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Abstract

In this paper, we introduce the inverse sum indeg eccentric index ξIS I of a graph G , so
that it is the sum of the terms εxεy

εx+εy
for the edges xy in G , where εx is the eccentricity of

the vertex x in graph G . Relationaships between ξIS I(G) and other topological indices are
derived using well-known inequalities.
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1 Introduction

Eccentricity in graph theory measures how far a vertex is from the most distant vertex in the graph.
It helps in understanding network structures and has applications in areas like transportation,
communication, and biological networks.

Eccentricity-based topological indices are numerical values derived from a graph’s structure
that remain unchanged regardless of labeling or representation. These indices, such as the Wiener
index and Zagreb eccentricity index, play a significant role in chemical graph theory. They
help predict chemical compound properties based on molecular structure. The Wiener index,
introduced by H. Wiener in 1947, was one of the first indices used to study the properties of
chemical compounds.
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The Zagreb eccentricity index, inspired by Zagreb indices but using eccentricity instead of
degree, is given by:

ξz(G) =
∑

x∈V(G)
ε2

x

Here, degree is a local property, while eccentricity provides a global perspective on a graph’s
structure.

Sharma, Goswami, and Madan [10] introduced the eccentric connectivity index, combining
adjacency and distance measures. This index has been widely used in mathematical models
predicting biological activity. Over the years, researchers have refined and expanded these indices
to consider additional factors, such as the position of heteroatoms in molecules [5].

In the past two decades, numerous studies have explored the mathematical properties and
applications of eccentricity-based indices. These indices provide insights into graph structure and
have practical applications in chemistry, network analysis, and data science. For further details,
see [7].

Table 1: Eccentricity-based Topological Indices

Topological Index Notations Mathematical Expression
First Zagreb eccentric index[12] ξM1(G)

∑
xy∈E(G)

[εx + εy]

Second Zagreb eccentric index[12] ξM2(G)
∑

xy∈E(G)
[εxεy]

Eccentric connective index ξce(G)
∑

x∈V(x)

d(x)
ε(x)

First general Zagreb index[8] ξαM1
(G)

∑
xy∈E(G)

(εα−1
x + εα−1

y )

Inverse sum indeg eccentric index ξIS I(G)
∑

xy∈E(G)

εxεy
εx+εy

Generalization of Zagreb index ξα,β(G)
∑

xy∈E(G)

(εxεy)α

(εx+εy)β

Harmonic Index [11] ξH(G)
∑

xy∈E(G)

2
εx+εy

General sum connectivity eccentric index ξαχ (G)
∑

xy∈E(G)
(εx + εy)α

Sigma eccentric index ξσ(G)
∑

xy∈E(G)
(εx − εy)2

Albertson eccentric index[1] ξAl(G)
∑

xy∈E(G)
|εx − εy|

General Randic eccentric index [2] ξαR(G)
∑

xy∈E(G)
(εxεy)α

General F-eccentric index[6] ξαF(G)
∑

xy∈E(G)
(ε2

x + ε2
y )α
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2 Bounds for ξIS I

In this section, we obtain the upper and lower bounds for inverse sum indeg eccentric index of a
graph G .

Theorem 2.1. Let G be (n,m) graph with n ≥ 2 ξIS I(G) ≤ m2

2ρ(G)ξ−1
R (G)

. The bound is sharp and
the self-centered graph satisfies it.

Proof. Let G be (n,m) graph with n ≥ 2 . By Cauchy-schwartz inequality we obatin, ∑
xy∈E(G)

√
εxεy

εx + εy

√
εx + εy

εxεy


2

≤
∑

xy∈E(G)


√
εx + εy

εxεy


2 ∑

xy∈E(G)

(√
εxεy

εx + εy

)2

m2 =
∑

xy∈E(G)

(
εx + εy

εxεy

) ∑
xy∈E(G)

(
εxεy

εx + εy

)
m2 ≤ 2ρ(G)

∑
xy∈E(G)

(εxεy)−1ξIS I(G)

m2 ≤ 2ρ(G)ξ−1
R (G)ξIS I(G).

This implies that ξIS I(G) ≥
m2

2ρ(G)ξ−1
R (G)

.

Hence

ξIS I(G) ≥
m2

2ρ(G)ξ−1
R (G)

. (2.1)

To show that the inequality of Equation ( 2.1) is sharp, let G be a self-centered graph with
ρ(G) = r(G). Then∑

εxεy∈E(G)

εxεy

εx + εy

∑
εxεy∈E(G)

εx + εy

εxεy
=

∑
εxεy∈E(G)

(r(G))2

2r(G)

∑
εxεy∈E(G)

2r(G)
(r(G))2

=

(
mr(G)

2

) (
2m

r(G)

)
= m2

This implies that,

2ρ(G)ξ−1
R (G)ξIS I(G) = 2r(G)

(
m2

(r(G))2

) (
(r(G))2

2r(G)

)
= m2.

On the other hand, let

2ρ(G)ξ−1
R (G)ξIS I(G) = m2.

Also we have

m2(r(G))3

ρ3(G)
≤ 2ρ(G)ξ−1

R (G)ξIS I(G) ≤
m2ρ3(G)
(r(G))3 .
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with equality if and only if r(G) = ρ(G) .

The Proof of the converse of Cauchy-Schwarz inequality proved by Matinez-Perez et.al.[9]
which is given below.

Lemma 2.2. If αi, β j ≥ 0 and θβ j ≤ α j ≤ Ωβ j for 1 ≤ j ≤ k , then k∑
j=1

α2
j


1/2  k∑

j=1

β2
j


1/2

≤
1
2


√

Ω

θ
+

√
θ

Ω

 k∑
j=1

α jβ j. (2.2)

If α j > 0 for some 1 ≤ j ≤ k , then the equality holds ⇐⇒ θ = Ω and α j = θb j for every
1 ≤ j ≤ k.

Theorem 2.3. If G is a graph with m edges, then ξIS I(G) ≥ ρ(G)3/2r(G)3/2

(ρ3(G)+r3(G))mξM2(G)ξH(G) with
equality if and only if G is self-centered graph.

Proof. By Cauchy-Schwarz inequality, we obtain

ξM2(G) =
∑

xy∈E(G)

εxεy ≤

 ∑
xy∈E(G)

(εxεy)2


1/2  ∑

xy∈E(G)

(1)


1/2

ξM2(G)m−1/2 ≤

 ∑
xy∈E(G)

(εxεy)2


1/2

.

ξH(G)
2

=
∑

xy∈E(G)

1
εx + εy

≤

 ∑
xy∈E(G)

(
1

εx + εy

)2


1/2  ∑
xy∈E(G)

(1)


1/2

.

Hence  ∑
xy∈E(G)

(
1

εx + εy

)2


1/2

≥
m−1/2ξH(G)

2
.

For every xy ∈ E(G) ,

2r3(G) ≤ εxεy(εx + εy) =
εxεy

1
εx+εy

≤ 2ρ3(G).

This Lemma (2.2) gives that,

1
2


√
ρ3(G)
r3(G)

+

√
r3(G)
ρ3(G)

 ∑
xy∈E(G)

εxεy

εx + εy
≥

 ∑
xy∈E(G)

(εxεy)2


1/2  ∑

xy∈E(G)

(
1

εx + εy

)2


1/2

.

∑
xy∈E(G)

εxεy

εx + εy
≥

( ∑
xy∈E(G)

(εxεy)2
)1/2 ( ∑

xy∈E(G)

(
1

εx+εy

)2
)1/2

1
2

(√
ρ3(G)
r3(G) +

√
r3(G)
ρ3(G)

) .

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 2 2025

PAGE N0: 126

user
Textbox



5

Thus,

ξIS I(G) ≥ 2


√

r3(G)
ρ3(G)

+

√
ρ3(G)
r3(G)

 ξM2(G)
ξH(G)

2

=
ρ(G)3/2r(G)3/2

(ρ3(G) + r3(G))m
ξM2(G)ξH(G). (2.3)

If G is self centered graph, then

r(G)3/2+3/2

(2r3(G))m
ξM2(G)ξH(G) =

(
r3(G)

2r3(G)m

)
(mρ2(G))

(
m
ρ(G)

)
=

mρ(G)
2

= ξIS I(G).

If the equality ( 2.3) is attained, then by Lemma 2.2 we have, 2r3(G) = 2ρ3(G) and G is self-
centered graph.

Lemma 2.4. For every real number p > 0, xk ≥ 0, ak > 0 for every 1 ≤ k ≤ n,

n∑
k=1

xp+1
k

ap
k

≥

(
n∑

i=1
xk

)p+1

(
n∑

k=1
ak

)p .

Equality holds if and only if x1
a1

=
x2
a2

= ... =
xn
an
.

Theorem 2.5. For any graph G , ξIS I(G) ≥ r2(G)m2

ξM1 (G) with equality if and only if G is self centered
with εx + εy is constant for all xy ∈ E(G).

Proof. By the definition of ξIS I , we have

ξIS I(G) =
∑

xy∈E(G)

εxεy

εx + εy

≥ r2(G)
∑

xy∈E(G)

1
εx + εy

≥ r2(G)

( ∑
xy∈E(G)

√
1
)2

∑
xy∈E(G)

(εxεy)

=
r2(G)m2

ξM1(G)
(2.4)

Suppose the equality holds in Equation ( 2.4). In this case by Lemma 2.4, G is a self centred and
εx + εy is constant for every xy ∈ E(G). Conversely, if εx + εy is constant for all xy ∈ E(G) for a
self centered graph, we can easily see that equality in (2.4).

Theorem 2.6. For a graph G , ξIS I(G) ≤
ξM1 (G)

4 with equality holds if and only if G is self-
centered graph.
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Proof. From arithmetic-harmonic mean inequality, we obtain

ξIS I(G) =
∑

xy∈E(G)

εxεy

εx + εy

≤
1
4

∑
xy∈E(G)

(
εxεy

εx
+
εxεy

εy

)
=

1
4

∑
xy∈E(G)

(εy + εx)

=
1
4
ξM1(G). (2.5)

Suppose that equality holds in (2.5) . Then for any xy ∈ E(G) , εx = εy . Hence one can check
that the equality holds in (2.5) if and only if G is self centered graph. Conversely, let G be a
self centered graph. Then εx = εy = r(G),∀xy ∈ E(G) . Thus, ξIS I(G) =

∑
xy∈E(G)

εxεy
εx+εy

=
mr(G)

2 . and

ξM1 (G)
4 =

2r(G)m
4 =

r(G)m
2 .

This gives the theorem.

Theorem 2.7. For a graph G , ξIS I(G) ≥ r3(G)m2

ξ2(G)+r2(G)m . Equality holds if and only if G is a self
centered and εx + εy is constant for all xy ∈ E(G).

Proof. Since εx, εy ≥ r(G) , we have (εx − r(G))(εy − r(G)) ≥ 0.

This implies that

εxεy − r(G)(εx + εy) + r2(G) ≥ 0

=⇒
εxεy + r2(G)

r(G)
≥ εx + εy (2.6)

Equality holds in (2.6) εx = r(G) (or) εy = r(G) (or) εx = εy = r(G), ∀xy ∈ E(G). Hence

ξIS I(G) ≥
∑

xy∈E(G)

r(G)εxεy

εxεy + r2(G)

≥

r2(G)
( ∑

xy∈E(G)

√
1
)2

( ∑
xy∈E(G)

(εxεy + r2(G)
)

=
r3(G)m2

ξ2(G) + r2(G)m
. (2.7)

Suppose equality holds in (2.7) Then all the inequalities in the above statement must be
equalities.

By Lemma 2.2 we have εx + εy is constant ∀xy ∈ E(G) and G is self centered graph.
Conversely, for a self centered graph G with εx + εy is constant, ∀xy ∈ E(G), it is easy to
see that equality (2.5) holds.
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Lemma 2.8. (Schwetzers Inequality) Let a1, a2, ...an be postive real numbers such that 1 ≤ i ≤ n

holds m ≤ ai ≤ M . Then
(

n∑
i=1

ai

) (
n∑

i=1

1
ai

)
≤

n2(n+M)2

4nM with equality if and only if a1 = a2 = ... =

a n
2

= m and x n
2 +1 = ... = xn = M.

Theorem 2.9. For a graph G , ξIS I(G) ≤ m2(r2(G)+ρ3(G))
4ξce(G)r2(G)ρ2(G) with equality if and only if G is self

centered graph.

Proof. Since, r2(G)
ρ(G) ≤

εxεy
εx+εy

≤
ρ2(G)
r(G) , ∀xy ∈ E(G). Using Schwetzers inequality, we have

∑
xy∈E(G)

εxεy

εx + εy

∑
xy∈E(G)

εx + εy

εxεy
≤

m2
(

r2(G)
ρ(G) +

ρ2(G)
r(G)

)
4
(

r2(G)
ρ(G)

) (
ρ2(G)
r(G)

) .

This implies that

ξIS I(G)

 ∑
x∈V(G)

d(x)
ε(x)

 ≤ m2
(

r3(G)+ρ3(G)
ρ(G)r(G)

)
4
(

r2(G)ρ2(G)
ρ(G)r(G)

) .

It gives

ξIS I(G)ξce(G) ≤
m2

4r2(G)ρ2(G)
(r3(G) + ρ3(G)).

Hence

ξIS I(G) ≤
m2(r3(G) + ρ3(G))

4ξce(G)(r2(G)ρ2(G))
.

Equality holds if and only if G is self centered.

Theorem 2.10. For a real number α and a graph G ,

ξIS I(G) ≤


Fε (G)
4r(G) −

(2ρ(G))α−1ξAl(G)2

2ξχα (G) i fα ≤ 1
Fε (G)
4r(G) −

(2r(G))α−1ξAl(G)2

2ξχα (G) i fα ≥ 1

and each equality is attained if and only if G is self centered.

Proof. Since
ε2

x +ε2
y

2r(G) ≥
ε2

x +ε2
y

εx+εy
=

2εxεy
εx+εy

+
(εx−εy)2

εx+εy
. Applying summation for xy ∈ E(G) on both sides,

we have ∑
xy∈E(G)

ε2
x + ε2

y

2r(G)
≥

∑
xy∈E(G)

2εxεy

εx + εy
+

∑
xy∈E(G)

(εx − εy)2
εx + εy

This implies that

ξF(G)
2r(G)

≥ 2ξIS I(G) +
∑

xy∈E(G)

(εx − εy)2

εx + εy
. (2.8)
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If α ≥ 1 , then (1−α)
2 ≥ 0 and Cauchy-Schwarz inequalities, we have

(2ρ(G))α−1ξAl(G)2 =
ξAl(G)

(2ρ(G))
1−α

2

≤

 ∑
xy∈E(G)

|εx − εy|

(εx + εy)
1−α

2


2

≤

 ∑
xy∈E(G)

(εx − εy)2

εx + εy


 ∑

xy∈E(G)

(εx + εy)α


= ξαχ (G)
∑

xy∈E(G)

(εx − εy)2

εx + εy
.

Hence

ξF(G)
2r(G)

≥ 2ξIS I(G) +
(2ρ(G))α−1ξAl(G)2

ξχα(G)

=⇒ ξIS I(G) ≤
Fε(G)
4r(G)

−
(2ρ(G))α−1ξAl(G)2

2ξχα(G)

(2r(G))α−1ξAl(G)2 ≤ ξχα(G)
∑

xy∈E(G)

(εx − εy)2

εx + εy
. (2.9)

If α ≥ 1, then (1−α)
2 ≤ 0 and (2r(G))α−1ξAl(G)2 ≤ χα(G)

∑
xy∈E(G)

(εx−εy)2

εx+εy
.

Equation ( 2.8) implies that

ξF(G)
2r(G)

≥ 2ξIS I(G) +
(2r(G))α−1ξAl(G)2

ξχα(G)

=⇒ ξIS I(G) ≤
Fε(G)
4r(G)

−
(2r(G))α−1ξAl(G)2

2ξχα(G)
.

This arguments gives the required result. If some bound is attained, then εxεy = r2(G)(G),
∀uv ∈ E(G) . Thus εx = r(G) ∀u ∈ V(G) and G is self centered graph.

If G is self centered graph, then

Fε(G)
4r(G)

−
(2ρ(G))α−1ξAl(G)2

2ξαχ (G)
=

Fε(G)
4r(G)

−
(2r(G))α−1ξAl(G)2

2ξαχ (G)

=
Fε(G)
4r(G)

=
2r2(G)m

4r(G)

=
r(G)m

2
= ξIS I(G).
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