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ABSTRACT 

To enhance the security of Field Programmable Gate Arrays (FPGAs) across various 

application scenarios, it is essential to analyse the system functions of FPGA designs. This 

can be achieved by partitioning the FPGA bitstream into functional blocks and identifying 

their functionalities. In this study, we present a novel deep learning-based method for FPGA 

function block detection, which involves three key steps.First, we analyze the bitstream 

format to establish the mapping between configuration bits and configurable logic blocks, 

addressing the discontinuity of configuration bits for individual elements. Next, we leverage 

advancements in deep learning-based object detection by transforming the FPGA bitstream 

into an image. This transformation method considers both the adjacency of programmable 

logic and the redundancy in configuration information. Once the bitstream is converted into 

an image, a deep learning-based object detection algorithm is applied, enabling the 

identification of function blocks within the original FPGA design.The deep neural network 

employed for detection is trained and validated using a custom bitstream-to-image dataset. 

Experimental results demonstrate the effectiveness of this method, achieving a mean Average 

Precision (mAP) of 98.11% (IoU = 0.5) for detecting 10 function blocks using a YOLOv3 

detector implemented on Xilinx Zynq-7000 SoCs and ZynqUltraScale+ MPSoCs. 

Keywords:Bitstream-to-image transformation, field-programmable gate array, function block 

detection. 
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I. INTRODUCTION 

Field-Programmable Gate Arrays (FPGAs) are 

increasingly utilized in diverse fields such as 

communication, deep learning, and digital 

signal processing, thanks to their unique 

advantages of configurability, rapid 

development cycles, and abundant logic and 

storage resources. However, with the growing 

adoption of FPGA technologies comes a 

significant security challenge for FPGA-based 

systems. 

The behavior and functionality of an FPGA 

design are defined entirely by its bitstream, 

which contains the configuration data loaded 

during power-on. This makes the bitstream a 

critical vulnerability in FPGA security. 

Assessing the security of an FPGA design 

often involves reverse-engineering the 

bitstream to identify and isolate functional 

blocks and determine their intended 

operations. 

A function block in an FPGA design refers to 

a circuit block implementing a specific 

function, such as a cryptographic operator like 

MD5 (Message Digest Algorithm 5). FPGA 

applications typically include various types of 

function blocks. For instance, an FPGA 

implementation of the PDF-R2 encryption 

algorithm contains two key function blocks: 

MD5 and RC4 (Rivest Cipher 4). Detecting 

these function blocks is an essential pre-

analysis step in understanding the system's 

overall functionality. 

One common method for identifying function 

blocks involves partitioning the circuit, 

represented by bitstreams or netlists, and 

comparing the partitioned sections against 

known designs. However, this approach faces 

challenges due to the time-consuming 

partitioning process, which often produces 

imperfect results and incorrect matches. 

Furthermore, traditional methods require 

manually designing comparison features, and 

poorly selected features can degrade 

performance. 

 

Fig. 1 illustrates an example application scenario 

where FPGA function block detection is utilized to 

analyze the system functionality of a circuit. 

To address these limitations, we propose a 

novel FPGA function block detection method 

that identifies one or more function blocks 

directly from a complete bitstream. By 

transforming the bitstream into an image, we 

recast the FPGA function block detection 

problem as an image object detection task, 

effectively leveraging deep learning 

techniques. 
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This transformation ensures that the adjacency 

of programmable logic elements is preserved 

in the resulting image. Two critical challenges 

complicate this process: the high redundancy 

of configuration data and the discontinuity of 

configuration bits for individual elements. To 

overcome these challenges, our approach 

focuses exclusively on the configuration bits 

of Configurable Logic Blocks (CLBs) and 

maps these bits to their corresponding CLBs, 

enabling a more accurate and efficient 

transformation. 

In summary, the main contributions of this 

paper are as follows: 

(a) Bitstream-to-ImageTransformation:  

A novel method for transforming bitstreams 

into images suitable for deep learning is 

proposed. This is achieved by analyzing the 

mapping relationship between configuration 

bits and CLB elements. 

(b) Dataset Generation: A dataset is created 

by converting bitstreamfiles into images 

representing 10 types of cryptographic 

operators. This approach eliminates the need 

for manual annotation, as the data is 

automatically labeled. 

(c) Deep Learning for FPGA Function Block 

Detection: For the first time, deep learning 

techniques are applied to detect FPGA 

function blocks directly from bitstreams. A 

deep learning-based object detection algorithm 

is trained on the generated dataset. 

Experimental validation using various FPGA 

designs for application-specific encryption 

algorithms demonstrates the effectiveness of 

the method, achieving a mean Average 

Precision (mAP) of 98.11% for 10 types of 

function blocks at an Intersection over Union 

(IoU) threshold of 0.5. 

The rest of the paper is structured as follows: 

Section II outlines the overall detection 

process and provides a detailed explanation of 

each step. Section III presents the 

experimental results, while Section IV 

concludes with a summary of findings. 

II. PROPOSED FUNCTION DETECTION 

METHOD THROUGH BITSTREAM TO 

IMAGE TRANSFORMATION 

The process of function block detection 

involves the following steps, as illustrated in 

Fig. 2: 

 Bitstream-to-Image Transformation: The 

process begins by analyzing the mapping 

relationship between configuration bits and 

CLBs (Configurable Logic Blocks) to 

transform the bitstream into an image. 

 Deep Learning Inference: The generated 

image is then fed into a trained deep learning 

model to identify the function blocks within the 

bitstream. 
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 Model Training: The deep learning model is 

trained using a dataset composed of numerous 

images derived from various bitstreams. 

A. TRANSFORMATION FROM 

BITSTREAM TO IMAGE 

When transforming a bitstream file into an 

image, two challenges need to be addressed. 

The first challenge is that the configuration 

bits for a single element are not stored 

consecutively in the bitstream. The 

configuration memory in the bitstream is 

organized into frames, the smallest addressable 

segments of memory. For example, the 

configuration bits for one Configurable Logic 

Block (CLB) are distributed across multiple 

frames. To extract features from the 

transformed image, it must reflect the 

adjacency of elements in the programmable 

logic, representing the physical proximity of 

the utilized elements. This adjacency is 

influenced by optimization algorithms used by 

EDA tools during placement and routing. 

While implementations from different EDA 

tools or repeated runs of the same function 

block share many common features, they are 

not identical. The discontinuous nature of 

configuration bits complicates representing the 

adjacency between elements in the 

programmable logic. 

The second challenge lies in the fact that not 

all configuration data in the bitstream is 

relevant to function block detection, resulting 

in two negative effects: 

Since this work focuses on logic resources, 

data from other resources can introduce 

confusion. The programmable logic of an 

FPGA includes CLBs, Input/Output Blocks 

(IOBs), Block RAMs (BRAMs) for dense 

storage, and Digital Signal Processors (DSPs) 

for high-speed computing. For example, 

BRAM utilization depends on the array size of 

function blocks, so function blocks of the same 

type may have varying BRAM usage. 

However, the logic remains unaffected by data 

size. Configuration bits unrelated to logic 

resources that do not aid function block 

detection must be identified and excluded. 

The large size of transformed images creates a 

dataset that is difficult to load efficiently 

during deep learning training. For instance, 

converting the entire bitstream of a Xilinx 

Zynq-7000 SoC ZC702 Evaluation Board into 

a three-channel color image produces a 1280 × 

1080 × 3 image, which is too large for 

effective processing by the detection model. 

These challenges are addressed with a 

proposed bitstream-to-image transformation. 

First, the bitstream format is analyzed to map 

the relationship between CLB elements and 

their configuration bits. Second, only the 

configuration bits of CLBs are used for 

representation, effectively compressing the 

data and discarding irrelevant information. 
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1) MAPPING RELATIONSHIP BETWEEN 

CONFIGURATION BITS AND CLBs 

An FPGA bitstream consists of three main 

parts: the Head-of-File, FDRI (Frame Data 

Register Input) data, and End-of-File. Among 

these, the FDRI data contains the 

configuration information for the 

programmable logic. 

The programmable logic is divided into 

multiple Clock Regions, each containing 

several columns of Configurable Logic Blocks 

(CLBs). As illustrated in Fig. 3, a column of 

CLBs consists of qqq CLBs. Each frame 

within the bitstream contains mmm 32-bit 

words. 

Although the open official documentation does 

not explicitly define how CLBs are configured 

with FDRI data, it has been observed that 

every successive nframes of FDRI data 

configure a single column of CLBs (q CLBs). 

Apart from l words located in the middle of 

the frame, every p words in the remaining m−l 

words of a frame correspond to a single CLB, 

organized from the bottom to the top of the 

column. 

 

Fig. 2. The process of function block detection 

method consisting of the transformation from 

bitstream to image, dataset generation, deep 

learning training, and deep learning inference. 

 

Fig. 3 The transformation from an FPGA 

bitstreamfile to the image. 

For two-slice CLBs, the ppp words configure 

the two slices separately, from left to right. 

Consequently, each CLB in a column requires 

p×nwords to configure, with these words 

distributed at the same positions across the n 

frames. 

2) TRANSFORMATION FROM 

CONFIGURATION BITS FOR CLBs TO 

IMAGES FOR CLBs 

Based on the analysis of the bitstream format, 

each CLB is allocated 4p×nbytes of 

configuration memory from successive nnn 

frames. For two-slice CLBs, each slice is 

allocated s=2p×n bytes. In a one-slice CLB, 

each slice is allocated s=4p×n  bytes. Since the 
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configuration bits are used to configure 

individual slices, the bits with non-zero values 

indicate that the respective slice is utilized in 

the implementation. 

There are three methods to transform the s-

byte configuration data of a slice into a 

separate image with the appropriate height and 

width, which can represent the utilization of 

the slice. 

 

 

 

 

 
 
 
 
 
Fig 4. The s-byte configuration bits for a slice are 
transformed into a three-channel color image with 
h×w pixels, a single-channel gray image with 
hs×ws pixels or a single-channel binary image with 
hs×ws pixels. 

The first method involves transforming the 

data into a three-channel color image. As 

shown in Fig. 4, the configuration bits of a 

slice can be converted into a three-channel 

color image with dimensions h×w pixels. Each 

pixel, having three channels, requires three 

bytes. The configuration bits are treated as 

image data arranged in a three-dimensional 

format of (channel, height, width). 

The second method converts the data into a 

single-channel grayscale image. Unlike the 

three-channel color image, the data for each 

pixel in the grayscale image corresponds 

directly to continuous configuration data for a 

slice. The configuration bits of a slice are 

transformed into a grayscale image with 

dimensions hs×ws  pixels, where each pixel 

requires one byte of storage. 

The third method transforms the data into a 

single-channel binary image. This binary 

image is derived from the binarization of the 

grayscale image. Pixels with non-zero values 

in the grayscale image are set to one in the 

binary image, while others are set to zero. The 

binary image uses only zeros and ones to 

indicate whether the slices are utilized. 

 

3) STRUCTURE OF THE IMAGE 

TRANSFORMED FROM BITSTREAM 

The image transformed from an FPGA 

bitstream is divided into a×bblocks, with each 

block corresponding to a CLB in one of the 

Clock Regions. The parameters a andb are 

device-specific and remain consistent across 

all three methods of transforming 

configuration bits into images for CLBs. 

As illustrated in Fig. 3, the transformation 

process is performed individually for each 

CLB. The resulting images for all CLBs are 
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then combined to construct the complete 

image. The adjacency between CLBs in the 

programmable logic is reflected in the 

aggregation of individual CLB images into the 

overall image. 

B. DEEP LEARNING MODEL AND 

TRAINING 

Since deep learning techniques have not 

previously been applied to FPGA function 

block detection, our approach leverages the 

transformation of bitstreams into images along 

with the image feature extraction capabilities 

of deep neural networks (DNNs). YOLOv3 

[20] and SSD [21] are two classical one-stage 

object detection algorithms based on deep 

learning, offering a combination of high speed 

and accuracy. 

 

1) YOLOv3 

YOLOv3 consists of 75 convolutional layers, 

with its backbone architecture based on 

Darknet-53 [20]. It has three output 

convolutional layers, each producing feature 

maps of different sizes to detect objects of 

varying scales. These output layers have the 

same number of filters, determined by the 

number of classes. 

The input image is divided into grids, with 

each grid cell predicting box_number 

bounding boxes (in YOLOv3, box_number is 

3). For each bounding box, the model predicts 

one objectness score, CCC class probabilities 

for CCC classes, and 4 box offsets. The 

objectness score quantifies the likelihood that 

the bounding box contains a generic object 

[22]. Consequently, the filter number for the 

output layers is 3×(1+C+4). For instance, 

when applying YOLOv3 to detect 10 types of 

function blocks (C=10C = 10C=10), the filter 

number of the output layers is 45. The input 

channel number for the first convolutional 

layer is determined by the number of channels 

in the images fed into the neural network. 

During training, YOLOv3 uses pre-trained 

weights from the COCO dataset [23] as initial 

weights. In the first 50 epochs, the earlier 

layers are frozen except for the last three 

output convolutional layers to stabilize the loss 

value. From the 51st to the 100th epoch, all 

layers are unfrozen and trained with a reduced 

learning rate. After training, the model with 

the smallest validation loss is selected as the 

final model. 

2) SSD 

SSD consists of 29 convolutional layers and 4 

max-pooling layers, with its backbone 

architecture based on VGG-16 [24]. It includes 

six output convolutional layers designed to detect 

objects of different sizes. 
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Similar to YOLOv3, the filter number in 

SSD's output layers is calculated 

asbox_number×(C+4). In SSD, box_number 

can be either 4 or 6, depending on the output 

layer. For example, when C=10C = 10C=10, 

the filter number for the output layers is 56 or 

84. 

During training, SSD uses the pre-trained 

weights of VGG-16 for the initial weights of 

the front layers. In the first training stage, 

these front layers are frozen to retain the 

VGG-16 weights. In the second training stage, 

the entire network is unfrozen and trained as a 

whole. 

3) GENERATION OF DATASET 

Bitstreams are transformed into images, which 

are compiled into a dataset for deep learning 

training and testing. Each bitstream file 

implements an algorithm, and each algorithm 

contains one or more function blocks. In 

practical applications, a single type of function 

block may have different variations, such as a 

standard design and a pipelined version. 

Consequently, each type of function block is 

implemented in one or two variations during 

bitstream generation. 

To train the deep network, multiple bitstream 

files containing various types of function 

blocks are required. A large number of 

bitstreams are generated using the Xilinx 

Vivado EDA toolset. Constraints on the 

implementation region ensure that function 

blocks are placed in different locations across 

different bitstreams. Instead of relying on the 

graphical user interface (GUI), Tcl (Tool 

Command Language) [25] scripts are utilized 

to automate the process. These scripts also 

extract the categories and locations of function 

blocks in the FPGA device diagram during 

bitstream generation. 

Finally, the bitstream files are converted into 

images using Python scripts. These scripts 

simultaneously process the label information 

and generate annotation files required for deep 

learning. 

IV. EXPERIMENTAL RESULTS  

A. EXPERIMENTAL SETUP 

For evaluation, we utilize Xilinx Zynq-7000 

SoCs and Xilinx ZynqUltraScale+ MPSoCs to 

test our proposed methodology. Unless 

explicitly stated otherwise, all experiments in 

this section are conducted under the following 

setup: 

Bitstream files are generated without 

encryption using the Xilinx Vivado design 

suite, including versions Vivado 2016.3, 

Vivado 2017.2, Vivado 2017.4, Vivado 

2018.3, and Vivado 2019.2.Scripts for 

transforming bitstreams into images are 

executed in Python 2.7.15.The training and 

testing of the deep learning models are 
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performed using Keras 2.2.5, based on 

TensorFlow 1.10.0 for GPUs, with Python 

3.5.6.A server running CentOS Linux 7.6, 

equipped with an NVIDIA Tesla P100 GPU, is 

used to perform all experiments. 

Our methodology targets the detection of 10 

types of function blocks. YOLOv3 is primarily 

used as the deep learning-based object 

detection algorithm unless stated otherwise. 

SSD is only used in specific experiments 

described in Section IV-E5. The training 

parameters for YOLOv3 and SSD are listed in 

TABLE 1. 

TABLE 1.Parameters for the Training Process of 

YOLOv3 and SSD 

   

 

 
  

   

 
   

   

 
   

   

To quantitatively evaluate the object detector's 

performance, we use the mean Average 

Precision (mAP) metric under specific 

Intersection over Union (IoU) thresholds, 

which accounts for both precision and recall. 

A good performance is indicated when the IoU 

between the detected box and the ground truth 

exceeds 0.5. In this work, we use two metrics 

inspired by the COCO dataset: 

mAP@0.5, the standard metric for the 

PASCAL VOC dataset [27]. 

mAP@0.75, a stricter metric than mAP@0.5. 

B. BITSTREAM FORMAT ANALYSIS 

To establish the mapping relationship for 

transforming bitstreams into images, this work 

analyzes the bitstream formats of Xilinx Zynq-

7000 SoCs and Xilinx ZynqUltraScale+ 

MPSoCs. In the case of Xilinx Zynq-7000 

SoCs, each CLB element comprises two slices, 

with each slice consisting of 4 LUTs and 8 

Flip-Flops (FFs) [28]. For Xilinx 

ZynqUltraScale+ MPSoCs, a CLB element 

contains one slice, which consists of 8 LUTs 

and 16 FFs [29]. These slices are of two types: 

SLICEL (logic) and SLICEM (memory). 

Detailed information regarding the bitstream 

format can be found in the official 

documentation [30], [31]. 

When transforming bitstreams into images, it 

is essential to determine the positions of the 

first frames, which can be identified by 

configuring different columns of CLBs. For 

example, the positions of some first frames in 

the ZC702 FPGA bitstream are shown in Fig. 

5. For the ZC702 FPGA, the number of frames 

required to configure a column of CLBs (n) is 

36, while 28 frames are needed to configure a 

column of BRAMs. 
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C. TRANSFORMATION RESULT FROM 

BITSTREAM 

Based on the bitstream format analysis 

presented in Section I II-B, the bitstreams are 

transformed into images. Specifically, the 

analysis applies to the Xilinx Zynq-7000 SoC 

Z-7020, Xilinx Zynq-7000 SoC Z-7030, and 

Xilinx ZynqUltraScale+ MPSoC ZU9EG. 

 

 

 

 

 

Fig.5The positions of some first frames in the 

bitstream of ZC702 FPGA are shown. The number 

of frames configuring a column of CLBs (n) is 36 

for ZC702 FPGA. 

TABLE 2.Parameters for Transforming the 

Bitstreams into Images, taking Xilinx Zynq-

7000 SoC Z-7020, Xilinx Zynq-7000 SoC Z-

7030, and Xilinx ZynqUltraScale+ MPSoC 

ZU9EG as Examples. 

        

        

        
        

        

        

        

        

        

as examples, the parameters for transforming 

the bitstreams into images are listed in TABLE 

2. 

The bitstream length of the ZC702 FPGA is 

3.86 MiB. The three-channel color image 

transformed from the bitstream has a size of 

900 × 912 × 3 bytes. This transformation 

effectively compresses the color image to (900 

× 912 × 3 × 8 bits / 32,364,512 bits) × 100% = 

60.87% of the original bitstream data. The 

effective compression is primarily due to the 

exclusion of configuration bits that are 

irrelevant to the logic resources. The 

parameters for transforming the bitstreams into 

images are set differently for various FPGA 

devices, based on the bitstream format 

information specific to each device. 

The Vivado-implemented design and the 

image transformed from the bitstream of the 

Xilinx Zynq-7000 SoC Z-7020 are shown in 

Fig. 6. The dark blue area in the Vivado-

implemented design represents columns of 

CLBs, the configuration bits of which are used 

for the bitstream representation. The 
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corresponding relationship between the 

Vivado-implemented design and the image 

transformed from the bitstream for the same 

FPGA device demonstrates that the mapping 

relationship between the configuration bits and 

CLBs identified in this work is correct, and 

that the image transformed from the bitstream 

accurately reflects the adjacency of the 

programmable logic. 

In conclusion, the two challenges discussed in 

Section III-A have been successfully 

addressed by the proposed bitstream-to-image 

transformation. 

D. DATASET DESCRIPTION 

To train and test the DNN models, a large 

number of bitstreams, implementing FPGA 

designs on the ZC702 FPGA, are generated to 

create the dataset. The dataset includes 15 

types of application-specific encryption 

algorithms, which collectively contain 10 

different cryptographic operators. These 

encryption algorithms and their associated 

cryptographic operators are listed in TABLE 

3. Each encryption algorithm used in this work 

incorporates up to 3 different cryptographic 

operators. Each operator is implemented in 

one or two different constructions. "Pipelined" 

refers to a cryptographic operator implemented 

in a pipeline design, while "module" refers to 

an implementation without special designs. 

For example, a bitstream implementing the 

NTLM (NT LAN Manager) encryption 

algorithm includes either a Message Digest 

Algorithm 4 (MD4) pipeline or an MD4 

module. Similarly, a bitstream implementing 

the encryption algorithm for PDF-R2 contains 

an MD5 pipeline and an RC4 module. 

TABLE 3.Components of the Training Set and 

Test Set 

      

      
   
  

                        

  

     
      
      

   

      
   

      
  

      
   

      
    

      

To ensure reasonable experimental setup, 13 

of the encryption algorithms listed in TABLE 

3 are selected to form the training and test sets, 

comprising 10,047 bitstreams generated by 

Xilinx Vivado 2017.4. These bitstreams are 

randomly divided into a 4:1 ratio for the 

training and test sets. Two encryption 

algorithms used for PDF-R5 and OFFICE 

2010, also implemented by Xilinx Vivado 

2017.4, are exclusively used for testing. 
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Additionally, to investigate the impact of EDA 

tools, bitstreams generated by various versions 

of Xilinx Vivado (2016.3, 2017.2, 2018.3, and 

2019.2) are used to evaluate the performance 

of the trained model. These bitstreams are 

transformed into images, which make up the 

dataset for training and testing. 

VII. CONCLUSION  

In this paper, we propose an FPGA bitstream 

function block detection method leveraging 

deep learning techniques. First, the bitstream 

format of FPGA designs was analyzed to 

determine the mapping relationship between 

configuration bits and CLB elements. The 

bitstreams of various FPGA designs were then 

transformed into images suitable for deep 

learning processing, preserving the adjacency 

of the programmable logic. These transformed 

images formed a comprehensive dataset. 

In our experiment, we created a dataset 

comprising 18,268 images derived from 

multiple bitstreams. This dataset was used to 

train a deep learning-based object detection 

algorithm. Once trained, the algorithm was 

applied to detect function blocks directly from 

FPGA bitstreams. The entire process, 

including dataset generation, model training, 

and testing, can be fully automated. 

Experimental results demonstrate that the 

proposed method achieves a mean Average 

Precision (mAP) of 98.11% (IoU = 0.5) across 

10 types of function blocks using YOLOv3 as 

the object detector. Furthermore, the detector 

successfully identified function blocks in 

bitstreams for system designs not included in 

the training set and those generated by 

different EDA tools. 
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