maintain and expand.

Future work will focus on adding more features to the sys-
tem by adding Advanced Driver Assistance Systems (ADAS)
to make it safer and more automated. Also, the creation
of a sophisticated graphical user interface (GUI) will make
advanced diagnostics and real-time monitoring easier, which
will improve usability and maintenance. To make sure the
system meets strict reliability and safety standards needed
for commercial use, it will also have to follow automotive
functional safety standards like ISO 26262. [?]

REFERENCES

[1] R. Obermaisser et al., Real-Time Architecture and Scheduling for Dis-
tributed Embedded Systems in Electric Vehicles. IEEE Transactions on
Industrial Informatics, 2015.

[2] K. Johansson et al., Embedded Control in Electric Vehicles: Challenges
and Design Solutions. IEEE Transactions on Control Systems Technol-
ogy, 2018.

[3] P. Marwedel et al., Real-Time Systems for Automotive Applications: A
Case Study on STM32 and FreeRTOS. ACM Transactions on Cyber-
Physical Systems, 2020..

[4] M. Short et al., Centralized vs. Distributed Control Architectures for
Electric Vehicles: A Trade-off Analysis. IEEE Transactions on Vehicular
Technology, 2021.

[5] S. Park et al., ”Steer-by-Wire and Motor Control Co-Design for Safety-
Critical EV Applications”, SAE International Journal of Electrified
Vehicles, 2021.

[6] R. Wilhelm et al., "Real-Time Task Scheduling for Safety-Critical
Automotive Systems: A Priority-Driven Approach”, ACM Transactions
on Embedded Computing Systems, 2021.

[7]1 M. Torngren et al., "Real-Time Communication and Synchronization
in Modular Automotive Software Systems”, IEEE Transactions on
Industrial Informatics, 2021.

[8] A. Tanenbaum et al., ”Structured Embedded System Design with UART
Debugging Interfaces”, ACM Transactions on Cyber-Physical Systems,
2022.

[9] J. Holtz, ”Sensorless Control of Induction Machines—With or Without
Signal Injection?” IEEE Transactions on Industrial Electronics, 2022.

[10] M. Bodur et al., "Precision Control of Brushed DC Motors Using Hall-
Effect Sensors and Adaptive PWM Techniques”, IEEE Transactions on
Industrial Electronics, 2022.

[11] T. Hiraoka et al., "Design and Validation of Steer-by-Wire Systems
Using Stepper Motors for Autonomous Vehicles”, IEEE/ASME Trans-
actions on Mechatronics, 2023.

[12] G. L. Plett, "Battery Management Systems, Volume I: Battery Model-
ing”, Artech House, 2022.

[13] M. Montrose et al., "EMC and the Printed Circuit Board: Design,
Theory, and Layout Made Simple”, IEEE Press, 2022.

[14] A. Farmann et al., "Comprehensive Review of Physics-Based and
Data-Driven Models for Lithium-Ion Batteries in MATLAB/Simscape”,
Journal of Energy Storage, 2023.

[15] R. Barry, ”"Real-Time Performance Analysis of FreeRTOS on ARM
Cortex-M Microcontrollers”, Journal of Embedded Systems, 2023.

[16] M. J. Prasad, Dr. K. B. S. and et al., ”Automobile Black Box System
for Accident Analysis,” in International Conference on Advances in
Electronics, Computers and Communications (ICAECC), October 2014,
pp. [page numbers], doi: 978-1-4799-5496-4, IEEE.

[17] S. Shekhar, Dr. B. S. Kariyappa and et al., "Effective Battery Usage
Strategies for Hybrid Power Management,” in International Conference
on Power and Advance Control Engineering (ICPACE), August 2015,
pp. 95-98, doi: 978-1-4799-8371-1, IEEE.

PAGE NO: 86

