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Abstract

Accurate prediction of epileptic seizures using electroencephalogram (EEG) signals is

critical for improving patient outcomes, especially in patients with drug-resistant

epilepsy.The preictal state,which immediately precedes seizure onset,exhibits

complex and subtle signal patterns that are often difficult to detect due to inter-patient

variability.This study proposes an enhanced seizure prediction model that extends the

EEGNet convolutional neural network by integrating key time-domain features,

specifically Root Mean Square (RMS), Variance, Line Length, and Hjorth Parameters.

These features capture essential characteristics of the EEG signal, such as amplitude

fluctuations, signal variance and temporal complexity, which tend to change before

seizure onset.The model was trained and validated on the CHB-MIT scalp EEG

dataset using a stratified Train-Test split. The proposed approach achieved an average

sensitivity of 91.9% and specificity of 95.8%,indicating improved predictive accuracy

and robustness.These results highlight the effectiveness of integrating specific time-

domain features with the EEGNet architecture in enhancing seizure prediction

performance and supporting real-time clinical applications.

Keywords:EEG signals, Preictal state, Interictal state, EEGNet,Deep learning,

RMS,Line Length, Variance, Hjorth parameters, CHB-MIT dataset.

1. Introduction

Epilepsy is a neurological condition characterized by recurrent seizures resulting from

abnormal and excessive electrical discharges in the brain. These electrical activities

are captured using electroencephalogram (EEG) recordings, which involve placing

electrodes on the scalp to monitor brain signals. EEG remains an essential tool for

identifying and analyzing seizure events.

Seizures are typically accompanied by symptoms such as involuntary movements,

impaired motor control, and altered consciousness, all of which negatively affect

patients' quality of life [1]. According to the World Health Organization, around 70

million people worldwide are affected by epilepsy, with nearly one-third of these

individuals exhibiting resistance to anti-epileptic treatments[2].Predicting seizures in

advance is important because it allows patients to take preventive steps and get timely

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 106



2

treatment,potentially reducing the severity and frequency of seizures[3] .Traditionally,

seizure prediction depended on observing physical signs and manually analyzing EEG

recordings, which was often slow and lacked accuracy. However,recent progress in

areas such as using deep learning technologies, continuous EEG analysis, and

wearable technology has led to more accurate and faster seizure detection, promoting

improved patient safety[4].Brain activity during a seizure can be categorized into

three phases.

1) The interictal phase is the period between seizures, typically marked by normal

brain activity with possible minor irregularities.

2) The preictal phase occurs before a seizure starts. During this phase, the brain’s

electrical activity changes that can warn us a seizure occurs.

3) The ictal phase is the seizure period, marked by sudden rhythmic spikes in

temporal regions spreading to frontal areas, followed by high-amplitude spike-

and-wave discharges lasting about 30 seconds.

Fig-1: EEG Signal Visualization of Interictal , Preictal and Ictal States Across 23 Channels Over Time

Accurately identifying different stages of brain activity, particularly the preictal phase,

is essential for advancing seizure prediction methods. Seizure prediction typically

involves classifying EEG signals into either the preictal or interictal phase [5]. This

process requires analyzing EEG data to extract features that can effectively capture

the distinguishing characteristics of these two states. Once relevant features are

obtained, machine learning or deep learning models are employed to classify the

signals accordingly. Numerous approaches have been proposed in the literature,

leveraging both time-domain and automatically learned features to improve the

accuracy and reliability of seizure prediction systems.
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Ibrahim et al. [6] proposed a seizure prediction method using 1D-CNNs applied to

EEG signals decomposed into frequency bands via MODWT, achieving 82%

sensitivity with a false positive rate of 0.058 on the CHB-MIT dataset and 85%

sensitivity with a false positive rate of 0.19 on the AES dataset, without relying on

manual feature extraction. Similarly, Toraman [7] utilized pre-trained 2D-CNN

models such as ResNet, DenseNet, and VGG19 to classify spectrogram images of 5-

second EEG segments from the CHB-MIT dataset, achieving an accuracy of 91.05%

by recognizing preictal and interictal states.

Ben Messaoud and Chavez [8] developed a seizure prediction approach using a

Random Forest classifier trained on 25 extracted features—encompassing time-

domain, spectral, and correlation attributes from 15-second EEG segments of the

CHB-MIT dataset, achieving a sensitivity of 82.07%. Similarly, Xu, Yang, and Sawan

[9] enhanced seizure prediction performance by augmenting the CHB-MIT dataset

with synthetic preictal signals generated through a DCWGAN-based GAN, resulting

in a tenfold increase in training data and a rise in prediction accuracy from 73.0% to

78.0%.

Usman, Khalid, and Aslam [10] proposed a method titled Epileptic Seizures

Prediction Using Deep Learning Techniques, based on the CHB-MIT dataset. EEG

signals were preprocessed using Short-Time Fourier Transform (STFT), followed by

feature extraction using CNNs and classification using a Support Vector Machine

(SVM). Their approach achieved 92.7% sensitivity and 90.8% specificity.Hu et al.[11]

proposed a method for epilepsy prediction using a hybrid Transformer model

integrated with transfer learning, based on the CHB-MIT dataset. By utilizing a

combination of EEG rhythm features, the model achieved a sensitivity of 91.7%.

Several studies have demonstrated that deep learning models, including pre-trained

CNNs and hybrid architectures,can achieve high prediction accuracy, while traditional

methods offer simpler and faster solutions.However,balancing high accuracy with low

computational cost remains a key challenge,particularly for real-time seizure

prediction systems.

In this work, EEG signals are analyzed to identify the most discriminative features

that distinguish between preictal and interictal brain states. We select four key Time-

domain features such as root mean square (RMS), variance, line length, and Hjorth

complexity are used to capture essential characteristics of signal dynamics. These

time domain features are integrated into an EEGNet-based convolutional neural

network(CNN),which is designed to perform both feature extraction and classification.

The hybrid model enables accurate prediction of seizure onset by leveraging both

learned and time-domain representations of the EEG data. Section 2 describes the

dataset used in this study, Section 3 outlines the methodology, Section 4 presents the

results and discussion, and Section 5 provides the conclusion.
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2. DataSet Access

The CHB-MIT database used in this work was collected from Children’s Hospital

Boston, contains EEG recordings from 24 pediatric patients with drug-resistant

seizures.It includes 664 files with 198 seizures, mostly recorded using 23 channels at

a 256 Hz sampling rate following the International 10-20 system. Each recording lasts

between one to four hours.For analysis, recordings are divided into segments focusing

on the preictal period, defined as the 30 minutes before a seizure. This segmentation

helps in efficient processing and feature extraction. The publicly available dataset on

PhysioNet is widely used for developing seizure prediction and detection algorithms

[12].

3. Methodology

This section presents the methodology of H-EEGNet, a dual-branch architecture that

combines deep learning representations with time-domain features.The first branch

employs EEGNet to extract convolutional spatiotemporal features directly from raw

EEG signals. Simultaneously, the second branch derives time-domain features from

the same input segments. Outputs from both branches are concatenated and passed

through fully connected layers to perform the final classification.

A. Data Preprocessing

The CHB-MIT scalp EEG dataset [12],which includes recordings from 24 subjects,

was preprocessed to extract labeled preictal and interictal segments suitable for

classification using the proposed H-EEGNet architecture. The preprocessing pipeline

was developed using the MNE-Python library,which provides tools for reading and

processing multichannel EEG signals stored in EDF format.

Fig 2:Work flow for EEG Data Preprocessing and Labeling for Preictal and Interictal State Classification

The complete preprocessing workflow is illustrated in Figure 1, outlining the core

stages: loading raw EEG data, segmenting it into 30-second windows, labeling

segments based on seizure onset annotations,applying filtering, and saving the

processed data as structured NumPy files.

Each raw EEG recording was segmented into non-overlapping 30-second windows,

corresponding to 7,680 samples at a 256 Hz sampling rate. Segments falling within

the 30-minute window prior to a seizure onset were labeled as preictal, while those

outside preictal, ictal, and postictal periods were labeled as interictal. Seizure

annotations provided in the dataset guided the accurate identification of these
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intervals. A 10-minute postictal buffer was applied following each seizure to prevent

contamination from residual seizure activity. Additionally, only seizures with at least

2 minutes of valid preictal duration were considered, ensuring sufficient data for

reliable classification.

Fig 3: Comparison of EEG signal segments in interictal and preictal states

Figure 3 provides a side-by-side view of typical interictal and preictal EEG segments

to show how the brain’s activity changes over time. The interictal segment looks calm

and steady, with low-amplitude signals that reflect normal brain function.On the other

hand, the preictal segment shows small but noticeable changes and greater signal

variability features that may indicate the early onset of a seizure.These distinct signal

characteristics justify the classification of preictal and interictal segments as separate

classes, as they represent fundamentally different patterns in neural activity.

To enhance signal quality, the preprocessing pipeline applies a 60 Hz notch filter to

remove power line interference. It then uses a 4th-order Butterworth bandpass filter

(0.5–40 Hz) to retain frequency components relevant to seizure dynamics, including

the delta, theta, alpha, and beta bands [10]. These filtering steps effectively suppress

artifacts while preserving physiological EEG rhythms that are essential for accurate

predictive modeling.

A notch filter at 60 Hz with a quality factor of 30 removes power-line noise:

where bnotch and anotch are coefficients of an IIR notch filter, and x(t) is the input signal.

A 4th-order Butterworth bandpass filter(0.5–40 Hz) isolates delta (0.5–4 Hz), theta

(4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) bands:
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The filter coefficients bbp and abp were normalized by the Nyquist frequency (fs/2=128

Hz). After filtering, the pipeline saved each segment as a.npy file with in structured

directories organized by preictal and interictal classes.It also recorded metadata

including subject ID, filename, segment number, start and end times, segment type,

and file paths into a Pandas DataFrame, which was exported to a CSV file to support

traceability and model training reference.

This preprocessing pipeline effectively transformed continuous EEG recordings into a

structured,labeled dataset containing Np preictal and Ni interictal segments. Each

segment was stored in the shape (C,7680) where C≈23 represents the number of EEG

channels.

B. EEGNet Model Architecture

Fig 4: Architecture of the standard EEGNet

EEGNet is a compact CNN architecture designed for EEG-based applications, using

depthwise and separable convolutions to efficiently capture temporal and spatial
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features while minimizing trainable parameters. Its lightweight design supports real-

time use without sacrificing performance and has shown strong generalization in

various BCI tasks. In this study, EEGNet serves as the backbone of the hybrid seizure

prediction model, extracting spatiotemporal features from raw EEG segments. These

features are combined with handcrafted time-domain features to enhance

classification. This integration balances computational efficiency with predictive

accuracy. The model architecture as shown in Figure 4.

The model comprises three main blocks, described as follows:

Block 1: Conv2D and DepthwiseConv2D Combination

This block starts with an input layer, followed by a standard Conv2D layer and a

DepthwiseConv2D layer, each with batch normalization to stabilize training.

Depthwise convolution reduces parameter count by connecting only to specific

feature maps. In EEG processing, this combination allows the model to learn spatial

filters aligned with each temporal filter. A depth multiplier controls the number of

spatial filters per map. This design is inspired by the FBCSP algorithm for extracting

spatio temporal features.

Block 2: Separable Convolution

This block applies separable convolution, consisting of a depthwise followed by a

pointwise convolution. This approach reduces trainable parameters and decouples

spatial from cross-channel feature learning. The depthwise step processes each feature

map along the temporal axis, while the pointwise step merges them across channels.

This enables efficient capture of multi-timescale feature representations for improved

classification.

Block 3: Classification

In the final stage, the extracted features are passed through a softmax activation

function to perform multi-class classification. The softmax function is well-suited for

EEGNet’s multi-class framework, as it converts the output logits into class

probabilities. For binary classification tasks, a sigmoid activation may be used as an

alternative [14].

C. Hybrid Feature Extraction

1. Deep Spatiotemporal Feature Learning with EEGNet

In seizure prediction tasks, capturing evolving temporal patterns in EEG signals prior

to seizure onset is critical for early detection. Let the input EEG segment be denoted

by X∈Rcxt,where C represents the number of EEG channels and T denotes the

number of temporal samples.

Convolutional neural networks (CNNs), particularly EEGNet-based architectures, are

employed to extract discriminative features from these multichannel EEG segments.
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Each local region (or input patch) of the signal, centered at location (u,v), is defined

as Pu,v∈Rkh×kw,where Kh and Kw,represent the spatial (channel) and temporal

dimensions of the kernel, respectively.

Given a learnable convolutional kernel K∈Rkh×Kwk ,the output feature map Z∈RH′×W

is computed using the standard dot-product convolution as follows:

The convolutional operation is applied across the input EEG matrix to extract local

temporal patterns within each channel and to capture cross-channel interactions that

may indicate transitions from interictal (non-seizure) to preictal (pre-seizure) states. In

this study, the initial layer employs temporal convolution filters of size 1×32 allowing

the model to focus on short-term temporal dynamics within each EEG channel.

Subsequent layers progressively integrate these localized features into higher-level

representations that enhance the model’s ability to predict impending seizure

activity.By modeling spatiotemporal dependencies in EEG signals, the architecture

enables robust learning of early neural signatures associated with seizures an essential

capability for real-time seizure prediction systems.

2.Integration of Time-Domain Features

To enhance EEGNet's ability to distinguish between seizure and non-seizure brain

activity,a hybrid approach was implemented that combines deep patterns learned from

raw EEG signals with meaningful time-based features known to capture important

signal characteristics.EEGNet effectively learns complex patterns in EEG signals by

using temporal convolutions, depthwise spatial filtering, and separable convolutions.

These layers help the model capture how brain activity changes over time and across

different EEG channels.

However, EEGNet does not directly extract statistical features that are often useful in

detecting early signs of a seizure.As a result, it may miss fine-grained signal patterns

that conventional methods are designed to highlight.To overcome this limitation, the

model includes four key time-domain features: Root Mean Square (RMS), Variance,

Line Length, and Hjorth parameters.These features describe the signal’s energy,

variation, frequency, and shape.Incorporating these features into the model provides

clear and meaningful information about the EEG signal, enabling the system to more

effectively detect changes that occur prior to seizure onset.

Each selected time-domain feature serves a specific role in describing how the EEG

signal changes over time.RMS measures the signal’s energy and tends to increase

during preictal states because of higher brain activity.Variance shows how much the

signal's amplitude varies from the average and helps detect instability and irregular

patterns in brain activity.Line Length measures the complexity of the EEG waveform
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and can detect fast changes and sudden spikes, making it useful for identifying

abnormal brain activity.The Hjorth parameters offer more detail about the signal:

Activity shows the power, Mobility reflects the average frequency, and Complexity

shows how the frequency changes over time. Together, they help describe how brain

signals behave over time.

Time-domain features were extracted from 30-second EEG segments across all

channels, resulting in a fixed-length statistical feature vector for each sample.The

model applies Z-score normalization to standardize the feature values and ensure

compatibility with the deep features produced by EEGNet. In parallel, the raw EEG

signals were processed through the convolutional layers of EEGNet, producing a

flattened feature vector fEEGNet∈Rd, that captures learned patterns in the input data.

The system then concatenates this vector with the normalized time-domain feature

vector ftime∈Rt.The two vectors are concatenated to produce a combined feature

representation:

where || denotes vector concatenation

The fused representation was passed through fully connected layers and a softmax

classifier to distinguish between preictal and interictal states.This integration approach

allowed the model to utilize both the complex features learned by deep neural

networks and the descriptive statistical features extracted through time-domain

analysis.By combining these integrated feature sets, the model achieved enhanced

robustness, improved generalization across subjects, and greater sensitivity to early

markers of seizure onset.Integrating time-domain features with EEGNet’s learned

representations was essential for developing a robust and clinically relevant seizure

prediction system.

D.Proposed H-EEGNet Framework

The proposed extension of the original EEGNet architecture has been specifically

adapted for seizure prediction using scalp EEG recordings. Its primary objective is to

classify EEG segments as either preictal or interictal based on learned neural patterns.

Although EEGNet has shown strong performance in general EEG-based classification

tasks due to its ability to learn spatiotemporal representations from raw signals, its

architecture is primarily designed for capturing spatial and temporal dependencies

through convolutional layers. In seizure prediction, however, additional time-domain

features such as signal variability, entropy, and complexity often contain crucial

information that may not be fully recognized by convolutional operations alone. To

overcome this limitation, the proposed approach incorporates both learned and time

domain features to improve predictive performance, as shown in Figure 5.

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 114



10

Fig 5: Flow diagram of the proposed method

In this framework each 30-second EEG segment is processed through two parallel

branches.In the first branch, the raw EEG segment is fed into the EEGNet architecture,

which applies temporal convolution, depthwise spatial filtering, and separable

convolution. This sequence enables the model to learn frequency-related patterns and

spatial dependencies across EEG channels, producing a deep feature vector fEEGNet

that encodes learned spatiotemporal representations.

Simultaneously, the second branch extracts time-domain features from the same EEG

segment.These include Root Mean Square (RMS), variance, line length, and Hjorth

parameters activity, mobility, and complexity.These features are established

indicators of signal dynamics and are particularly effective for capturing the subtle

irregularities often associated with seizure onset. The resulting time-domain feature

vector is denoted ftime.The core enhancement in this framework lies in the fusion of

both feature types at the feature level. The vectors fEEGNet and ftime are concatenated to

form a joint representation that captures both high-level learned features and low-

level statistical properties.This combined vector is passed through one or more fully

connected layers, followed by a softmax classifier that outputs the probability of the

EEG segment belonging to either the preictal or interictal class.

This hybrid design modifies the original EEGNet architecture to better address the

seizure prediction task by integrating time-domain features that capture meaningful

EEG dynamics. These changes are based on the observation that preictal EEG signals

often show small but consistent differences compared to normal brain activity.By

combining these time-domain features with deep representations at the feature

extraction stage, the model improves its accuracy and reliability in identifying early

signs of seizure onset.
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4. Results and Discussion

The proposed hybrid seizure prediction model was implemented in Python using

TensorFlow and Keras. EEG signals from the CHB-MIT dataset were segmented into

30-second non-overlapping windows and labeled as preictal or interictal. A stratified

80:20 train-test split ensured class balance,and time-domain features were

standardized using z-score normalization.Deep and handcrafted features were fused

via concatenation,followed by dense, dropout, and softmax layers for binary

classification.The model was trained using the Adam optimizer with sparse

categorical cross-entropy loss, incorporating early stopping, learning rate scheduling,

and checkpointing.Class weights addressed dataset imbalance.Training used a batch

size of 8 for up to 40 epochs, with 20% of training data used for validation.

4.1 Evaluation Metrics

Model performance was evaluated on both training and testing sets using accuracy,

sensitivity and specificity derived from the confusion matrix. Accuracy measures the

overall proportion of correctly classified instances across both classes. Sensitivity

(also known as recall or true positive rate) evaluates the model’s ability to correctly

identify preictal segments, which is critical for seizure prediction. Specificity, on the

other hand, quantifies the model’s capability to correctly detect interictal segments,

ensuring it avoids false alarms. Together, these metrics provide a balanced and

comprehensive evaluation of the model’s effectiveness in distinguishing between

preictal and interictal EEG patterns.

 

Where:TP: True Positives (correctly predicted seizure/preictal)

TN: True Negatives (correctly predicted non-seizure/interictal)

FP: False Positives (incorrectly predicted seizure)

FN: False Negatives (missed seizure)

4.2 Performance Results

In this study, a total of 4,667 EEG segments were utilized, consisting of 2,287 preictal

and 2,380 interictal samples. These were divided into training and testing sets using

an 80:20 stratified split, resulting in 1,829 preictal and 1,904 interictal segments for

training, and 458 preictal and 476 interictal segments for testing.This balanced

distribution ensures representative exposure to both classes during training and

evaluation, thereby reducing potential class imbalance bias.Model evaluation

followed the same 80:20 partitioning strategy, where EEG segments from multiple

patients were pooled and randomly divided. While this method provides a reliable
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estimate of overall model performance, it does not fully assess generalization to

unseen patients.To address this, future work will adopt subject-wise evaluation

strategies, such as leave-one-subject-out cross-validation.

Fig 6: The progression of training and validation accuracy and loss over 40 epochs

As shown in Figure 6, the model achieved a training accuracy of 93.90% and a

validation accuracy of 88.50% across 40 epochs.The training loss decreased from 0.8

to below 0.4, while validation loss stabilized after the 20th epoch, indicating effective

convergence and no signs of overfitting.The confusion matrices depicted in Figure 7

further demonstrate the model's predictive performance.During training, the model

correctly classified 1,826 interictal and 1,681 preictal segments, misclassifying 148

interictal and 78 preictal segments.In the testing phase, it correctly predicted 440

interictal and 403 preictal segments, with 55 interictal and 36 preictal segments

misclassified.These results confirm the model’s strong generalization ability and high

predictive accuracy across EEG data.

Fig 7 : Confusion Matrices for Training and Testing of the Seizure Prediction Model

4.3 Comparison with Previous Methods

While many earlier methods have explored the combination of deep learning with

time-domain features, the approach adopted in this study presents a more cohesive

and streamlined architecture. EEGNet is utilized both as a deep feature extractor and

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 117



13

as the final classifier, eliminating the need for multiple, often redundant, processing

stages.This compact design enhances computational efficiency without compromising

performance. Additionally, meaningful handcrafted time-domain features such as root

mean square (RMS), line length, and Hjorth parameters are directly integrated into the

model. These features capture important statistical characteristics of the EEG signal,

including amplitude, variability, and complexity. By combining these handcrafted

features with the features learned by EEGNet, the model benefits from both domain-

specific knowledge and data-driven learning. This dual-path strategy enhances the

model's sensitivity to subtle preictal changes that precede seizures. Compared to

previous multi-stage or overly complex frameworks, this method is simpler, faster,

and more practical for deployment in real-time settings. It reduces the risk of

overfitting and improves generalization across patients. Furthermore, the simplified

architecture contributes to better interpretability, which is important for clinical

applications. Overall, this hybrid approach achieves strong predictive performance

while maintaining a lightweight and scalable design suitable for real-world seizure

prediction tasks.
Comparison of Existing Techniques with Proposed Method

Reference Model Used Dataset Parameter

Raza et al. [16] EEGNet and NSL-EEGNet

Two-class MI (Graz
dataset), Four-class MI
(BCI Competition IV

Dataset 2a)

Accuracy
Two-class :76.07%
Four-class:70.68%

Massoud et al.[17] TCNN
Kaggle 2016 iEEG

dataset

Accuracy = 60%,
Sensitivity = 70

General AUC=0.75

Aslam et al. [18]
Custom CNN + LSTM (with

handcrafted features)
CHB-MIT Scalp EEG

(22 patients)

Accuracy: 94%,
Sensitivity: 93.8%,
Specificity: 91.2%

Toraman et al.[7]
Preictal Spectrogram + Pre-

trained CNNs
CHB-MIT scalp EEG (20

cases)
Accuracy 91.05%

Messaoud et al.[8] Random Forest Classifier
CHB-MIT scalp EEG (20

patients)
Sensitivity 82.07%

Usman et al.[10] CNN + SVM Classification
CHB-MIT scalp EEG (24

subjects)
Sensitivity 92.7%,
Specificity 90.8%

Proposed Method

EEGNet CNN
model+RMS,Variance,
Linelength and Hjorth

Parameters features

CHB-MIT scalp EEG (24
subjects)

Sensitivity 91.9%,
Specificity 95.8%

5.Conclusion

In this work,we developed a hybrid model for epileptic seizure prediction that

combines key time-domain features with deep learning representations extracted

using EEGNet.By integrating features like root mean square, variance, line length,

and Hjorth parameters with spatiotemporal patterns learned from raw EEG data, the

model effectively captured the subtle transitions from interictal to preictal states.We

evaluated the model on the CHB-MIT scalp EEG dataset using an 80:20 train-test

split, and it achieved high sensitivity and specificity,demonstrating strong predictive
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performance.Its efficient architecture and use of domain relevant signal characteristics

make it well-suited for real-time seizure prediction in clinical applications.

Future work will explore subject-specific modeling, include additional features such

as nonlinear dynamics and connectivity measures, and aim to deploy the model on

wearable devices for continuous,real-world patient monitoring.
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