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ABSTRACT

In this paper, a numerical method is proposed to solve the fractional differential

equations (FDEs) using a fractional sine-cosine series (FSCS) as approximate func-

tion and then the metaheuristic algorithms such as Differential Evolution (DE) and

Particle Swarm Optimization (PSO) are applied to get the optimal solution. In this

method, an optimization problem is formulated using FDEs and associated initial

conditions, where the implicit form of the fractional differential equation is consid-

ered as the objective function and the initial conditions are taken to be the con-

straints of the optimization problem. The effectiveness and performance of our pro-

posed techniques, Differential Evolution - Fractional sine-cosine series (DE-FSCS)

and Particle Swarm Optimization - Fractional sine-cosine series (PSO-FSCS), are

compared with other existing numerical methods using mean square error (MSE)

criterion. It is shown that the solutions obtained by the proposed DE-FSCS and

PSO-FSCS methods are more efficient and reliable as compared to the Variational

iteration method (VIM), Grey Wolf Optimization - Variational iteration method

(GWO-VIM) and one other numerical iterative scheme by calculating the MSE.
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1. Introduction

Fractional calculus is currently one of the most useful areas of mathematics for simu-

lating systems associated to real-world problems. It places a strong emphasis on the

investigation of arbitrary ordered integrals and derivatives, which are useful in cur-

rent mathematical research [1]. The theory of fractional calculus has been successfully

applied to several real-world issues during the past forty years due to its wide appli-

cability. Because of inclusion of memory effect, the fractional derivative has gained its

importance while solving problems occurring in engineering and biological sciences.

Hence, the theory of fractional integrals and derivatives has recently been extensively

applied in numerous engineering and biological situations. Since fractional ordered

derivatives have more applications, they provide superior modelling results than inte-

ger ordered derivatives [2]. Therefore, fractional-order derivative systems can be used

to efficiently study and analyse the qualitative behaviour of many dynamical systems.

Several researchers such as Reich [3], Mateescu [4], Mastorakis [5], Babaei [6], Sadol-

lah et al. [7] and Rastogi et al. [8] have used metaheuristic algorithms to solve a variety

of ordinary differential equations. Also, the fractional-order differential equations have

been solved using both analytical and numerical techniques by several researchers

[9–18].

In this paper, the fractional differential equations (FDE) of the following type has

been solved using Fractional sine-cosine series and metaheuristic algorithms:

Dαy(t) = f(t, y(t)) , n− 1 < α ≤ n (1)

where f is a function of t and y(t), and Dα stands for the Caputo fractional derivative

of order α. The Caputo FDE have a value of α between [0, 1] which is present in many

biological and physical models [19–22]. The mathematician Leibniz stated about this

kind of problem in his letter to L’Hospital in 1695.
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It is noted here that the classical optimization methods might have defects for solv-

ing real-world problems due to the local optimum, considerable time and challenging

implementation, while the metaheuristic approaches are run efficiently and can gain

reasonable and satisfactory solutions concerning execution time and precision.

Differential evolution is a population-based optimization algorithm that efficiently

explores solution spaces. Known for its simplicity and effectiveness, differential evolu-

tion has been successfully applied in various domains, such as engineering design, data

mining, and parameter estimation, making it a popular choice for solving optimization

problems [23–25].

Particle Swarm Optimization (PSO) is a population-based optimization algorithm

inspired by the collective behavior of bird flocking or fish schooling. It has been widely

used to solve optimization problems in various domains due to its simplicity and

efficiency [26–28].

The structure of our paper is as follows. The basic concepts are discussed in Section

2. The terminologies related to the proposed algorithm is provided in Section 3. In

Section 4, the experimental results are given. Section 5 provides the conclusion.

2. Basic Concepts

We shall define fractional derivatives and fractional integration in this section.

2.1. Riemann-Liouville fractional integer [29]

The Riemann-Liouville fractional integral operator of order α of a function f(x) ∈

Cµ, µ ≥ −1 is Jαf(x) = 1
Γ(α)

∫ x
0 (x− t)α−1f(t)dt, x > 0, J0f(x) = f(x).

For f(x) ∈ Cµ, µ ≥ −1, α, β ≥ 0, γ ≥ −1, properties of the operator Jα

JαJβf(x) = JβJαf(x), Jαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ
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2.2. Derivative caputo fractional [29]

According to Caputo, the fractional derivative of f(x) is stated as follows:

Dα
xf(x) = Jn−αDnf(x) =

1

Γ(n− α)

∫ x

0
(x− t)n−α−1f (n)(t)dt

f(x) ∈ Cn
µ , µ ≥ −1, α, β ≥ 0, γ ≥ −1, n− 1 < α ≤ n, n ∈ N , properties of operator Dα

x

Dα
xD

β
xf(x) = Dα+β

x f(x) = Dβ
xD

α
xf(x),

Dα
xx

γ =
Γ(1 + γ)

Γ(1 + γ − α)
xγ−α, x > 0

2.3. Fractional Sine-Cosine Series [30]

2.3.1. Mittag-Leffler Function

The theory of integer-order differential equations heavily relies on the exponential

function ez. Its one-parameter generalization, the function which is now denoted by

[31]

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
(2)

was introduced by G.M. Mittag-Leffler [32,33].

Agarwal [34] did, in fact, introduce the two parameter function of Mittag-Leffler

type, which is crucial to the fractional calculus and is now famously known as the

Mittag-Leffler function. Humbert and Agarwal [35] found a variety of relationships for

this function by applying the Laplace transform method.

A two-parameter function of the Mittag-Leffler type is defined by the series expan-

sion [31]

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(α > 0, β > 0) (3)
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In their research, Plotnikov [36] and Tseytlin [37] utilised two functions, Scα(z) and

Csα(z), which they refer to as the fractional sine and cosine. These functions are just

the particular cases of Mittag-Leffler function in two parameters:

Scα(z) =

∞∑
n=0

(−1)nz(2−α)n+1

Γ((2− α)n+ 2)
= zE2−α,2(−z2−α) (4)

Csα(z) =

∞∑
n=0

(−1)nz(2−α)n

Γ((2− α)n+ 1)
= E2−α,1(−z2−α) (5)

The properties of the fractional sine and cosine follows from the properties of the

Mittag-Leffler function ‘(3)’.

3. Proposed methodology for solving FDEs

The objective of this work is to illustrate a novel approach to approximately solve a

variety of FDEs by using the DE or PSO technique. A variety of fundamental concepts

from various disciplines of mathematics, including variational calculus, series expan-

sion, and evolutionary optimization algorithms, are incorporated into the formulation

of the suggested method. To implement an efficient problem-solving technique, each

of these components would be briefly evaluated before being appropriately merged.

3.1. Fractional differential equations

The main goal of the strategy is to solve a variety of fractional differential equations

by using the DE or PSO method with fractional sine-cosine series having unknown

coefficients. Instead of providing discrete numerical values at different places in the

solution interval, this method gives the solution function.

The general equation for a fractional-order initial value problem can be represented

as:

Dαy(t) = f(t, y(t)), (6)
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with initial conditions

yk(0) = pk, n− 1 < α ≤ n (7)

where k = 0,1,. . . ,n-1, Dα represents the fractional derivative of order α, t is the

independent variable, y(t) is the unknown function, f(t,y(t)) is a given function and

pk is the value of kth derivative of y at t=0. The equation describes a fractional

differential equation with initial conditions, where the fractional derivative captures

the non-integer order behavior of the system. Solving this type of problem involves

finding the function y(t) that satisfies the equation and the given initial conditions.

For formulation purpose, the partial sum of the Fractional sine and cosine series is

proposed to be used as the approximation function

Y (t) = Y2N (t) =

N−1∑
n=0

(−1)nant
(2−α)n

Γ((2− α)n+ 1)
+

N−1∑
n=0

(−1)nbnt
(2−α)n+1

Γ((2− α)n+ 2)
(8)

where an and bn; n = 0, 1, 2, . . . , N − 1 are unknown constants that needs to be

calculated. This function together with its caputo derivatives will be used to estimate

the solution of ‘(6)’. The total number of terms of fractional sine and cosine used in

approximation is denoted by 2N.

It is observed that if we could use the available evolutionary algorithms to handle a

higher number of unknown variables, we may obtain greater accuracy. Theoretically,

these algorithms can solve problems with any number of variables, but in fact, when

dealing with vast numbers of variables, they are unable to discover the global optimum

because they are trapped in local optima. Large search spaces also require more time

and computational power for the properly examination.

3.2. Weighted-residual functional as convergence criterion

We need a justifying criterion while working with the explicit form of the fractional

differential equations to determine whether the method has achieved the desired accu-

racy in the approximate solution or not. We need a numerical evaluation of errors in

6
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order to have a criterion on the validity of the approximate solution. We can rely on

the outcomes of the algorithm if this assessing factor is within a reasonable range. It is

also necessary to provide a suitable criterion as an objective function to implement on

the DE or PSO algorithm. We observe that the idea of weighted-residual functional in

the variational calculus would be suitable for all these factors. The weighted residual

functional is an integral that is optimized in order to evaluate the solution of the prob-

lem [38]. The FDE must be satisfied by the approximate solution Y2N in the form of

its residual-integral, which is given as

WRF =

∫
D
|W (t)| · |R(t)| dt (9)

where W(t) is referred to as the weight function and R(t) is the residual [39], which

is obtained in the implicit form of the differential equation ‘(6)’

g(t, y(t), yα(t)) = f(t, y(t))−Dαy(t) = 0 (10)

by replacing y(t) and yα(t) with the approximate function Y(t) and its fractional

derivatives.

R(t) ≡ g (t, Y (t), Y α(t)) (11)

WRF will be utilised as the objective function, which is being solved numerically using

the Trapezoidal or Simpson rule. The weight function W(t) is an arbitrary function

used in classical weighted residual methods [39]. But in the proposed method, W(t) is

considered to be 1.

In the solution process, one of the following changes might be required to obtain

the desired accuracy in the execution of algorithm :

• Increase the number of terms of Fractional sine-cosine series to prevent the evo-

lutionary process from being stuck in local optima.

• Breaking the problem solution interval into smaller subdomains and approxi-

mating the solution part by part.
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3.3. Formulation of initial conditions

When solving differential equation problems, we must find a solution that satisfies the

equation itself and simultaneously fulfill the initial conditions of the equation. Since

in the current formulation, differential equations are solved using the evolutionary op-

timization process, therefore, a suitable approach is needed to take into consideration

the IV s as constraints of the optimization problem. The homogeneous conditions are

handled in their original implicit form as

y (t0) = 0 ⇒ h1 (t0) = | y (t0) | ≈ | Y (t0) | (12a)

y′ (t0) = 0 ⇒ h2 (t0) = | y′ (t0) | ≈ | Y ′ (t0) | (12b)

...

y(n−1) (t0) = 0 ⇒ hn−1 (t0) = | y(n−1) (t0) |≈ | Y (n−1) (t0) | (12c)

The constraints of the optimization problem are represented above by h1, h2, . . . ,

hn−1. Then, all the hi’s are included in the framework of a single penalty function

explained in the next section.

Figure 1. The arrangement of the variables in the DE or PSO particles

3.4. Penalty Function and Fitness Function

The DE and PSO algorithms are well known techniques for handling the unconstrained

optimization problems. Therefore, one of the known strategies for handling constraints

must be used in case of constrained problems. As a result, the constraints covered in

the previous section are implemented using the penalty function approach. Penalizing
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the solutions that fail to satisfy the given criteria is managed by the penalty function.

Consequently, we can calculate the fitness function for the problem by adding the

value of the penalty function PFV to the weighted-residual integral WRF, i.e.,

FFV = WRF+ PFV (13)

where the penalty scheme given by Rajeev and Krishnamoorthy [40] is used to calculate

the value of the penalty function PFV.

PFV = WRF ·
nIVs∑
m=1

Kmhm (14)

where nIV s is the number of initial conditions, and hm is the normalised violation of

the mth constraint, which is obtained using equations ‘(12)’ depending on the degree of

violation for that current condition. Km is a penalty multiplier that is selected based

on the importance given on satisfying each criterion. The pressure on satisfying this

criterion will be great if the constant Km is selected to be a large number, hence the

DE and PSO algorithms attempt to see this constraint rather than the fulfilment of the

differential equation itself. On the other hand, if Km is chosen to have a low value, its

corresponding criterion will only be weakly satisfied. As a result, choosing proper values

for these coefficients and changing them as the evolutionary process progresses has its

own significance, which is beyond the scope of this work. However, the coefficients Km

are all assumed to remain constant throughout all examples considered here in order

to keep things simple.

4. Illustrative examples

We have talked about the versatility of an algorithm for calculating approximate solu-

tion of FDEs up to this point. Here, we will use this approach to look at a number of

IVPs in order to assess its applicability and precision. Examples have been chosen from

some of the most well-known references [9,17,22,41] in this domain. The effectiveness

of the algorithm is further demonstrated by a graphic comparison of the computed
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Table 1. Parameters of DE algorithm for DE-FSCS method

Parameters Ex. 1 Ex. 2 Ex. 3

Xmin -1 -0.8 -9
Xmax 1 0.8 9
maxFE a 100000 100000 100000
M b 70 70 16
CR 0.9 0.9 0.5
F 0.65 0.65 0.75
Itmax

c 500 20 2000
K1

d 0.9 10 40 100000

a Maximum Function Evaluations

b Population Size

c Maximum Iterations

d Penalty Multipliers

approximations with the exact ones.

In order to analyze and compare the numerical results thoroughly, we mainly con-

sider Mean Square Error (MSE) between exact solutions and approximate solutions

as the most crucial evaluation criterion in this work, which is calculated by using the

following expression:

MSE =
1

n

n∑
i=1

∥YN (xi)− Yexact (xi)∥2 (15)

The mean and variance values, which demonstrate the average precision and stabil-

ity of these comparing methods, constitute the MSE values.

20 separate runs were performed for each test problem in order to complete the

optimization task. The proposed method was performed on an Intel(R) Core(TM) i3

processor running at 1.70 GHz with 4 GB of RAM using the MATLAB programming

software (MATLAB 2021).

The chosen values for parameters of DE algorithm is mentioned in Table 1.

The chosen values for parameters of PSO algorithm is mentioned in Table 2.
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Table 2. Parameters of PSO algorithm for PSO-FSCS

method

Parameters Ex. 1 Ex. 2 Ex. 3

Xmin -1 -1 -4.2
Xmax 1 1 4.2
maxFE a 100000 100000 100000
M b 70 14 16
c1 0.5 0.5 1
c2 1.5 1.5 1
ωmin 0.4 0.4 0.3
ωmax 0.9 0.9 0.8
Itmax

c 100 100 200
K1

d 0.9 1000 100000

a Maximum Function Evaluations

b Population Size

c Maximum Iterations

d Penalty Multipliers

4.1. Example 1 [22]

Consider the following fractional differential equation

Dαy(t) + y(t) = t2 +
2t1.5

Γ(2.5)
, 0 ≤ t ≤ 1, 0 < α ≤ 1 (16)

y(0) = 0 (17)

The exact solution for ‘(16)’ and ‘(17)’ is

yexact (t) = t2 when α = 0.5 (18)

The best approximate solution to this problem using Differential Evolution method

and Fractional sine-cosine series (DE-FSCS) is obtained for N = 7. Thus, we get the

approximate solution as

y(t) ≈ 1.08× 10−3 − 0.1751 t+ 0.7523 t1.5 + 0.3009 t2.5 + 0.1667 t3

−2.061× 10−2 t4 − 1.910× 10−2 t4.5 − 3.474× 10−3 t5.5

−1.389× 10−3 t6 − 1.984× 10−4 t7 − 7.125× 10−5 t7.5

−8.381× 10−6 t8.5 − 2.752× 10−6 t9 − 2.756× 10−7 t10

11
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The best approximate solution to this problem using Particle Swarm Optimization

method and Fractional sine-cosine series (PSO-FSCS) is obtained for N = 7. Thus, we

get the approximate solution as

y(t) ≈ 6.92× 10−4 − 0.1748 t+ 0.7523 t1.5 + 0.3009 t2.5 + 0.1667 t3

−2.076× 10−2 t4 − 1.91× 10−2 t4.5 − 3.474× 10−3 t5.5

−1.389× 10−3 t6 − 1.984× 10−4 t7 − 7.125× 10−5 t7.5

−2.086× 10−6 t8.5 − 2.358× 10−6 t9 − 1.315× 10−7 t10

Figure 2. Comparison of the exact and approximate solutions of Example 1 using DE-FSCS and PSO-FSCS
methods

The graphical comparison between the exact and approximate solutions of Example

1 using the DE-FSCS and PSO-FSCS methods is depicted in Fig. 2. It is clear from the

graph that both the DE-FSCS and PSO-FSCS methods detected the exact solution

with adequate precision.
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Table 3. Comparison table for MSE of the solution of

Example 1 obtained by the proposed DE-FSCS and PSO-

FSCS methods with that of other techniques [17]

Technique (MSE)

DE-FSCS 9.1299× 10−7

PSO-FSCS 8.5185× 10−7

VIM [17] 2.6283
GWO-VIM [17] 2.600× 10−3

4.2. Example 2 [41]

Consider the nonlinear Riccati differential equation

Dαy(t) + y2(t) = 1, 0 ≤ t ≤ 1, 0 < α ≤ 1 (19)

y(0) = 0 (20)

The exact solution for ‘(19)’ and ‘(20)’ is

yexact(t) =
e2t − 1

e2t + 1
when α = 0.75 (21)

The best approximate solution to this problem using Differential Evolution method

and Fractional sine-cosine series (DE-FSCS) is obtained for N = 7. Thus, we get the

approximate solution as

y(t) ≈ 0.8000 t+ 0.4174 t1.25 − 0.3138 t2.25 + 0.2407 t2.5

+3.1380× 10−2 t3.5 + 3.9190× 10−2 t3.75 − 3.4855× 10−3 t4.75

+6.2467× 10−3 t5 − 5.1681× 10−4 t6 − 4.9550× 10−4 t6.25 − 6.7062× 10−6 t8.5

The best approximate solution to this problem using Particle Swarm Optimization

method and Fractional sine-cosine series (PSO-FSCS) is obtained for N = 7. Thus, we
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get the approximate solution as

y(t) ≈ −1.167× 10−8 + t+ 0.2801 t1.25 − 0.3922 t2.25 − 0.3009 t2.5

+8.597× 10−2 t3.5 + 6.029× 10−2 t3.75 + 1.269× 10−2 t4.75

+5.726× 10−3 t5 − 1.389× 10−3 t6 + 8.655× 10−4 t6.25

−1.194× 10−4 t7.25 + 3.367× 10−5 t7.5 − 8.383× 10−6 t8.5

Figure 3. Comparison of the exact and approximate solutions of Example 2 using DE-FSCS and PSO-FSCS
methods

The graphical comparison between the exact and approximate solutions of Example

2 using the DE-FSCS and PSO-FSCS methods is depicted in Fig. 3. It is seen from the

graph that both the DE-FSCS and PSO-FSCS methods detected the exact solution

with adequate precision, but the approximate solution obtained by DE-FSCS method

in this case is better than that obtained by PSO-FSCS method as far as accuracy is

concerned.
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Table 4. Comparison table for MSE of the solution of

Example 2 obtained by the proposed DE-FSCS and PSO-

FSCS methods with that of other techniques [17]

Technique (MSE)

DE-FSCS 9.3219× 10−5

PSO-FSCS 5.3229× 10−4

VIM [17] 4.3000× 10−3

GWO-VIM [17] 1.3000× 10−3

4.3. Example 3 [9]

Consider the example of nonlinear fractional differential equation which is used to

solve an initial value problem describing the process of cooling of a semi-infinite body

by radiation

Dαy(t)− γ(x0 − y(t))4 = 1, 0 ≤ t ≤ 1, 0 < α ≤ 1 (22)

y(0) = 0 (23)

The exact solution for ‘(22)’ and ‘(23)’ is

yexact(t) = x0 − (
x30

√
π

6
√
t+

√
π
)1/3 when α = 0.5 (24)

For γ = 1 and x0 = 1, the best approximate solution to this problem using Differ-

ential Evolution method and Fractional sine-cosine series (DE-FSCS) is obtained for

N = 8. Thus, we get the approximate solution as

y(t) ≈ 4.307× 10−7 + 2.6122 t− 3.9767 t1.5 + 2.5804 t2.5 − 0.5755 t3

−0.1525 t4 − 0.1719 t4.5 − 2.545× 10−2 t5.5 + 1.25× 10−2 t6

−1.786× 10−3 t7 + 3.584× 10−4 t7.5 − 5.228× 10−5 t8.5

−7.548× 10−6 t9 − 2.48× 10−6 t10 − 7.842× 10−8 t10.5 + 6.577× 10−8 t11.5

For γ = 1 and x0 = 1, the best approximate solution to this problem using Particle

Swarm Optimization method and Fractional sine-cosine series (PSO-FSCS) is obtained

15
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Table 5. Comparison table for MSE of the solution of Example 3 obtained by the pro-

posed DE-FSCS and PSO-FSCS methods with that of other numerical technique [30]

Technique (MSE)

DE-FSCS 4.7275× 10−3

PSO-FSCS 5.0048× 10−3

Numerical method mentioned by [30] for h = 0.05 1.0827× 10−2

for N = 8. Thus, we get the approximate solution as

y(t) ≈ −2.066× 10−12 + 2.002 t− 2.3669 t1.5 + 0.3903 t2.5 + 0.2769 t3

+8.88× 10−2 t4 − 6.078× 10−2 t4.5 + 3.07× 10−3 t5.5 − 1.212× 10−5 t6

−8.282× 10−4 t7 − 4.137× 10−6 t7.5 + 1.734× 10−5 t8.5 + 1.613× 10−6 t9

−7.244× 10−7 t10 − 3.599× 10−8 t10.5 − 2.315× 10−8 t11.5

Figure 4. Comparison of the exact and approximate solutions of Example 3 using DE-FSCS and PSO-FSCS

methods

The graphical comparison between the exact and approximate solutions of Example

3 using the DE-FSCS and PSO-FSCS methods is depicted in Fig. 4. It is seen that

both the DE-FSCS and PSO-FSCS methods outperformed the other method in terms

of accuracy. Also, the approximate solution obtained by DE-FSCS method in this case

is better than that obtained by PSO-FSCS method as far as accuracy is concerned.
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Table 6. Mean Function Evaluations (Mean FE) for the

solutions to all the three examples obtained by the proposed
DE-FSCS and PSO-FSCS methods

Mean FE Ex. 1 Ex. 2 Ex. 3

DE − FSCS 2849 273 999.2
PSO − FSCS 3433.5 538.3 1230.4

5. Conclusion

In this paper, fractional differential equations are solved numerically to get their ap-

proximate solutions. For this, a fractional sine-cosine series with unknown coefficients

is taken as base approximation function and then these coefficients are evaluated using

metaheuristic optimization techniques such as Differential Evolution (DE) and Parti-

cle Swarm Optimization (PSO) in order to achieve desired precision. Three problems

are considered as examples to illustrate our proposed method. The MSE of the ap-

proximate solutions for Ex. 1 derived from both DE-FSCS and PSO-FSCS methods

w.r.t. exact solutions are superior to that of VIM and GWO-VIM methods which were

developed by Entesar and Qasim [17]. (See Fig. 2 and Table 3). Further, it may be

noted that our PSO-FSCS method for this example is even better than that of our

DE-FSCS method.

It is further noted that the MSE of the approximate solutions for Ex. 2 obtained

by both DE-FSCS and PSO-FSCS methods w.r.t. exact solutions are better than the

MSE of the solutions derived from VIM and GWO-VIM methods which were suggested

by Entesar and Qasim [17]. (See Fig. 3 and Table 4). Here, it may be noted that the

DE-FSCS method for this example is still better than the PSO-FSCS method.

The MSE for the approximate solutions for Ex. 3 obtained by both DE-FSCS and

PSO-FSCS methods w.r.t. exact solutions are better than that of the MSE of the

solution obtained by the numerical method as suggested by Podlubny [30]. (See Fig.

4 and Table 5). Further, it is noted that the DE-FSCS method in this case is even

better than the PSO-FSCS method.

It is seen from Table 6 that the mean function evaluations (Mean FE) for DE-FSCS

method is less than that of PSO-FSCS method in case of all the three examples 1, 2

and 3 considered in this paper. It can be concluded here that the DE-FSCS method

is more efficient than PSO-FSCS method as far as mean FE is concerned.
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After observing the outcomes of the proposed method in this paper, we may

conclude that the performance of both the DE-FSCS and PSO-FSCS methods are

much better than the methods suggested earlier by Entesar and Qasim [17] and

Podlubny [30].
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