
Deep Learning-Driven FPGA Function Block Detection Using Bit stream-
to-Image Transformation

M.Shiva Priya
Assistant professor of CSE

Malla Reddy College of Engineering,Maisammaguda, Hyderabad.
PhD scholar of NirwanUniversity,Jaipur

Dr Venkata Shesha Giridhar Akula
Principal

Sphoorthy Engineering College Nadergul, Hyderabad

Dr. P. Sammulal
Professor of CSE

JNTUH ,University College of Engineering, Science & Technology, Hyderabad

ABSTRACT

To enhance the security of Field Programmable Gate Arrays (FPGAs) across various

application scenarios, it is essential to analyse the system functions of FPGA designs. This

can be achieved by partitioning the FPGA bitstream into functional blocks and identifying

their functionalities. In this study, we present a novel deep learning-based method for FPGA

function block detection, which involves three key steps.First, we analyze the bitstream

format to establish the mapping between configuration bits and configurable logic blocks,

addressing the discontinuity of configuration bits for individual elements. Next, we leverage

advancements in deep learning-based object detection by transforming the FPGA bitstream

into an image. This transformation method considers both the adjacency of programmable

logic and the redundancy in configuration information. Once the bitstream is converted into

an image, a deep learning-based object detection algorithm is applied, enabling the

identification of function blocks within the original FPGA design.The deep neural network

employed for detection is trained and validated using a custom bitstream-to-image dataset.

Experimental results demonstrate the effectiveness of this method, achieving a mean Average

Precision (mAP) of 98.11% (IoU = 0.5) for detecting 10 function blocks using a YOLOv3

detector implemented on Xilinx Zynq-7000 SoCs and ZynqUltraScale+ MPSoCs.

Keywords:Bitstream-to-image transformation, field-programmable gate array, function block

detection.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 156

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are

increasingly utilized in diverse fields such as

communication, deep learning, and digital

signal processing, thanks to their unique

advantages of configurability, rapid

development cycles, and abundant logic and

storage resources. However, with the growing

adoption of FPGA technologies comes a

significant security challenge for FPGA-based

systems.

The behavior and functionality of an FPGA

design are defined entirely by its bitstream,

which contains the configuration data loaded

during power-on. This makes the bitstream a

critical vulnerability in FPGA security.

Assessing the security of an FPGA design

often involves reverse-engineering the

bitstream to identify and isolate functional

blocks and determine their intended

operations.

A function block in an FPGA design refers to

a circuit block implementing a specific

function, such as a cryptographic operator like

MD5 (Message Digest Algorithm 5). FPGA

applications typically include various types of

function blocks. For instance, an FPGA

implementation of the PDF-R2 encryption

algorithm contains two key function blocks:

MD5 and RC4 (Rivest Cipher 4). Detecting

these function blocks is an essential pre-

analysis step in understanding the system's

overall functionality.

One common method for identifying function

blocks involves partitioning the circuit,

represented by bitstreams or netlists, and

comparing the partitioned sections against

known designs. However, this approach faces

challenges due to the time-consuming

partitioning process, which often produces

imperfect results and incorrect matches.

Furthermore, traditional methods require

manually designing comparison features, and

poorly selected features can degrade

performance.

Fig. 1 illustrates an example application scenario

where FPGA function block detection is utilized to

analyze the system functionality of a circuit.

To address these limitations, we propose a

novel FPGA function block detection method

that identifies one or more function blocks

directly from a complete bitstream. By

transforming the bitstream into an image, we

recast the FPGA function block detection

problem as an image object detection task,

effectively leveraging deep learning

techniques.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 157

This transformation ensures that the adjacency

of programmable logic elements is preserved

in the resulting image. Two critical challenges

complicate this process: the high redundancy

of configuration data and the discontinuity of

configuration bits for individual elements. To

overcome these challenges, our approach

focuses exclusively on the configuration bits

of Configurable Logic Blocks (CLBs) and

maps these bits to their corresponding CLBs,

enabling a more accurate and efficient

transformation.

In summary, the main contributions of this

paper are as follows:

(a) Bitstream-to-ImageTransformation:

A novel method for transforming bitstreams

into images suitable for deep learning is

proposed. This is achieved by analyzing the

mapping relationship between configuration

bits and CLB elements.

(b) Dataset Generation: A dataset is created

by converting bitstreamfiles into images

representing 10 types of cryptographic

operators. This approach eliminates the need

for manual annotation, as the data is

automatically labeled.

(c) Deep Learning for FPGA Function Block

Detection: For the first time, deep learning

techniques are applied to detect FPGA

function blocks directly from bitstreams. A

deep learning-based object detection algorithm

is trained on the generated dataset.

Experimental validation using various FPGA

designs for application-specific encryption

algorithms demonstrates the effectiveness of

the method, achieving a mean Average

Precision (mAP) of 98.11% for 10 types of

function blocks at an Intersection over Union

(IoU) threshold of 0.5.

The rest of the paper is structured as follows:

Section II outlines the overall detection

process and provides a detailed explanation of

each step. Section III presents the

experimental results, while Section IV

concludes with a summary of findings.

II. PROPOSED FUNCTION DETECTION

METHOD THROUGH BITSTREAM TO

IMAGE TRANSFORMATION

The process of function block detection

involves the following steps, as illustrated in

Fig. 2:

 Bitstream-to-Image Transformation: The

process begins by analyzing the mapping

relationship between configuration bits and

CLBs (Configurable Logic Blocks) to

transform the bitstream into an image.

 Deep Learning Inference: The generated

image is then fed into a trained deep learning

model to identify the function blocks within the

bitstream.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 158

 Model Training: The deep learning model is

trained using a dataset composed of numerous

images derived from various bitstreams.

A. TRANSFORMATION FROM

BITSTREAM TO IMAGE

When transforming a bitstream file into an

image, two challenges need to be addressed.

The first challenge is that the configuration

bits for a single element are not stored

consecutively in the bitstream. The

configuration memory in the bitstream is

organized into frames, the smallest addressable

segments of memory. For example, the

configuration bits for one Configurable Logic

Block (CLB) are distributed across multiple

frames. To extract features from the

transformed image, it must reflect the

adjacency of elements in the programmable

logic, representing the physical proximity of

the utilized elements. This adjacency is

influenced by optimization algorithms used by

EDA tools during placement and routing.

While implementations from different EDA

tools or repeated runs of the same function

block share many common features, they are

not identical. The discontinuous nature of

configuration bits complicates representing the

adjacency between elements in the

programmable logic.

The second challenge lies in the fact that not

all configuration data in the bitstream is

relevant to function block detection, resulting

in two negative effects:

Since this work focuses on logic resources,

data from other resources can introduce

confusion. The programmable logic of an

FPGA includes CLBs, Input/Output Blocks

(IOBs), Block RAMs (BRAMs) for dense

storage, and Digital Signal Processors (DSPs)

for high-speed computing. For example,

BRAM utilization depends on the array size of

function blocks, so function blocks of the same

type may have varying BRAM usage.

However, the logic remains unaffected by data

size. Configuration bits unrelated to logic

resources that do not aid function block

detection must be identified and excluded.

The large size of transformed images creates a

dataset that is difficult to load efficiently

during deep learning training. For instance,

converting the entire bitstream of a Xilinx

Zynq-7000 SoC ZC702 Evaluation Board into

a three-channel color image produces a 1280 ×

1080 × 3 image, which is too large for

effective processing by the detection model.

These challenges are addressed with a

proposed bitstream-to-image transformation.

First, the bitstream format is analyzed to map

the relationship between CLB elements and

their configuration bits. Second, only the

configuration bits of CLBs are used for

representation, effectively compressing the

data and discarding irrelevant information.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 159

1) MAPPING RELATIONSHIP BETWEEN

CONFIGURATION BITS AND CLBs

An FPGA bitstream consists of three main

parts: the Head-of-File, FDRI (Frame Data

Register Input) data, and End-of-File. Among

these, the FDRI data contains the

configuration information for the

programmable logic.

The programmable logic is divided into

multiple Clock Regions, each containing

several columns of Configurable Logic Blocks

(CLBs). As illustrated in Fig. 3, a column of

CLBs consists of qqq CLBs. Each frame

within the bitstream contains mmm 32-bit

words.

Although the open official documentation does

not explicitly define how CLBs are configured

with FDRI data, it has been observed that

every successive nframes of FDRI data

configure a single column of CLBs (q CLBs).

Apart from l words located in the middle of

the frame, every p words in the remaining m−l

words of a frame correspond to a single CLB,

organized from the bottom to the top of the

column.

Fig. 2. The process of function block detection

method consisting of the transformation from

bitstream to image, dataset generation, deep

learning training, and deep learning inference.

Fig. 3 The transformation from an FPGA

bitstreamfile to the image.

For two-slice CLBs, the ppp words configure

the two slices separately, from left to right.

Consequently, each CLB in a column requires

p×nwords to configure, with these words

distributed at the same positions across the n

frames.

2) TRANSFORMATION FROM

CONFIGURATION BITS FOR CLBs TO

IMAGES FOR CLBs

Based on the analysis of the bitstream format,

each CLB is allocated 4p×nbytes of

configuration memory from successive nnn

frames. For two-slice CLBs, each slice is

allocated s=2p×n bytes. In a one-slice CLB,

each slice is allocated s=4p×n bytes. Since the

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 160

configuration bits are used to configure

individual slices, the bits with non-zero values

indicate that the respective slice is utilized in

the implementation.

There are three methods to transform the s-

byte configuration data of a slice into a

separate image with the appropriate height and

width, which can represent the utilization of

the slice.

Fig 4. The s-byte configuration bits for a slice are
transformed into a three-channel color image with
h×w pixels, a single-channel gray image with
hs×ws pixels or a single-channel binary image with
hs×ws pixels.

The first method involves transforming the

data into a three-channel color image. As

shown in Fig. 4, the configuration bits of a

slice can be converted into a three-channel

color image with dimensions h×w pixels. Each

pixel, having three channels, requires three

bytes. The configuration bits are treated as

image data arranged in a three-dimensional

format of (channel, height, width).

The second method converts the data into a

single-channel grayscale image. Unlike the

three-channel color image, the data for each

pixel in the grayscale image corresponds

directly to continuous configuration data for a

slice. The configuration bits of a slice are

transformed into a grayscale image with

dimensions hs×ws pixels, where each pixel

requires one byte of storage.

The third method transforms the data into a

single-channel binary image. This binary

image is derived from the binarization of the

grayscale image. Pixels with non-zero values

in the grayscale image are set to one in the

binary image, while others are set to zero. The

binary image uses only zeros and ones to

indicate whether the slices are utilized.

3) STRUCTURE OF THE IMAGE

TRANSFORMED FROM BITSTREAM

The image transformed from an FPGA

bitstream is divided into a×bblocks, with each

block corresponding to a CLB in one of the

Clock Regions. The parameters a andb are

device-specific and remain consistent across

all three methods of transforming

configuration bits into images for CLBs.

As illustrated in Fig. 3, the transformation

process is performed individually for each

CLB. The resulting images for all CLBs are

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 161

then combined to construct the complete

image. The adjacency between CLBs in the

programmable logic is reflected in the

aggregation of individual CLB images into the

overall image.

B. DEEP LEARNING MODEL AND

TRAINING

Since deep learning techniques have not

previously been applied to FPGA function

block detection, our approach leverages the

transformation of bitstreams into images along

with the image feature extraction capabilities

of deep neural networks (DNNs). YOLOv3

[20] and SSD [21] are two classical one-stage

object detection algorithms based on deep

learning, offering a combination of high speed

and accuracy.

1) YOLOv3

YOLOv3 consists of 75 convolutional layers,

with its backbone architecture based on

Darknet-53 [20]. It has three output

convolutional layers, each producing feature

maps of different sizes to detect objects of

varying scales. These output layers have the

same number of filters, determined by the

number of classes.

The input image is divided into grids, with

each grid cell predicting box_number

bounding boxes (in YOLOv3, box_number is

3). For each bounding box, the model predicts

one objectness score, CCC class probabilities

for CCC classes, and 4 box offsets. The

objectness score quantifies the likelihood that

the bounding box contains a generic object

[22]. Consequently, the filter number for the

output layers is 3×(1+C+4). For instance,

when applying YOLOv3 to detect 10 types of

function blocks (C=10C = 10C=10), the filter

number of the output layers is 45. The input

channel number for the first convolutional

layer is determined by the number of channels

in the images fed into the neural network.

During training, YOLOv3 uses pre-trained

weights from the COCO dataset [23] as initial

weights. In the first 50 epochs, the earlier

layers are frozen except for the last three

output convolutional layers to stabilize the loss

value. From the 51st to the 100th epoch, all

layers are unfrozen and trained with a reduced

learning rate. After training, the model with

the smallest validation loss is selected as the

final model.

2) SSD

SSD consists of 29 convolutional layers and 4

max-pooling layers, with its backbone

architecture based on VGG-16 [24]. It includes

six output convolutional layers designed to detect

objects of different sizes.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 162

Similar to YOLOv3, the filter number in

SSD's output layers is calculated

asbox_number×(C+4). In SSD, box_number

can be either 4 or 6, depending on the output

layer. For example, when C=10C = 10C=10,

the filter number for the output layers is 56 or

84.

During training, SSD uses the pre-trained

weights of VGG-16 for the initial weights of

the front layers. In the first training stage,

these front layers are frozen to retain the

VGG-16 weights. In the second training stage,

the entire network is unfrozen and trained as a

whole.

3) GENERATION OF DATASET

Bitstreams are transformed into images, which

are compiled into a dataset for deep learning

training and testing. Each bitstream file

implements an algorithm, and each algorithm

contains one or more function blocks. In

practical applications, a single type of function

block may have different variations, such as a

standard design and a pipelined version.

Consequently, each type of function block is

implemented in one or two variations during

bitstream generation.

To train the deep network, multiple bitstream

files containing various types of function

blocks are required. A large number of

bitstreams are generated using the Xilinx

Vivado EDA toolset. Constraints on the

implementation region ensure that function

blocks are placed in different locations across

different bitstreams. Instead of relying on the

graphical user interface (GUI), Tcl (Tool

Command Language) [25] scripts are utilized

to automate the process. These scripts also

extract the categories and locations of function

blocks in the FPGA device diagram during

bitstream generation.

Finally, the bitstream files are converted into

images using Python scripts. These scripts

simultaneously process the label information

and generate annotation files required for deep

learning.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

For evaluation, we utilize Xilinx Zynq-7000

SoCs and Xilinx ZynqUltraScale+ MPSoCs to

test our proposed methodology. Unless

explicitly stated otherwise, all experiments in

this section are conducted under the following

setup:

Bitstream files are generated without

encryption using the Xilinx Vivado design

suite, including versions Vivado 2016.3,

Vivado 2017.2, Vivado 2017.4, Vivado

2018.3, and Vivado 2019.2.Scripts for

transforming bitstreams into images are

executed in Python 2.7.15.The training and

testing of the deep learning models are

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 163

performed using Keras 2.2.5, based on

TensorFlow 1.10.0 for GPUs, with Python

3.5.6.A server running CentOS Linux 7.6,

equipped with an NVIDIA Tesla P100 GPU, is

used to perform all experiments.

Our methodology targets the detection of 10

types of function blocks. YOLOv3 is primarily

used as the deep learning-based object

detection algorithm unless stated otherwise.

SSD is only used in specific experiments

described in Section IV-E5. The training

parameters for YOLOv3 and SSD are listed in

TABLE 1.

TABLE 1.Parameters for the Training Process of

YOLOv3 and SSD

To quantitatively evaluate the object detector's

performance, we use the mean Average

Precision (mAP) metric under specific

Intersection over Union (IoU) thresholds,

which accounts for both precision and recall.

A good performance is indicated when the IoU

between the detected box and the ground truth

exceeds 0.5. In this work, we use two metrics

inspired by the COCO dataset:

mAP@0.5, the standard metric for the

PASCAL VOC dataset [27].

mAP@0.75, a stricter metric than mAP@0.5.

B. BITSTREAM FORMAT ANALYSIS

To establish the mapping relationship for

transforming bitstreams into images, this work

analyzes the bitstream formats of Xilinx Zynq-

7000 SoCs and Xilinx ZynqUltraScale+

MPSoCs. In the case of Xilinx Zynq-7000

SoCs, each CLB element comprises two slices,

with each slice consisting of 4 LUTs and 8

Flip-Flops (FFs) [28]. For Xilinx

ZynqUltraScale+ MPSoCs, a CLB element

contains one slice, which consists of 8 LUTs

and 16 FFs [29]. These slices are of two types:

SLICEL (logic) and SLICEM (memory).

Detailed information regarding the bitstream

format can be found in the official

documentation [30], [31].

When transforming bitstreams into images, it

is essential to determine the positions of the

first frames, which can be identified by

configuring different columns of CLBs. For

example, the positions of some first frames in

the ZC702 FPGA bitstream are shown in Fig.

5. For the ZC702 FPGA, the number of frames

required to configure a column of CLBs (n) is

36, while 28 frames are needed to configure a

column of BRAMs.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 164

C. TRANSFORMATION RESULT FROM

BITSTREAM

Based on the bitstream format analysis

presented in Section I II-B, the bitstreams are

transformed into images. Specifically, the

analysis applies to the Xilinx Zynq-7000 SoC

Z-7020, Xilinx Zynq-7000 SoC Z-7030, and

Xilinx ZynqUltraScale+ MPSoC ZU9EG.

Fig.5The positions of some first frames in the

bitstream of ZC702 FPGA are shown. The number

of frames configuring a column of CLBs (n) is 36

for ZC702 FPGA.

TABLE 2.Parameters for Transforming the

Bitstreams into Images, taking Xilinx Zynq-

7000 SoC Z-7020, Xilinx Zynq-7000 SoC Z-

7030, and Xilinx ZynqUltraScale+ MPSoC

ZU9EG as Examples.

as examples, the parameters for transforming

the bitstreams into images are listed in TABLE

2.

The bitstream length of the ZC702 FPGA is

3.86 MiB. The three-channel color image

transformed from the bitstream has a size of

900 × 912 × 3 bytes. This transformation

effectively compresses the color image to (900

× 912 × 3 × 8 bits / 32,364,512 bits) × 100% =

60.87% of the original bitstream data. The

effective compression is primarily due to the

exclusion of configuration bits that are

irrelevant to the logic resources. The

parameters for transforming the bitstreams into

images are set differently for various FPGA

devices, based on the bitstream format

information specific to each device.

The Vivado-implemented design and the

image transformed from the bitstream of the

Xilinx Zynq-7000 SoC Z-7020 are shown in

Fig. 6. The dark blue area in the Vivado-

implemented design represents columns of

CLBs, the configuration bits of which are used

for the bitstream representation. The

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 165

corresponding relationship between the

Vivado-implemented design and the image

transformed from the bitstream for the same

FPGA device demonstrates that the mapping

relationship between the configuration bits and

CLBs identified in this work is correct, and

that the image transformed from the bitstream

accurately reflects the adjacency of the

programmable logic.

In conclusion, the two challenges discussed in

Section III-A have been successfully

addressed by the proposed bitstream-to-image

transformation.

D. DATASET DESCRIPTION

To train and test the DNN models, a large

number of bitstreams, implementing FPGA

designs on the ZC702 FPGA, are generated to

create the dataset. The dataset includes 15

types of application-specific encryption

algorithms, which collectively contain 10

different cryptographic operators. These

encryption algorithms and their associated

cryptographic operators are listed in TABLE

3. Each encryption algorithm used in this work

incorporates up to 3 different cryptographic

operators. Each operator is implemented in

one or two different constructions. "Pipelined"

refers to a cryptographic operator implemented

in a pipeline design, while "module" refers to

an implementation without special designs.

For example, a bitstream implementing the

NTLM (NT LAN Manager) encryption

algorithm includes either a Message Digest

Algorithm 4 (MD4) pipeline or an MD4

module. Similarly, a bitstream implementing

the encryption algorithm for PDF-R2 contains

an MD5 pipeline and an RC4 module.

TABLE 3.Components of the Training Set and

Test Set

To ensure reasonable experimental setup, 13

of the encryption algorithms listed in TABLE

3 are selected to form the training and test sets,

comprising 10,047 bitstreams generated by

Xilinx Vivado 2017.4. These bitstreams are

randomly divided into a 4:1 ratio for the

training and test sets. Two encryption

algorithms used for PDF-R5 and OFFICE

2010, also implemented by Xilinx Vivado

2017.4, are exclusively used for testing.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 166

Additionally, to investigate the impact of EDA

tools, bitstreams generated by various versions

of Xilinx Vivado (2016.3, 2017.2, 2018.3, and

2019.2) are used to evaluate the performance

of the trained model. These bitstreams are

transformed into images, which make up the

dataset for training and testing.

VII. CONCLUSION

In this paper, we propose an FPGA bitstream

function block detection method leveraging

deep learning techniques. First, the bitstream

format of FPGA designs was analyzed to

determine the mapping relationship between

configuration bits and CLB elements. The

bitstreams of various FPGA designs were then

transformed into images suitable for deep

learning processing, preserving the adjacency

of the programmable logic. These transformed

images formed a comprehensive dataset.

In our experiment, we created a dataset

comprising 18,268 images derived from

multiple bitstreams. This dataset was used to

train a deep learning-based object detection

algorithm. Once trained, the algorithm was

applied to detect function blocks directly from

FPGA bitstreams. The entire process,

including dataset generation, model training,

and testing, can be fully automated.

Experimental results demonstrate that the

proposed method achieves a mean Average

Precision (mAP) of 98.11% (IoU = 0.5) across

10 types of function blocks using YOLOv3 as

the object detector. Furthermore, the detector

successfully identified function blocks in

bitstreams for system designs not included in

the training set and those generated by

different EDA tools.

REFERENCES

[1] Internet Engineering Task Force.

(1992).RFC 1321-The MD5 MessageDigest

Algorithm.[Online]. Available:

https://tools.ietf.org/html/rfc1321

[2] Cypherpunks (Mailing List). (1994). Thank

you Bob Anderson.[Online]. Available:

http://cypherpunks.venona.com/date/1994/09/

msg00304.html

[3] D. Ziener, S. Assmus, and J. Teich,

‘‘Identifying FPGA IP-cores based on lookup

table content analysis,’’ in Proc. Int. Conf.

Field Program. Log. Appl., Aug. 2006, pp. 1–

6.

[4] J. Couch, E. Reilly, M. Schuyler, and B.

Barrett, ‘‘Functional block identification in

circuit design recovery,’’ in Proc. IEEE Int.

Symp.Hardw.Oriented Secur. Trust (HOST),

May 2016, pp. 75–78.

 [5] P. Liu, S. Li, and Q. Ding, ‘‘An energy-

efficient accelerator based on hybrid CPU-

FPGA devices for password recovery,’’ IEEE

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 167

Trans. Comput., vol. 68, no. 2, pp. 170–181,

Feb. 2019.

 [6] R. Le Roux, G. Van Schoor, and P. Van

Vuuren, ‘‘Parsing and analysis of a xilinx

FPGA bitstream for generating new hardware

by direct bit manipulation in real-time,’’ South

Afr. Comput. J., vol. 31, no. 1, pp. 80–102,

Jul. 2019.

 [7] K. Dang Pham, E. Horta, and D. Koch,

‘‘BITMAN: A tool and API for FPGA

bitstream manipulations,’’ in Proc. Design,

Autom. Test Eur. Conf. Exhib. (DATE), Mar.

2017, pp. 894–897.

[8] L. Bozzoli and L. Sterpone, ‘‘COMET: A

configuration memory tool to analyze,

visualize and manipulate FPGAs bitstream,’’

in Proc. Int. Conf. Archit. Comput. Syst.

(ARCS) Workshop, Apr. 2018, pp. 1–4.

 [9] A. Moradi, A. Barenghi, T. Kasper, and C.

Paar, ‘‘On the vulnerability of FPGA bitstream

encryption against power analysis attacks:

Extracting keys from Xilinx Virtex-II

FPGAs,’’ in Proc. 18th ACM Conf. Comput.

Commun.Secur.(CCS), Oct. 2011, pp. 111–

124.

[10] S. Tajik, H. Lohrke, J.-P. Seifert, and C.

Boit, ‘‘On the power of optical contactless

probing: Attacking bitstream encryption of

FPGAs,’’ in Proc. ACM SIGSAC Conf.

Comput. Commun.Secur., Oct. 2017, pp.

1661–1674.

[11] M. Ender, A. Moradi, and C. Paar,

‘‘Theunpatchable silicon: A full break of the

bitstream encryption of Xilinx 7-series

FPGAs,’’ in Proc. USENIX Secur. Symp.,

Aug. 2020, pp. 1803–1819.

[12] J.-B. Note and É. Rannaud, ‘‘From the

bitstream to the netlist,’’ in Proc. 16th Int.

ACM/SIGDA Symp. Field Program. Gate

Arrays (FPGA), 2008, p. 264.

[13] F. Benz, A. Seffrin, and S. A. Huss, ‘‘Bil:

A tool-chain for bitstream reverse-

engineering,’’ in Proc. 22nd Int. Conf. Field

Program. Log. Appl. (FPL), Aug. 2012, pp.

735–738.

[14] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu,

‘‘Deriving an NCD file from an FPGA

bitstream: Methodology, architecture and

evaluation,’’ Microprocessors Microsyst., vol.

37, no. 3, pp. 299–312, 2013.

 [15] T. Zhang, J. Wang, S. Guo, and Z. Chen,

‘‘A comprehensive FPGA reverse engineering

tool-chain: From bitstream to RTL code,’’

IEEE Access, vol. 7, pp. 38379–38389, 2019.

[16] Y.-Y. Dai and R. K. Braytont, ‘‘Circuit

recognition with deep learning,’’ in Proc.

IEEE Int. Symp.Hardw.Oriented Secur. Trust

(HOST), May 2017, p. 162.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 168

[17] A. Fayyazi, S. Shababi, P. Nuzzo, S.

Nazarian, and M. Pedram, ‘‘Deep learning-

based circuit recognition using sparse mapping

and leveldependent decaying sum circuit

representations,’’ in Proc. Design, Autom.

Test Eur. Conf. Exhib. (DATE), Mar. 2019,

pp. 638–641.

[18] S. Mahmood, J. Rettkowski, A. Shallufa,

M. Hubner, and D. Gohringer, ‘‘IP core

identification in FPGA configuration files

using machine learning techniques,’’ in Proc.

IEEE 9th Int. Conf. Consum.Electron.

(ICCEBerlin), Sep. 2019, pp. 103–108.

[19] W. L. Neto, M. Austin, S. Temple, L.

Amaru, X. Tang, and P.-E.Gaillardon,

‘‘LSOracle: A logic synthesis framework

driven by artificial intelligence: Invited

paper,’’ in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov. 2019,

pp. 1–6.

 [20] J. Redmon and A. Farhadi, ‘‘YOLOv3:

An incremental improvement,’’ 2018,

arXiv:1804.02767. [Online]. Available:

http://arxiv.org/abs/ 1804.02767

 [21] W. Liu, D. Anguelov, D. Erhan, C.

Szegedy, S. E. Reed, C. Fu, and A. C. Berg,

‘‘SSD: Single shot multibox detector,’’ in

Proc. Eur. Conf. Comput. Vis., Amsterdam,

The Netherlands, Oct. 2016, pp. 21–37.

 [22] B. Alexe, T. Deselaers, and V. Ferrari,

‘‘Measuring the objectness of image

windows,’’ IEEE Trans. Pattern Anal. Mach.

Intell., vol. 34, no. 11, pp. 2189–2202, Nov.

2012.

[23] T. Lin, M. Maire, S. Belongie, J. Hays, P.

Perona, D. Ramanan, Dollár, and C. L.

Zitnick, ‘‘Microsoft COCO: Common objects

in context,’’ in Proc. 13th Eur. Conf. Comput.

Vis. (ECCV), Zürich, Switzerland, Sep. 2014,

pp. 740–755.

[24] K. Simonyan and A. Zisserman, ‘‘Very

deep convolutional networks for large-scale

image recognition,’’ in Proc. Int. Conf. Learn.

Represent. (ICLR), May 2015, pp. 1–14.

 [25] Xilinx. (2018). Vivado Design Suite TCL

Command Reference Guide (UG835).

[Online]. Available:

https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_4/ug%

835-vivado-tclcommands.pdf

 [26] D. P. Kingma and J. Ba, ‘‘Adam: A

method for stochastic optimization,’’ in Proc.

Int. Conf. Learn. Represent. (ICLR), May

2015, pp. 1–15.

 [27] M. Everingham, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman, ‘‘The

PASCAL visual object classes (VOC)

challenge,’’ Int. J. Comput. Vis., vol. 88, no. 2,

pp. 303–338, Jun. 2010.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 169

[28] Xilinx. (2018). Zynq-7000 SoC Technical

Reference Manual (UG585).[Online].

Available:

https://www.xilinx.com/support/documentatio

n/user_ guides/ug585-Zynq-700%0-TRM.pdf

 [29] Xilinx. (2017). UltraScale Architecture

Configurable Logic Block User Guide

(UG574). [Online]. Available:

https://www.xilinx.com/support/

documentation/user_guides/ug574-

ultrasca%le-clb.pdf

[30] Xilinx. (2018). 7 Series FPGAs

Configuration User Guide (UG470). [Online].

Available:

https://www.xilinx.com/support/documentatio

n/ user_guides/ug470_7Series_%Config.pdf

[31] Xilinx. (2020). UltraScale Architecture

Configuration User Guide (UG570). [Online].

Available: https://www.xilinx.com/support/

documentation/user_guides/ug570-

ultrasca%le-configuration.pdf

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 170

