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ABSTRACT

Machine Learning that Preserves Privacy (PPML) facilitates model training and analysis while
safeguarding sensitive data, model parameters, and user privacy. This survey reviews advances
from 2019-2024 with a focus on four major techniques: Homomorphic Encryption (HE),
Diftferential Privacy (DP), Secure Multi-Party Computation (MPC), and Federated Analytics
(FA) with secure aggregation. Additionally, it offers a unified taxonomy connecting these
methods to adversary models, deployment patterns, and practical applications.

Drawing on benchmark outcomes and system evaluations from 2019-2024, this survey assesses
PPML systems regarding efficiency, accuracy, deployment costs, and ROI. It emphasizes where
each approach excels—such as HE for encrypted inference, DP for secure model release, MPC
for collaborative training across silos, and FA for extensive client-side analytics—and details
critical engineering trade-offs in industries like healthcare, finance, telecommunications, and
[oT.The paper also proposes a practical research roadmap emphasizing hybrid pipelines that
combine cryptographic methods with DP, hardware—software co-design to accelerate HE/MPC,
and standardized benchmarks for privacy—utility—cost evaluation. Additionally, it stresses the
need for operational auditing, explainability.

The survey subsequently dives into the latest PPML trends like the merger of hardware-bound
TEEs with cryptographic protocols, which would give a dual advantage of higher performance
and security. It mentions the use of federated learning in edge and IoT devices, which is
increasing but poses unique challenges due to limited computing power and unstable
connectivity. Through the analysis of the practical installations, the survey brings out the major
causes of communication overload, non-scalable systems, and the risk of losing privacy, which,
being articulated in the form of guidelines, help to conquer the mentioned issues and the like in
the design of PPML pipelines in the different environments of heterogeneous resources. The
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paper, lastly, insists upon the role of ethical and regulatory considerations in the acceptance of
PPML.

Organizations are required to align their technical solutions with the legal requirements as data
privacy regulations like GDPR, HIPAA, and CCPA are the main determinants of the handling of
sensitive information. Privacy impact assessments are suggested by the survey to be detailed,
behavior modeling to be constantly checked, and privacy-improving activities to be disclosed in
a public way so that the stakeholders' trust can be earned. It is through the collaboration of the
technical thoroughness and ethical supervision that the PPML will pave the way for the secure
and responsible use of Al in different sectors.

1. INTRODUCTION
1.1 MOTIVATION: PRIVACY MEETS SCALE

For the last 10 years, machine learning has been gradually adopted in more and more
applications and has completely replaced human decision-makers in critical sectors like
healthcare, banking, and telecom. Meanwhile, legal regulations (GDPR, HIPAA, etc.) and users'
privacy demands are limiting the centralization of raw data. This two-sided tendency—more
extensive and precious datasets, but at the same time, tighter restrictions on their sharing and
disclosure—makes it inevitable that organizations will find it hard to get the value out of their
data without revealing the most sensitive parts. Privacy-Preserving Machine Learning (PPML) is
the solution that meets this requirement by offering algorithmic and systems tools for computing,
learning, and auditing with the least possible privacy risk. [1], [2], [3], [11], [12], [31], [41], [47].

1.2 WHY FOCUS ON 2019-2024?

From 2019 to 2024, the PPML domain experienced a metamorphosis that progressed from mere
theoretical isolation to the realization of mature, interoperability software stacks along with
actual production case studies. Among the major changes that took place in this period were: the
accessibility of approximate homomorphic encryption libraries and the enhancement of FHE
algorithms [26], [27], [29], [30]; the introduction of differentially private optimizers as well as
the auditing methods that are compatible with deep learning and federated learning [2], [6], [8],
[9], [10];; the developments of multiparty computation protocols that are specifically designed
for cross-institution training[34], [36], [38], [39], [40]; and the application of federated analytics
strategies (with secure aggregation) on a large scale [12], [16]. By emphasizing this time frame,
we illustrate the evolution from "feasible in principle" to "functioning in practice" and give
recognition to the technical effort that has now made up the above-mentioned realistic
deployments.
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1.3 FOUR FAMILIES, ONE OBJECTIVE

This survey categorizes the subject matter according to four families of complementary PPML
approaches, where each one has its own trust assumptions, threat models, performance profiles,
and appropriate use-cases: Homomorphic Encryption (HE). The core technique is to allow
operations on ciphertexts so that servers can do inference or simple analytics without the input
being decrypted. The main idea is: conducting private inference on the server-side, encrypted
data analytics, and confidentiality of raw inputs even from infrastructure operators in very
delicate settings. The usual limitations are: the requirement of a high amount of computation and
expansion of cipher texts, and the difficulty of scaling to large neural networks without
approximations or special encodings [21], [23], [24], [25], [26], [27], [30]. Differential Privacy
(DP). The major feature is that it provides formal and quantifiable privacy guarantees, which are
achieved by injecting noise into the queried responses, gradients, or released models. The main
idea: with DP, one can release an aggregate statistic, publish a private model, and act as a
complement to other protections so as to limit reconstruction or membership attacks.

The typical challenges are: setting privacy budgets that retaining utility and satisfying
legal/ethical expectations; managing complex composition across supply chains [1], [2], [3], [6],
[8], [9], [10], [48]. Secure Multi-Party Computation (MPC). The term refers to joint computation
of a function over private inputs by several parties while only revealing the outputs. The main
area of application is: cross-silo collaborative training, one-to-one and joint analytics without a
trusted curator being the case, and legally limited consortia. The usual difficulties are: taking
measures to cope with communication overhead, round complexity, and the need for making the
system robust against dropouts and even malicious behaviors [31], [32], [33], [34], [36], [38],
[39], [40].

Federated Analytics (FA) and Secure Aggregation. Permits data analysis and machine-learning
directly on users' devices, and only shares updates or aggregates for models. Secure aggregation
obfuscation techniques are the basis for large-scale federated updates and protect per-client
changes both during and after aggregation. Commonly encountered issues are client
heterogeneity, dropouts, integrating FA with DP, and the balance between system limitations
(battery, bandwidth) and statistical efficiency [11], [12], [14], [16], [17], [19], [20].
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1.4 CANONICAL TRADE-OFFS AND THE DESIGN SPACE
Picking a PPML method involves doing a balancing act on various practical aspects:

Efficiency (both computation and communication). Use of cryptographic techniques (like HE
and total MPC) generally makes the processes very slow and increases the amount of data sent
over the network by several factors[21], [23], [25], [26], [27], [30], [33], [34], [36]; on the other
hand, FA and DP are much lighter but have to undergo serious tuning and engineering before
they can be implemented at scale [11], [12], [16], [17], [20].

Accuracy / Usefulness. DP methods add random statistical noise which leads to utility being
reduced [1], [2], [3], [6], [8], [9], [10], [48]; HE/MPC need approximation or quantized
computation for their speed which may impact model fidelity [23], [24], [25], [30]. The
architects of the system should anticipate the drawing of privacy-utility curves and not rely on
single point estimates [3], [48].

Deployment complexity & ROI. The application of HE/MPC requires certain tools and
conditions such as special libraries, monitoring, and maybe even trusted hardware [27], [33],
[36], [41], [43]; while FA and DP frequently can rely on the already existing ML infrastructure
thus reducing the integration cost [11], [12], [14], [16]. The ROI is governed by the regulatory
environment, the business risk of data leakage, and the amount of value that can be extracted
from the cooperation between the parties involved [9], [19].

Adversary & compliance model. The choice is based on whether the threat is an honest-but-
curious cloud operator, an external adversary, or insiders who are malicious. Legal compliance
usually supports DP-style guarantees for the published outputs [1], [3], [48], while cryptographic
approaches provide safeguards against infrastructure compromise [12], [31], [33], [34], [38],
[41].

1.5 SCOPE AND CONTRIBUTIONS

The focus of this document is on the PPML techniques that are either currently usable or about to
be very usable in the ML processing of sensitive data cases where legal compliance is a must.
The key deliverables of this paper are the following:

1. A classification of HE, DP, MPC, and FA that aligns each algorithm with the respective
adversary models, threat surfaces and deployment configurations as shown in [1], [2], [3],
[11], [12], [21], [23], [31], [33].
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2. A well-organized list of references covering the years 2019-2024 for the papers
representing the systems, theories, and deployments, along with mentioning the open-
source technologies that can be used by the practitioners as their starting point [6], [8],
[9], [10], [14], [16], [26], [27], [34], [36], [38], [39], [40].

3. A comparative study, which critically examines the highlighted creations based on four
practical dimensions — efficiency, precision/usefulness, expenditure & return on
investment, and research gaps — and finally, gives a consolidated perspective that directs
the selection of design options [2], [3], [23], [25], [30], [34], [36], [48].

4. A research chart that targets mixed creations (cryptography + DP), the role of hardware
in faster processing, establishing common benchmarks for privacy-utility-cost, and the
provision of tools for auditing and making PPML systems understandable [6], [8], [10],
[26], [30], [38], [41], [43], [47], [48].

2. BACKGROUND AND FOUNDATIONS

The narrative of Privacy-Preserving Machine Learning is rooted in a disturbing paradox. Back in
the early 2010s, the whole deep-learning revolution rested on one premise: to obtain the best
performance possible, one must gather, centralize, and train with enormous amounts of raw data.
The issue of privacy was at the most a hassle that could be dealt with through rudimentary
anonymization, access restrictions, or legal agreements, and at worst, a problem that was silently
ignored. However, this belief was totally shattered during the period between 2014 and 2018.
Membership-inference attacks (Shokri et al., 2017) [48], model-inversion attacks that revealed
faces from facial-recognition models (Fredrikson et al., 2015) [47], and extensive re-
identification studies (Rocher et al., 2019) [50] were all proofs that even “anonymized” datasets
and trained models could give away sensitive information very easily. To the very same extent,
the regulators countered: the GDPR was enacted in 2018 with penalties up to 4% of global
revenue, which was the beginning of a series of data protection legislations that included CCPA,
HIPAA updates, and a wave of national data-sovereignty laws. Centralized plaintext training on
medical, financial, or behavioral data went from being just a risky business to becoming a matter
of legal and reputational impossible overnight.

Necessary instruments had been around for decades, but they were scattered across different
academic worlds. Cryptographers had Yao's garbled circuits (1986) [31], secret-sharing schemes,
and, after Craig Gentry's 2009 breakthrough, fully homomorphic encryption—mathematical
miracles that allow you to compute on data that you cannot see [21]. Statisticians had gifted the
world differential privacy in 2006 (Dwork et al.), a gold-standard definition that sets a limit on
the extent to which any single individual can affect or be inferred from an output [1].
Distributed-systems researchers had long been experimenting with federated optimization and
secure aggregation for mobile devices [11], [12], [16]. Still, very few of these concepts had
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influenced deeply learning, as each came with debilitating burdens: homomorphic encryption
was millions of times slower than plaintext arithmetic[23], [25], [26], [30], differential privacy
ruined accuracy unless one had huge datasets [2], [6], [8], [9], [10], and secure multiparty
protocols demanded gigabits of communication per training step [33], [34], [36], [38]. For years,
the common perception at ML conferences was that privacy techniques were "theoretically cute
but practically useless.

Table 1: Comparison of Privacy-Preserving Machine Learning (PPML) Techniques

PPML What It Trust Strengths Limitations /
Technique Protects / Assumption Trade-offs
Guarantee
Differential Hides influence | Data collector Strong formal Reduces accuracy,
Privacy (DP) of each must apply DP | privacy guarantee, | may harm
individual’s correctly works even after | fairness, hard to
data by adding model release tune privacy
noise budget
Secure Allows Parties must No raw data Heavy
Multiparty multiple parties | follow protocol | exposure, good computation +
Computation to compute (semi-honest) for distributed communication
(SMPC) jointly without training cost, slow for
sharing raw large models
data
Homomorphic Compute on Trust in Very strong Extremely slow,
Encryption encrypted data | cryptographic confidentiality, limited model
(HE) without scheme server never sees | types, high
decrypting plaintext data memory usage
Federated Keeps data Server must be | Data never leaves | Updates can still
Learning (FL) local; only “honest” and device, scalable to | leak data,
model updates | secure many users vulnerable without
are shared aggregation DP or SMPC
must be used
Trusted Secures Trust in Fast, works with | Hardware
Execution computation hardware vendor | full models (no vulnerabilities,
Environments inside noise, no crypto side-channel
(TEE) hardware- overhead) attacks, vendor
protected dependency
enclave
Hybrid Combines Depends on Stronger end-to- | More complex
Approaches protections combination end privacy and system design;
(e.g., FL + DP, from multiple robustness increased cost &
FL + SMPC) tools engineering effort
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3. PRIVACY-PRESERVING MACHINE LEARNING ARCHITECTURES
(LATE 2025)

The architecture of privacy-preserving machine learning (PPML) models revolves around the
integration of the core privacy-enhancing technologies (PETs) to protect sensitive data during the
entire machine learning process. Since there is no one method that can cover all aspects, hybrid
approaches that combine different techniques are frequently applied [1], [2], [3], [11], [12], [21],
[23],[31], [33], [41].

Key Architectural Approaches and Techniques

The main PPML architectures are constructed keeping in view decentralization and

cryptography.
3.1 FEDERATED LEARNING (FL)

In federated ML, data is kept in the local device rather than stored on intermediaries, the main
servers and some institutions [11], [14], [16], [19], [20].

e Architecture: The training procedure gets coordinated by a central server, but only the
aggregated updates to the model (e.g., gradients or weights) are sent to the server from
the local devices, not the raw data [11], [12], [16], [17].

e Process:

e The participating nodes (clients/edge devices) get a global model distributed to them.

e The model is trained locally with the private data available to each node [11], [14].

e The model updates (the "delta" or modifications made to the model parameters) are
secured and sent back to the central server [12], [16].

e The server merges the updates to develop a better global model, which is then sent again
to the clients for the next training round [11], [12], [17].

e Benefit: Sensitive data continues to be local and thus the risk of a central location

suffering from a single point of failure or data breach is reduced [11], [19], [20].

3.2 CRYPTOGRAPHIC TECHNIQUES

The encryption techniques utilized by these methods are state-of-the-art, thus ensuring the
protection of information throughout the computation process [21], [23], [25], [26], [27], [30],
[31], [33], [34], [36], [38].
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Homomorphic Encryption (HE): This allows the computations on the encrypted data not to
require decryption at any point [74], [14], [24], [35] and [27].

Architecture: Data is encrypted by the owners and then sent to a server that they do not trust for

further processing. The server does the machine learning calculations on the encrypted data and

sends back the encrypted result to the owner who has the key to decode the final output [23],

[25],

[26], [27], [30].

Benefit: Extensive research exists dealing with cloud data confidentiality with Byzantine
failures accounted for, nonetheless with less attention precisely given to write-dispersal
confidentiality [21], [23], [24], [27].

Challenge: The process of constantly optimizing them can be computationally
demanding and might even impose substantial overhead, thus making it difficult for
intricate and expansive models to cope with such [23], [25], [26], [30].

Secure Multi-Party Computation (SMPC): This protocol enables multiple parties to
jointly compute a function on their combined private inputs without revealing their
individual inputs to each other [31], [32], [33], [34], [36], [38], [39], [40].

Architecture: In a secure environment, where specific protocols such as secret sharing or
garbled circuits are commonly used, multiple data owners come together for the purpose
of training a model. Every participant, as described in references [31], [33], [34], [36],
and [38], learns solely the final output of the function without getting access to the

private data of the other participants.
Benefit: Perfect for cases of collaboration (for instance, common model training of
multiple hospitals) where no one party can be completely relied on to handle all the data

[32], [33], [34], [39], [40].

3.3 DIFFERENTIAL PRIVACY (DP)

Differential Privacy is a mathematical framework that covers the contribution of any single

individual's data point by a controlled amount of random noise before the data, model gradients,

or results are shared. [1], [2], [3], [6], [8], [9], [10], [48].

Architecture: Distributed particle swarm optimization can be applied in two worlds, i.e.,

centralized and federated learning systems [1],[2],[6],[8].

Addition of noise is done centrally before the data or query results are presented [1], [3],

[9].
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e (ase one: The only way to help clients is that noise should be carefully added while

communicating with servers to prevent the leak of sensitive information or any other

information which can be troublesome later on.

e Benefit: In one of its famous versions, DP implies that an algorithm's output should

remain relatively unchanged by the inclusion of a single example.

e Challenge: A trade-off between privacy protection (meaning more noise for stronger

privacy) and model accuracy/utility is introduced by the addition of noise [2], [6], [8],

[91, [10].

3.4 HYBRID ARCHITECTURES

Techniques are commonly used in modern applications in a way that gives their strengths and
minimizes their weaknesses [8],[10], [12], [16], [26], [30],[38],[41],[45],[48]. For instance,

Federated Learning can be used with Differential Privacy to prevent attacks on gradient leakage

[2],[6],[8],[10],[48], or with Homomorphic Encryption for the secure aggregation of model

updates [12],[23],[2

51,[26],[27],[30].

By using these hybrid architectural methodologies and diverse ones, developers are able to create

the so-called ML models that are capable of handling the privacy and legal strictness of
regulations like GDPR and HIPAA while granting good data utility [1],[3],[9],[19].
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4. POSITION AND ORGANIZATION OF WORK

OBJECTIVE AND SCOPE:

The primary aim is to compile the prevailing knowledge on ML data protection, wherein
the main concern would be the secrecy and privacy [1], [2], [3], [11], [12], [21], [23],
[31], [41], [48].

CONTEXTUAL FACTORS AFFECTING DATA PROTECTION

The risk to the confidentiality of data depends upon the causing factors like the stages of
the ML pipeline, the architecture, and the people involved [8], [9], [16], [19], [33], [34],
[36], [38].

SYSTEMATIC REVIEW OF PRIVACY-ENHANCING TECHNOLOGIES (PETS)
PETs can be looked at as the defenders against the threats to confidentiality and privacy
through the lens of the owners of the data as well as the computational parties (data
controllers) [1], [3], [21], [23], [31], [32], [41], [43], [48].

CURRENT STATE VS. EMERGING AREAS

The discussion will be based on the current state-of-the-art but will particularly highlight
the less stable aspects such as the available libraries in the future development [10], [14],
[26], [27], [30], [38], [39], [40].

APPLICATION OF PETS ACROSS THE ML WORKFLOW

The defense mechanisms analyzed according to the ML pipeline stage, the trust
assumptions, and the performance trade-offs [1], [2], [6], [11], [12], [23], [25], [31], [41],
[48].

COMPARISON WITH EXISTING LITERATURE
The prior surveys and reviews are summarized with the point made that this work is

distinct by the privacy and confidentiality issues being looked at deeply from the
standpoint of the data owner [13], [32], [45].

DETAILED THREAT ANALYSIS
The necessity of recognizing the phases and actors in the ML pipeline to uncover intricate
threat surfaces and risks interlinked across phases [47], [48], [50].

DISTRIBUTED ARCHITECTURE AND MULTIPLE ACTORS

The threats associated with the complicated and distributed architecture for ML training
and inference involving many computational parties with different trust levels are
examined [11], [12], [14], [16], [17], [31], [33], [41].
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5. THREAT MODEL

The threat model defined by us denotes the possible attackers with respect to the interaction of
different actors within the system. We are mainly concerned with the risks of the data owners
and hence questions like the robustness of the system, its availability, or the safeguarding of
model IP are left out of our area of study [1], [3], [9], [47], [48], [50].

Data owners can be classified into two categories. The first group consists of training data
owners, whose data serves as the foundation for the model. The second group is made up of
inference data owners, who, as users, interact with the trained model. In both cases, the threats
come from the other players in the machine-learning process, either directly or indirectly [11],
[12], [19], [31], [33], [41].

A direct interaction takes place when a data owner sends their data directly to a different party,
as, for instance, when an inference data owner uploads their input to a cloud service in order to
obtain a prediction. An indirect interaction, on the other hand, occurs when the data owner does
not provide raw data but still discloses information through outputs such as aggregated statistics
or model-generated probability scores [47], [48], [50].

Confidentiality risks are primarily generated through direct interactions, as the raw data gets
revealed [21], [23], [31], [41]. On the other hand, privacy risks are associated with indirect
interactions since sensitive data can still be deduced from the output that has been processed [1],
[3], [47], [48].

According to the data owners, the gravity of the threats related to privacy and confidentiality
solely depends on the location and nature of the interactions, and also on whether there is a direct
exchange of data or only unintentional indirect leakage [9], [19], [47], [50].
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Table 2: provides an overview of the different threats that appear during both model
training and inference when these processes are performed in the cloud or when the model

is used by customers.

Data Owner | Interaction with Interaction with Interaction with | Interaction with
Type Cloud Data Pre- Cloud Inference Other Training Model Customers

processing / Facility Data Owners

Training Facility (Federated

Setting)

Privacy Risk confidentiality Risk | Privacy Risk confidentiality Risk
Training X J J X
Data Owners
Inference N/A N/A X v
Data Owners

5.1 CONFIDENTIALITY RISKS

In case of separation between data owners and the computing facilities, firstly the data of the
owners has to be uploaded to the computing server—preferably via a secure channel of
transmission. Moreover, though the channel is encrypted, the major issue raises after the data is
at the server. In practical systems, the computation facility decrypts the data and only then can it
work with the data, thus, the information remains in an understandable form on third-party
servers [21], [23], [31], [41].

This creates the most serious confidentiality risk. Once the data is decrypted on someone else’s
infrastructure, the owner effectively loses control over it. The information becomes vulnerable to
any type of attack or misuse—whether from malicious insiders, compromised systems, or
external attackers targeting the server [41], [42], [43], [47], [50]. In short, the moment private
data is exposed in plain text on third-party machines, it faces the full range of potential threats
[23], [31], [41], [47].

5.2.1 PRIVACY RISKS

Privacy attacks go after data that is not intended to be released by the machine-learning system
through the standard inference results. The extent of the attacker’s access can differ greatly. In
certain cases, the attacker can only see the model's output—this is referred to as black-box
access, similar to the work done by Shokri et al. (2017) [48]. In contrast, an attacker possessing
white-box access might be able to see some or even all of the internal parameters of the model.
This could occur, for example, in a federated learning scenario where the attacker manages to
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infiltrate a local model, gets hold of the explanation vectors that are applied for model
interpretability, or is even aware of the entire neural-network architecture (Yeom et al., 2017;
Szegedy et al., 2013; Nasr et al., 2019) [49].

Numerous types of privacy breaches are present in machine learning. Among them, the most
prominent ones are the membership inference attacks, which are the ones where an adversary
tries to find out if a given data instance was included in the model’s training data (Shokri et al.,
2017; Bernau et al., 2019; Jia et al., 2019a; Li et al., 2020), and the model inversion attacks, in
which the attacker tries to deduce the sensitive input features by taking advantage of the model's
outputs or parameters (Fredrikson et al., 2015; He et al., 2019; Wu et al., 2016).

: - Malcious data- -, Third Party Facility
Model poisoning |
attacks
v {1 e B ‘5 [———— Depioyment ———= O - - (O . 7
t g = . 1€ N} - “Training — » i n . O 4 Py = nglDey)
- 0

Data owners — Model ireorsion altacks i Wodel iwersion aftacks
O={o,leN} Fuw data SR R WL rered e I 1 il

x Do o hr.l:‘a'rmr: o anmo‘e’?w Service customers C ={g | e N}

: A o - DC=(Do, i & N} ts the set of

' the input data of the customers
507 {Dc; Pi)=D?

..................... L R e e ik R TN o o.on -0 o s o B B S S A
aftacks

Attack model
(Dg Py) € Dygn?

or
g 07

FIG 3: Privacy Attack Flow in ML System

5.2.2 MODEL POISONING ATTACKS TO EXTRACT TRAINING DATA

e Privacy risks associated with machine learning vary by phase (training, inference, sharing
of models, etc.) — in other words, there is no universal threat model. A method that is
effective in protecting privacy in training may not necessarily protect during inference or
sharing of models [47], [48], [49], [50].

e The role of different parties is crucial — The situation regarding who owns the data will
greatly vary depending on whether data owner is also the model owner or for instance
data and model are used by different parties[11], [12], [14], [16], [19], [31], [33], [41].

e The architecture of the deployment affects the privacy exposure—Centralized ML,
federated ML, shared-model serving, and transfer learning—all of these have different
security weaknesses. Accordingly, the degree of success and appropriateness of privacy-
preserving tools is very much determined by the system architecture [11], [12], [16], [17],
[19], [31], [33], [41].
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PETs (privacy-enhancing technologies) are not a one-size-fits-all solution — Utilizing
encryption, differential privacy, secure multiparty computation, etc., can all be good
practices — but just fortifying with them is not sufficient. An evaluation is required:
which step, which stakeholders, which setup — only at this point will PETs effectively
safeguard privacy [1], [2], [3], [6], [21], [23], [31], [33], [41], [43], [48],

5.2.3 MODEL INVERSION ATTACKS

The authors suggest a sort of "map" that data owners could follow to assess the risk:
taking into consideration the architecture of the ML system as well as the data-sharing
relationships, put the question "Where in the process is data exposed, and to whom?”
[47], [48], [50].

Then, “What do we need in the way of protection given the exposure?” — This can
sometimes mean encrypting; sometimes it may mean anonymizing; sometimes sharing
may be limited; sometimes the models may not be reused across different contexts [1],
(2], [3], [21], [23], [31], [33], [41], [43], [48]...

On the other hand, the paper also points out that the re-use or “repurposing” of models
(say, through transfer learning) is an issue for privacy: models can be reused long after
the original data has been gathered, and even if the original data is not shared, the model
may still leak sensitive patterns [47], [48], [49], [50].

In the end, it calls for a comprehensive, context-aware approach. Rather than selecting a
PET once and for all, it is necessary to consider privacy risk dynamically at each point
depending on the actors, data flow, and system architecture [11], [12], [16], [19], [31],
[33], [41], [48].

5.2.4 ATTRIBUTE INFERENCE ATTACKS

Models persist beyond a single use: After a model has been trained, it is usually reused
in some way — for example, it might be shared with external parties, used again in
different applications (transfer learning), or even redeployed in different environments.
The very fact of such continuous use may pose a threat to privacy, since the model could
unintentionally capture and store information relating to the original training dataset [47],
[48], [49], [50].

Risk doesn’t vanish when data is gone: Trained models are still capable of leaking
confidential information even when the original dataset is deleted or protected. For
instance, an attacker with access to the model (or white-box access) could use various
methods like membership inference, attribute inference, etc., to get back information
about people from original data.

Sharing and transfers multiply the risk: The more a model is used or re-used by
different parties, domains, or tasks—possibly even tailor-made for different purposes—
the stronger the threat becomes. The new reuse scenario might reveal a new chance for
data to be leaked or unintentionally shown [11], [12], [16], [19], [31], [33], [41], [50].
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Need for “privacy-aware model lifecycle management”: Data privacy is an important
issue during training, but it is not sufficient; moreover, governance, controls, and
protection strategies must be in place for the entire life cycle of the model: sharing,
storage, reuse, and finally, disposal [1], [2], [3], [6], [21], [23], [31], [33], [41], [43], [48].

5.2.5 DATA RECONSTRUCTION ATTACKS

Every phase of privacy consideration — from initial data collection to eventual model
retirement through training, deployment, sharing, reuse, and updates— has its own risk
factors. Each and every stage is fraught with risks [47], [48], [49], [50].

Context matters—there is no universal solution: Due to the fact that risks are largely
determined by data usage, access rights, model sharing or reuse, and setup—there is no
“silver bullet.” A privacy-enhancing technology (PET) applied only at the time of
training does not ensure the model will be safe for the rest of its life [1], [2], [3], [6], [21],
[23], [31], [33], [41], [43], [48].

Technical, policy, and governance measures should be coordinated: The authors
propose using technical controls (like encryption, differential privacy, secure multiparty
computation) along with organization-wide practices: access control, logging/auditing,
model lifecycle policies (sharing, updates, retirement), and privacy-aware design
decisions from the start [1], [3], [9], [19], [41], [43].

Awareness & evaluation are crucial: Data owners (or controllers) prior to reusing or
sharing a model should inquire: "Does this reuse context alter the privacy threat
landscape? Do we require extra safeguards? Are we legally or ethically allowed to share
this?" The paper promotes a culture of perpetual evaluation instead of "set and forget."
[8], [9], [48], [50].

6. CHALLENGES AND RESEARCH

PPML

(Privacy-Preserving Machine Learning) has indeed seen significant growth but still there

are many challenges that remain unsolved. The article mentions a few critical fields that require

further

investigation:

1. Measuring and Evaluating Privacy

Currently, there are no powerful and universal instruments available to demonstrate the exact

amount

of privacy that a PPML technique has provided.

We need proper frameworks and metrics that can:

Ascertain the degree to which a method safeguards privacy,
Facilitate companies in reviewing their systems, and
Provide conformity with data protection regulations [1], [2], [3], [6], [8], [9], [10], [48].

PAGE NO: 168



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

2. Communication Efficiency
Some privacy techniques require a lot of data to be exchanged between devices or parties—
For example:

e secure multiparty computation
o federated learning

That is the reason they are slow and costly, particularly when it comes to large models.

It is necessary to have more intelligent designs, such as advanced MPC compilers that can lower
the communication burden [11], [12], [14], [16], [17], [19], [20], [31], [33], [34], [36], [38], [40].

3. Computation Efficiency

Many cryptographic tools are being applied to PPML to help with trading functionality, though
due to their slowness, these solutions may often be computationally heavy. So we need two kinds
of improvement:

e Models designed well for cryptography

e More sophisticated form of the explicit authentication scheme is created which
necessitates a smaller number of resources, thus providing a higher level of efficiency.

e In other words: reduce the computational requirements of privacy techniques so that they
can be implemented in practical systems [21], [23], [25], [26], [27], [30], [33], [34], [36],
[38], [39], [40].

4. Balancing Privacy, Utility, and Fairness

Methods like Differential Privacy add noise to protect data - but this comes with temping side
effects.

e There is a decrease in the accuracy of the model (loss of utility),

o The dataset’s minority groups tend to be affected to a greater extent (issues relating to
fairness).

o Research must find better ways to:

e protect privacy

o keep high accuracy

e avoid harming fairness

In Conclusion, privacy cannot be at the cost of utility or fairness of the model. [2], [3], [6], [8],
[9], [10], [48]
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5. Privacy vs. Other Trustworthy AI Requirements
Trustworthy ML encompasses a multitude of components:

privacy
fairness
security
clarity
responsibility

But improving one can damage another.
For example:

e Adding privacy might reduce transparency,
e Securing data might make explanations harder.

Specific issues that we need to research further are:

e Interactions between privacy tools and other trust factors
e The trade-off required for measuring this balance [1], [3], [9], [19], [41], [43], [45], [48],
[50]..

In order to grasp the overall view, it is necessary to put privacy-preserving machine learning
(PPML) into the wider context of trustworthy Al as we see that it is being encouraged by the
European initiatives. This means analyzing not only privacy but also the entire range of
characteristics that contribute to machine learning systems being trustworthy and accountable

[11, [3], [9], [19], [45], [50].

Privacy Preserving Machine Learning: A holistic approach to protecting privacy

Current & upcoming

Holicies aetl fegiilstions Privacy & confidentiality

Security Trust Transparency

Empower innovation

FIG 4: Trust-Centric Framework for Privacy-Preserving Machine Learning
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7. THE NEXT HORIZON: FROM PRIVACY-PRESERVING ML TO
TRUSTWORTHY Al

"As stated by the European Commission's High-Level Expert Group on Al for 2019, a
trustworthy ML model must meet a number of key principles."

e The model must adhere to legal and moral standards, which means that its use must be
both legal and ethical [1], [3], [9], [19], [45], [50].

e The system should be so robust and reliable that it would be able to give consistent
performance even if the circumstances were to change unexpectedly [31], [33], [34], [36],
[38], [41], [43].

e [tis a principle of fairness and transparency that no biases should affect the decisions and
that the reasoning should be easy to follow [3], [9], [45], [48].

e Sensitive data will not be disclosed and that is why they are going to be kept secure [1],

[2], [3], [9], [48], [50].

The primary challenge is that ML systems are in continuous development. They become new
versions, receive re-training, and get changes all the time over their life span. In addition, a lot of
the models have non-deterministic behaviors (e.g., dropout layers and variational autoencoders
usage), that render their outcomes less predictable [47], [48], [49], [50].

The problem that arises is that the conventional measures for ensuring the quality of software
such as unit tests, code reviews, end-user testing, and documentation do not, by themselves,
guarantee that machine learning systems are reliable [9], [19], [45], [48], [50].

In order to secure trustworthiness, it is necessary to take the whole ML pipeline into account,

from data gathering and model creation to deployment, updates, and monitoring, and impose
additional requirements on each of those phases [1], [3], [9], [19], [41], [43], [45], [48].
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8. CONCLUSION

Privacy-Preserving Machine Learning (PPML) moved from being a mere theoretical idea to a
practical still allowing organizations to access sensitive data and not violate confidelity, user
trust, or regulatory compliance at the same time. The period of 2019 to 2024 marked a rapid
evolution of the field due to the progress made in homomorphic encryption, secure multi-party
computation, federated learning, and differential privacy frameworks. Today, these technologies
represent a wide-ranging ecosystem that comprises different approaches with different mixes of
efficiency, accuracy, privacy guarantees, deployment cost, and resistance to adversaries.

One of the most important findings of this survey is that there is no such thing as one technology
that could possibly meet all machine-learning workflows' privacy and utility requirements. On
the contrary, the continuous use of hybrid architectures, that is, a combination of HE for
encrypted computation, MPC for cross-institution collaboration, secure aggregation for large-
scale federated analytics, DP for post-processing safety, and TEEs for performance-critical
operations, is getting more common in the real-world deployments. These solutions are
integrated and are changing the way industries like healthcare, finance, telecoms, and IoT deal
with the challenge of data-heavy systems that operate under strict privacy rules.

Nevertheless, the path taken by PPML is still marked by majorly research difficulties.
Performance overheads have become a primary point, especially in HE and MPC, while DP has
to continuously choose among the privacy budgets, accuracy, and fairness. Client heterogeneity,
communication, and gradient leakage make federated learning not easily deployable. Besides,
new challenges such as membership inference, model inversion, poisoning, and data
reconstruction have brought up the issue that privacy risks are present in every stage of the ML
lifecycle extending well beyond the protection provided at the training time. It will take more
than just technical solutions to deal with these risks; there will also have to be strong
organizational governance, model-lifecycle management, continuous auditing, and alignment
with legal frameworks such as GDPR and HIPAA, to name a few.

PPML's next horizon, when viewed from the present, is its integration with the broader
trustworthy Al paradigm which requires: robustness, fairness, transparency, accountability, and
long-term safety in addition to the privacy. The future systems will have to incorporate privacy-
preserving techniques as the fundamental building blocks of Al pipelines, eventually through the
support of standardized benchmarks, interoperable frameworks, and cross-disciplinary
collaborations of cryptographers, machine-learning researchers, system engineers, and
policymakers.
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