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Abstract—Depression broadly affects emotional and 

cognitive well-being, greatly increases healthcare burdens, and 

constitutes a worldwide public health issue. Several standard 

diagnostic techniques, such as clinical interviews in addition to 

self-reported questionnaires, often do not have objective 

biomarkers, therefore a variety of misdiagnoses can occur. 

Electroencephalography (EEG) shows promise for detecting 

depression by capturing neural activity in real-time and 

identifying brain connectivity patterns associated with mood 

disorders. However, classifying depression using EEG presents 

multiple challenges since real-time applications require large 

feature extraction and involve large computational 

requirements. This systematic review focuses on new 

improvements in EEG-based depression detection using 

machine learning and deep learning models, examining 32 

studies published from 2018 to 2024. The reviewed studies 

explore a range of feature extraction methods, including time- 

domain, frequency-domain, and nonlinear features, along with 

advanced techniques like Continuous Wavelet Transform 

(CWT) and Empirical Mode Decomposition (EMD). Deep 

learning architectures such as Convolutional Neural Networks 

(CNNs), Long Short-Term Memory networks (LSTMs), as well 

as Graph Convolutional Networks (GCNs) have all 

demonstrated large improvements regarding classification 

accuracy. Based on the findings, hybrid models that combine 

different feature sets and classification methods seem to work 

well. Despite all these improvements, many challenges, 

including dataset variability, demographic biases, and 

computational complexity remain. For helping clinical 

applications, research must diligently create easier-to-read 

models, develop exceptionally portable EEG systems, and 

substantially improve real-time capabilities. EEG-based 

depression detection could be part of standard healthcare if 

these limits are fixed, and this could lead to more custom and 

quick treatments. 

Keywords—EEG, depression detection, machine learning, 

deep learning, feature extraction, real-time monitoring, neural 

biomarkers 

I. INTRODUCTION 

Depression has emerged as an important public health 
concern and is known as one of the main causes of disability, 
affecting millions of people around the world. Its major effect 
extends beyond harming people, considerably disrupting their 
cognitive and emotional states and simultaneously increasing 
healthcare costs and diminishing general quality of life [26]. 
For effective treatment and management of depression's 

multidimensional nature and complexity, accurate and timely 
diagnosis is important. 

Clinical interviews and self-reported questionnaires, 
traditional ways to diagnose depression, often rely on personal 
opinions that may be inconsistent and biased. These typical 
methods often do not have the objective biomarkers needed to 
accurately diagnose and check if treatments are working, 
possibly causing wrong diagnoses and poor care. 

Electroencephalography (EEG) has become an 
increasingly useful tool. It allows for a more objective 
detection of depression over extended periods. EEG 
(electroencephalography) captures brain activity in real-time, 
revealing the neural mechanisms associated with mood 
disorders. This technique can illustrate brain connectivity and 
functional dynamics, helping us to identify patterns indicative 
of depression. 

EEG-based approaches have limited potential. They face 
several challenges. Because feature extraction techniques 
often depend on many handcrafted features and these may not 
fully encapsulate all complexities of EEG signals, their 
applicability across all diverse populations is limited. Current 
models have difficulty analysing the temporal dependencies 
in EEG data as well as the spatial dependencies, thereby 
limiting classification performance [2][14][22]. Using 
advanced deep learning models in real-time in clinics is hard 
because it requires a lot of computing power. 

Recent improvements in machine learning and signal 
processing techniques have shown the potential to improve the 
accuracy of EEG-based depression classification. Several 
innovations are being explored to improve feature extraction 
as well as classification outcomes. Hybrid deep learning 
models integrating Convolutional Neural Networks (CNNs) 
with Long Short-Term Memory networks (LSTMs), Graph 
Convolutional Networks (GCNs) along with attention 
mechanisms are many examples. 

Many studies provide new frameworks for fixing the 
problems with current practices. Examples include techniques 
such as Self-Attention Graph Pooling, which improves EEG 
graphs as well as retains key information for improved sorting, 
along with Microstate Analysis, created to detect shifting EEG 
patterns related to depression [25]. Methods of Multiview 
Feature Extraction are also in development for the thorough
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analysis of the temporal, spectral and time-frequency 
characteristics of EEG signals. 

More research is needed to prove these new methods work 
in the future, using bigger datasets and different groups of 
people. For depression detection, the primary aim is to 
develop EEG-based systems that are highly reliable, objective 
and clinically applicable. These systems can help with early 
response and create personalized treatment plans for each 
person, which significantly improves patients' health and 
quality of life. 

II. MOTIVATION 

The growing mental health crisis, particularly the 

underdiagnoses and under treatment of depression, has 

significant personal and societal impacts. 

Electroencephalography (EEG) offers a non-invasive, cost- 

effective method to measure brain activity, providing 

valuable insights into mental health conditions. With 

advancements in artificial intelligence (AI), including 

machine learning and deep learning, automated and accurate 
analysis of complex EEG patterns is now possible. This 

technology enables real-time monitoring of mental health, 

allowing for the early detection of depression and timely 

interventions. Such systems not only reduce the burden on 

healthcare providers but also improve patient outcomes and 

contribute to broader mental health awareness. 

III. SYSTEMATIC REVIEW 

To demonstrate the consequences of our research, we 
reviewed 32 research articles published in the past 7 years 
(2018-2024) from the IEEE database. In our analysis, we 
detailed the methods used for signal pre-processing, feature 
extraction and selection, supervised classification models, as 
well as their corresponding accuracy. 

A. Eligibility Criteria 

The eligibility criteria encompass two main aspects: study 
design and time frame, which involves the selection of studies, 
and reporting criteria, which pertains to the chosen years and 
languages. For our systematic review, we included only 
articles published in English within the last 7 years. 

B. Search String Strategy 

Before submitting research articles to databases, authors 
typically provide keywords to help others locate their work 
more easily. A well-constructed search strategy adheres to 
predefined limits and preferred terms. In addition to using 
keywords, one can also search for articles by selected words 
in the title or abstract. Our search strings utilized Boolean 
operators to refine our search. The common Boolean operators 
used are: 

- AND (must be included) 

- OR (may or may not be included) 

The following search strings were used: 

-(“Depression”) AND ((“EEG”) OR 
(“Electroencephalography”)) AND (“IEEE”) 

-(“Depression”) AND ((“EEG”) OR 
(“Electroencephalography”)) AND (“IEEE”) AND ((“Deep 
Learning”) OR (“Machine Learning”)) 

- (“MODMA”) AND (“IEEE”) 

IV. RESULTS AND ANALYSIS 

A. Participants and Data Collection 

The studies reviewed include a diverse range of 
participants, frequently involving 20 to 100 people, along with 
patients diagnosed with Major Depressive Disorder (MDD) in 
addition to healthy controls for comparison. Inclusion criteria 
are set using firm clinical tests and participants are carefully 
matched for demographic variables such as age and gender. 
Selection of the right groups of people often involves tools 
like the Beck Depression Inventory II [30]. EEG data is often 
recorded using multiple configurations, with 3, 32, 64, or 128 
electrodes placed according to the 10-20 international system 
[18]. Resting states are when data are collected. For a 
thorough assessment of neural responses, all participants 
either keep their eyes fully open or completely closed and all 
participants engage in specific tasks like viewing emotionally 
charged stimuli [30]. Each recording session will last 
approximately 4 to 30 minutes for each participant to greatly 
minimize participant fatigue while still gathering sufficient 
data for analysis [10][13][14][15][16][25][31]. 

B. EEG Signal Preprocessing 

Noise removal in EEG signal processing importantly uses 
key techniques to greatly improve data quality. For band pass 
filtering, Butterworth or Chebyshev filters are regularly used 
to exclusively retain frequencies applicable to the analysis, 
normally from 0.5 to 70 Hz and a notch filter thoroughly 
eliminates all 50 Hz power line interference 
[3][5][9][10][12][15][17], considerably improving the 
recorded signals. ICA is used to locate and remove artifacts 
related to eye movements, muscle activity and other external 
non-neural signals. EEG segments are manually inspected in 
some studies. This thoroughly guarantees complete data 
integrity and quality, complementing all automated methods. 
EEG data is segmented into periods [13][14][32]. These 
periods are generally of a 5 to 10 second duration following 
the removal of noise as well as artifacts. Overlapping 
segments are used in some studies to better catch temporal 
dynamics, which improves feature extraction for later 
analysis. 

C. Feature Extraction 

In the analysis of EEG signals, key insights into the related 
neural activity are gained through the careful extraction of 
various features. Time-domain features are calculated to show 
baseline characteristics and statistical metrics, such as mean, 
variance, skewness and kurtosis [9][17]. Frequency-domain 
features are also obtained by deriving power spectral density 
(PSD) [9]. Techniques like Fast Fourier Transform (FFT) 
allow the analysis of different frequency bands, including 
delta, theta, alpha, beta and gamma [8][27]. One key metric is 
peak power. Key metrics are mean frequency as well as band 
power ratios. Fig. 1 shows the placement of electrodes in a 16- 
channel EEG headset, which is commonly used in most 
papers. 

The implementation of specific advanced Empirical Mode 
Decomposition (EMD) techniques improved classification 
accuracy by exactly 6.71% in comparison to typical feature 
extraction methods[4][26]. This improvement shows the 
importance of consistently using advanced techniques for 
better detection of key EEG features. Our analysis showed that 
delta and theta frequency bands differentiated people with 
depression and alpha and beta bands also improved 
classification performance [3][6][16][31]. This differentiation 
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stresses how useful specific frequency analysis is for EEG- 
based diagnostics. 

The Approximate Entropy, Sample Entropy and Renyi 
entropy nonlinear features are extracted to assess the degree 
of complexity and irregularity of the EEG signals 
[1][4][16][23][28][30]. To create time-frequency views of the 
EEG data, advanced techniques like Continuous Wavelet 
Transform (CWT) [19] along with Short-Time Fourier 
Transform (STFT) [1][10] are applied, which considerably 
aids in catching rapid changes in frequency components as 
well as provides an importantly more detailed perspective of 
brain activity that evolves. 

 

Fig. 1. Distribution of 16-Channel Brain Electrodes. 

 

D. Feature Selection 

Dimensionality reduction techniques are often needed to 
refine the feature space well in EEG signal analysis. Principal 
Component Analysis (PCA) [2][23] is employed to retain the 
most informative variables for classification. These 
approaches streamline data by curtailing all data to only its 
most salient components, thereby improving the efficacy of all 
ensuing analyses. 

People frequently use feature importance methods, such as 
Information Gain, ReliefF and Recursive Feature Elimination 
(RFE), to find and rank the features that matter most for 
sorting tasks [16]. Researchers can use these methods to make 
their models better at predicting things and they can use less 
computing power on big datasets. 

E. Classification Models 

In the area of machine learning approaches for EEG signal 
analysis, Support Vector Machines (SVM), Random Forests 
(RF), Decision Trees (C4.5) and k-Nearest Neighbors (KNN) 
are common classifiers frequently used across many studies. 
Many researchers frequently explore both ensemble methods 
and hybrid models. These integrate multiple classifiers. This 
improves predictive accuracy, giving greater robustness in 
detecting depression patterns. Alongside customary machine 
learning techniques, deep learning approaches, particularly 
Convolutional Neural Networks (CNNs) recognized for their 
capacity to extract spatial features from time-frequency maps, 
have achieved common popularity. To catch particular 
temporal dependencies within the EEG data, Long Short- 
Term Memory (LSTM) networks are commonly employed, 
carefully allowing consideration of time-series dynamics. To 
improve how well time-series classification tasks work, some 
studies suggest using CNN along with LSTM architectures, 

using the good qualities of both for finding depression more 
accurately [2][10][12][22][23][27][29]. 

F. Validation and Evaluation 

Strong model evaluation in EEG signal analysis is 
thoroughly accomplished via particular techniques, such as k- 
fold cross-validation and leave-one-subject-out strategies, 
substantially helping guarantee the thorough generalizability 
and complete reliability of the results. Evaluation metrics are 
used for assessing how well the model works. These metrics 
include accuracy, sensitivity, specificity, F1-score, as well as 
Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC). These metrics offer a detailed view of how well 
the models classify data. Confusion matrices visualize 
classification performance across every class, like healthy as 
well as depressed people, thus offering a representation of the 
model's strengths along with weaknesses in distinguishing 
between conditions. Validating findings is important with this 
thorough evaluation framework. The effectiveness of 
depression detection methods based on EEG signals improves 
to a certain degree as well. 

The reviewed studies used strong validation 
methodologies, specifically K-Fold and Leave-One-Out 
cross-validation techniques [15][23]. The findings are more 
reliable because the majority achieved statistical importance 
(p < 0.01). Based on the Friedman Test, the model 
improvements were important, showing the proposed methods 
worked better than the standard baseline approaches 
[4][23][24][25][26][27][28][29]. 

G. Demographic Factors and Functional Connectivity 

Incorporating age and gender, specific demographic 
variables, into the models improved classification accuracy by 
a definite range of 3-6% [18]. This finding certainly supports 
using personalized approaches to detect depression with 
EEGs. It clearly creates specific diagnostic approaches that 
carefully account for all individual differences. Patients 
suffering from depression, according to the study, had more 
synchronization in the left frontal, temporal and parietal lobes, 
but less synchronization in the right frontal lobe [31]. Changes 
in how functional connections are patterned suggest some 
neural networks are affected, which changes how we 
understand the neurophysiological origins of depression 
[13][16][31]. 

H. Combined Features 

The integration of remarkably diverse feature types, 
including functional connectivity and multiple frequency 
bands led to a peak classification accuracy [13][16]. This all- 
embracing approach to feature selection shows that multi- 
faceted analyses are important for strengthening how a model 
operates and for improving how durable its forecasts are. 

I. Additional Considerations 

To address disparities in dataset representation, different 
techniques, like class weighting and Weighted Focal Binary 
Hinge Loss are actively employed to handle class imbalance 
effectively, especially when depressed subjects are 
importantly underrepresented [19][32]. These strategies seek 
to improve the ability of machine learning models to 
accurately detect depression. All models are trained on a 
balanced dataset. Many recent studies are investigating the 
practicality of immediate depression detection using online 
EEG processing and classification. This points out many 
possible practical uses both in clinics and for keeping track of 
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oneself. Integrating advanced EEG analytics into everyday 
practices offers the promise of real-time capabilities, 
supporting timely interventions in addition to increasing 
patient care. 

J. Overall Findings 

The results strongly affirm that EEG signals are effective 
tools for detecting most depression cases. Models across a 
spectrum also show accuracy gains and fewer 
misclassifications. To further this progress, we recommend 
exploring several multimodal approaches that integrate EEG 
with other modalities, along with adopting advanced machine 
learning techniques (e.g., deep learning and attention 
mechanisms), like speech analysis. These strategies are 
important for building better detection skills and a more 
detailed sense of depression. 

V. DISCUSSION 

The improvements in methodologies for detecting 
depression through EEG signals represent an important 
improvement at the confluence of neuroscience and machine 
learning[26]. As summarized in the TABLE 1, deep learning 
techniques have been incorporated and this key development 
has greatly elevated classification accuracy, with some 
reporting performance metrics exceeding 90% and reaching 
100% in specific scenarios. Machine learning algorithms can 
find many detailed patterns in EEG data. These patterns 
closely relate to multiple depressive symptoms. Integrating 
EEG data with methods like speech analysis and behavioral 
measures may improve detection abilities and provide a fuller 
view of what causes depression. 

The trained models are now much stronger because the 
advanced preprocessing techniques and automated feature 
extraction have greatly reduced the need for manual 
processes[14][19]. 

Integrating multiple EEG features, like frequency band 
analysis along with functional connectivity measures, both 
improves our comprehension of the neurophysiological 
mechanisms underlying depression, as well as points out the 
possibility of creating objective biomarkers[21]. These 
biomarkers could be important additions to regular diagnostic 
methods. They let you measure depression in a more exact and 
countable way. 

Despite these promising improvements, our review also 
finds some limitations that need our attention. Because many 
investigations often use small sample sizes, it's important to 
ask if the findings are generalizable. For example, studies 
using mainly college students may not accurately represent the 
variety of people affected by depression. Future research 
should use larger, more varied datasets to confirm these 
findings in other groups of people and to make sure the 
findings apply more widely. 

The sensitivity of EEG signals to many external aspects 
like ecological noise and artifacts creates definite challenges 
for data reliability. Feature extraction consistency may be hurt 
by inconsistent signal quality, possibly making classification 
results unreliable. This points out the need for preprocessing 
methods that sufficiently reduce these influences as well as 
adequately improve the results' reliability and the developed 
models' integrity. 

These studies have several advanced models. They 
introduce large computational complexity. Because many 

deep learning methods require a lot of processing power and 
resources, using them in clinical settings can be hard. These 
models descriptively show state-of-the-art performance. More 
efficient algorithms are needed to achieve similar accuracy 
with substantially reduced computational demands. This 
would greatly ease common adoption and thoroughly promote 
the integration of these techniques into routine clinical 
practice. 

All in all, these large improvements in EEG signal analysis 
for depression detection offer particularly important 
opportunities for improving diagnostic accuracy and further 
deepening the comprehension of the condition's key 
neurophysiological underpinnings[21]. Deep learning 
achieved many promising results. Multimodal approaches 
supplemented these results, which were certainly outstanding. 
To make these methods more widely applicable, it is 
important to address the current limitations, which are small 
sample sizes, sensitivity to external factors and high 
computational costs. Once we get past these problems, we can 
create objective biomarkers that give us useful information to 
improve treatment and patient care for depression. 
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TABLE 1. Review of EEG-Based Algorithms for Brain Signal Analysis for Depression  

Refe 

renc 

es 

 

 

Algorithm 

Best 

frequency 

band 

No. of 

electrodes 

 

Brain areas 

 

Data collection 
Data 

preprocessing 

Sampling 

frequency 

rate 

 

Accuracy 

 

[1] 

 

MV-SDGC- 

RAFFNet 

 

- 

128 

(MODMA) 

, 19 
(HUSM) 

Prefrontal (FPZ 

and FP2), 

Frontal(F2) 

MODMA (Lanzhou 

University), HUSM 

(Malaysia) 

Baseline removal, 

detrend, low-pass 

filter (0–64 Hz) 

250 Hz 

(MODMA) 

,  256  Hz 
(HUSM) 

95.53%(M 

ODMA), 

99.19% 
(HUSM) 

 

 

[2] 

 

 

Att-1D-CNN- 

BiLSTM 

 

 

- 

16 + 1 

reference 

electrode 

(CZ) + 1 

grounding 

electrode 

(GND) 

Fp1, Fp2, F7, 

F8, F3, Fz, F4, 
T3, C3, Cz, C4, 

T4, P3, Pz, P4, 

T5, T6, O1, O2 

 

 

MODMA & Self- 

acquisition Dataset 

 

Baseline removal, 

bandpass filter (0.5– 

50 Hz), ICA for 

artifact removal 

 

 

250 Hz 

(MODMA) 

 

 

96.65% 

(MODMA 

) 

 

 

[3] 

 

End-to-End 

Deep 

Learning 

Model 

Delta (0.5 - 

4 Hz), Beta 

(13  -  30 

Hz), 

Gamma (30 
- 70 Hz) 

 

 

19 

Fp1, Fp2, F7, 

F8, F3, Fz, F4, 

T3, C3, Cz, C4, 

T4, P3, Pz, P4, 

T5, T6, O1, O2 

 

Public EEG dataset (30 

MDD patients, 28 

healthy controls) 

Notch filter (50 Hz 

noise removal), 

band-pass filtering 

(0.1 - 70 Hz), re- 

referencing, Z-score 

transformation 

 

 

256 Hz 

91.06% 

(full- 

band), 

98.45% 

(10-fold 

CV) 

 

 

 

 

[4] 

Improved 

Empirical 

Mode 

Decompositio 

n (EMD) 

feature 

extraction and 

SVM 
classification 

 

 

Gamma (30 

- 70  Hz), 

Beta (13 - 

30 Hz) 

 

 

 

 

3 

 

 

 

Prefrontal lobe 

(Fp1, Fpz, Fp2) 

 

EEG data from Beijing 

Anding Hospital, 

Capital  Medical 

University and The 

Third People’s 

Hospital of Tianshui 

City 

 

 

High-pass filter (1 

Hz), low-pass filter 

(40 Hz), Discrete 

Wavelet Transform, 

Kalman filtering 

 

 

 

 

250 Hz 

 

 

 

 

88.07% 

 

 

[5] 

Customized 

Inception 

Time Deep 

Learning 

Model 

 

 

- 

 

 

19 

Fp1, Fp2, Fz, 

F3, F4, F7, F8, 
T3, T4, T5, T6, 

P3, P4, Pz, O1, 

O2, C3, C4, Cz 

 

Public EEG dataset (34 

MDD patients, 30 

healthy controls) 

Band-pass filtering 

(0.1-70 Hz), Notch 

filter (50 Hz), 

Artifact Subspace 

Reconstruction 
(ASR) 

 

 

256 Hz 

91.67%(fu 

ll 

channel),8 

7.5%(redu 

ced 
channel) 

 

 

[6] 

Multi- 

Channel 

Frequency 

Network 
(MUCHf-Net) 

 

Delta, 

Theta, 

Alpha 

 

 

16 

 

Prefrontal & 

Parietal Lobes 

EEG from 300 

individuals (DP: 100, 

SCZ:  100,  Normal: 

100) + Public dataset 
(30 individuals) 

Band-pass filter 

(0.3–45 Hz), ICA 

for artifact removal, 

Welch method for 
frequency spectra 

128 Hz 

(hospital 

data), 250 

Hz (public 
dataset 

87.71% 

(Triple 

classificati 

on), 

 

 

 

[7] 

 

 

Brain 

Functional 

Network 

(EEG-based) 

 

 

Theta (4-8 

Hz), 

Alpha2 (10- 

13 Hz) 

 

 

 

64 

left   central 

(LC),  left 

temporal (LT), 

left frontal (LF), 

left parietal- 

occipital (LPO), 

and right 

temporal  (RT) 
regions 

 

 

24 MDD patients & 24 

healthy  controls 

(Lanzhou University 

Second Hospital, 

China) 

 

Band-pass filtering 

(0.5-50 Hz), EOG 

noise removal, 

Power Spectrum & 

Phase Lag Index 

(PLI) calculations 

 

 

 

250 Hz 

 

 

 

93.31% 

 

 

 

 

 

[8] 

 

 

 

DNN (Deep 

Neural 

Network) 

 

 

 

Alpha (8-13 

Hz), Theta 

(4-7 Hz) 

 

 

 

 

 

8 

 

 

 

Frontal lobe 

(Fp1, Fp2), 

Occipital lobe 

(O1, O2) 

 

 

 

50 subjects (43 valid) – 

College and graduate 

students aged 18-27 

Fast  Fourier 

Transform(FFT) 

and Discrete 

Wavelet 

Transform(DWT) 

for   feature 

extraction, noise 

filtering, statistical 

feature  extraction 

(mean, min, max, 

SD) 

 

 

 

 

 

300 Hz 

 

 

100% 

(FFT+DN 

N), 93%+ 

(DWT+D 

NN) 

 

 

 

 

 

 

[9] 

 

 

 

Combinatorial 

convolutional 

and temporal 

convolutional 

neural 

network 

(CNN-TCN) 

 

 

 

 

 

 

- 

 

 

 

 

 

 

64 

 

 

 

 

 

 

Whole Scalp 

 

 

 

 

 

EEG signals of 119 

individuals (eyes-open 

& eyes-closed states) 

 

 

Notch filter (50Hz), 

Bandpass filter 

(0.2Hz–50Hz), 

Butterworth  filter 

(order=5, 1Hz– 

50Hz), Independent 

Component 

Analysis (ICA) 

 

 

 

 

 

 

500 Hz 

MSE: 

5.64±1.6 

(eyes- 

open), 

9.53±2.94 

(eyes- 

closed); 

MAE: 

1.73±0.27 

(eyes- 

open), 

2.32±0.35 

(eyes- 

closed) 
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Refe 

renc 

es 

 

 

Algorithm 

Best 

frequency 

band 

 

No. of 

electrodes 

 

Brain areas 

 

Data collection 

 

Data preprocessing 

Sampli 

ng 

freque 

ncy 

rate 

 

Accuracy 

 

 

[10] 

 

STFT+CN 

N-LSTM 

(DepCap) 

 

 

- 

 

 

19 

Fp1, Fp2, F3, F4, F7, 

F8, Fz, T3, T4, T5, 

T6, P3, P4, Pz, O1, 

O2, C3, C4, Cz 

 

64  subjects  (34 

MDD patients, 30 

healthy) 

Band-pass filtering 

(0.5-70 Hz), Notch 

filter (50 Hz), ICA for 

artifact removal, STFT 
for feature extraction 

 

 

- 

 

 

99.9% 

 

 

[11] 

 

 

DepL-GCN 

 

 

- 

 

 

128(MODMA), 

64(PRED+CT) 

 

 

- 

 

 

MODMA and 

PRED+CT 

Differential Entropy 

(DE) features 

extracted, adjacency 

matrix created based 

on correlation 

250 Hz 

(MOD 

MA), 

500 Hz 

(PRED 
+CT) 

75.47% 

(MODMA 

), 77.97% 

(PRED+C 

T) 

 

 

[12] 

Hybrid of 

LSTM and 

Spiking 

Neural 

Networks 
(SNN) 

 

 

- 

 

 

62 

 

Frontal and 

prefrontal cortex 

regions 

PRED+CT(72 

females and 

49 males) 

Downsampling, 

Baseline removal, 50 

Hz notch filter, 

Bandpass (0.2-50 Hz), 

Butterworth filter, ICA 

 

 

500 Hz 

 

 

- 

 

 

 

[13] 

SGFGCN 

(Specific- 

General 

Functional 

Graph 

Convolutio 

nal 

Network) 

 

 

 

- 

 

 

105 (from 128, 

after 

preprocessing) 

 

 

Frontal lobe, 

Posterior parietal 

lobe, Occipital lobe 

 

 

MODMA dataset, 

24 MDD patients, 

29 HCs, 5-minute 

resting-state EEG 

 

 

0.1-45 Hz bandpass 

filter, ICA artifact 

removal, averaging 

reference method 

 

 

 

250 Hz 

 

 

 

97.20% 

 

 

[14] 

DeprNet 

(Deep 

Convolutio 

nal Neural 

Network) 

 

 

- 

 

 

19 

 

Fp1, Fp2, F3, F4, F7, 

F8, Fz, T3, T4, T5, 

T6, P3, P4, Pz, O1, 

O2, C3, C4, Cz 

Resting-state EEG 

recording for 9 

minutes per 

subject,  covering 

33  subjects  (18 

normal, 15 
depressed 

High-pass filter (0.1 

Hz), low-pass filter 

(100 Hz), notch filter 

(50 Hz), Independent 

Component Analysis 

(ICA)  to  remove 
artifacts 

 

 

256 Hz 

 

 

91.4% 

 

 

 

 

[15] 

 

 

FFNN 

(Fuzzy 

Function 

Neural 

Network) 

 

 

 

 

- 

 

 

 

 

19 

 

 

 

 

- 

EEG signals from 

60   depressed 

subjects (30 

males, 30 females, 

avg. 32.4 years) 

recorded at Atieh 

Psychiatry Centre, 

Tehran,   Iran, 

under resting state 

with closed eyes 

High-pass Butterworth 

filter (0.5 Hz), low- 

pass filter (45 Hz), 

notch filter (50 Hz), 

ICA for artifact 

removal, segmentation 

into 6-sec windows, 

PCA with Gaussian 

kernel 

 

 

 

 

256 Hz 

 

 

90% (best 

accuracy 

with all 

features 

combined) 

 

 

 

[16] 

C4.5, Best- 

First 

Decision 

Tree 

(BFDT), 

Logistic 

Regression 
(LR) 

 

 

 

Alpha, Beta 

 

 

90 (after 

preprocessing) 

 

 

Frontal, Parietal- 

Occipital, Temporal 

 

 

24 MDD patients, 

29 NC; 5-minute 

resting-state EEG 

 

Filtering (1-40 Hz), 

Artifact Removal 

(EOG, EMG), Channel 

Interpolation,   Re- 

referencing, Epoch 

Selection 

 

 

 

250 Hz 

Up to 

84.18% 

(alpha, 

PLI), 

82.81% 

(beta, All 

Features) 

 

 

 

 

[17] 

Decision 

Tree (J48), 

K-nearest 

neighbors 

(KNN), 

Multilayer 

perceptron 

(MLP), and 

Best-First 
(BF) Tree 

 

 

 

 

- 

 

 

 

 

3 

 

 

 

 

Fp1, Fpz, and Fp2 

 

 

MODMA Dataset 

(55 subjects: 26 

depressed, 29 

healthy) 

 

 

Noise removal using 

average referencing 

and notch filter, 

segmentation with 10s 

overlapping windows 

 

 

 

 

250 Hz 

 

Decision 

tree 

outperfor 

med with 

the 

accuracy 

of 95.76% 

 

 

 

 

[18] 

 

 

1-D  CNN 

with 

Demograph 

ic Attention 

 

 

 

Beta (13-25 

Hz)) 

 

 

 

 

3 

 

 

 

Prefrontal (Fp1, Fpz, 

Fp2) 

 

 

170 subjects (81 

depressed,   89 

normal), 90s 

resting-state EEG 

with closed eyes 

High-pass (1 Hz) & 

low-pass (40 Hz) 

filtering, Wavelet 

transform & Kalman 

filtering for EOG 

removal, 4s non- 

overlapping sliding 

windows 

 

 

 

 

250 Hz 

 

 

 

 

75.29% 

 

 

[19] 

Time- 

Frequency 

Convolutio 

nal 

Networks 

(TFCN) 

 

 

- 

 

 

128 

 

 

- 

 

MODMA dataset, 

24 depressed and 

29 healthy 

participants 

EEG data 

preprocessing 

conducted in 

MATLAB using the 

EEGLAB toolbox 

 

 

250 Hz 

 

 

100% 
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Refe 

renc 

es 

 

 

Algorithm 

Best 

frequen 

cy band 

No. of 

electro 

des 

 

Brain areas 

 

Data collection 

 

Data preprocessing 

Samplin 

g 

frequenc 
y rate 

 

Accuracy 

 

 

[20] 

 

 

ResNet-101 

 

 

- 

 

 

3 

 

Prefrontal lobe (Fp1, 

Fpz, Fp2) 

MODMA dataset (55 

participants: 26 MDD 

patients, 29 healthy 

controls), 90s recording 

in a quiet room 

Discrete Fourier 

Transform (DFT), 

Directed Graph 

Representation 

 

 

50 Hz 

 

 

91.03% 

 

 

[21] 

 

Support Vector 

Machine (SVM) 

 

Gamma 

(30–80 

Hz) 

 

59 

 

Frontal, Central, 

Temporal, Parietal, 

Occipital 

Face-in-the-crowd task 

with 16 depression 

patients and 14 healthy 

controls 

Band-pass filtering 

(0.05–100   Hz), 

artifact removal, 

segmentation (-200 

ms to 1000 ms) 

 

 

1000 Hz 

84% 

(Positive 

Stimuli), 

85.7% 

(Negative 

Stimuli) 

 

[22] 

GCN-based 

model 

(1DCNN+LSTM 

+GCN) 

 

- 

 

128 

 

Frontal, Central, 

Occipital 

MODMA dataset 

(resting-state EEG from 

24 depressed and 29 

healthy subjects) 

Bandpass filter (1-40 

Hz), CAR re- 

referencing, ICA- 

based artifact 
removal 

 

250 Hz 

 

76.5% 

 

[23] 

Among various 

algorithms, CNN 

produced   the 
highest accuracy 

 

Alpha 

 

19 

 

Frontal, Parietal, 

Temporal, Occipital 

 

EEG recordings, 19- 

channel EEG device 

 

ICA, Bandpass 

filtering (1-40 Hz) 

 

256 Hz 

 

99.31% 

 

 

 

 

 

[24] 

Adaptive Graph 

Topology 

Generation 

(AGTG) module, 

a Graph 

Convolutional 

Gated Recurrent 

Unit  (GCGRU) 

module, and a 

Graph Topology- 

based Max- 

Pooling (GTMP) 
module 

 

 

 

 

 

Gamma 

 

 

 

 

 

16 

 

 

 

 

Parietal lobe at P3, 

Frontal lobe at Fp1, 

and Temporal lobe at 

T4 

 

 

 

Resting-state EEG from 

University of New 

Mexico & Third 

People’s Hospital of 

Jian City, China 

 

 

Bandpass filtering 

(0.5Hz  -  100Hz), 

Notch filtering 

(50Hz/60Hz), 

Resampling 

(200Hz), Artifact 

removal (FASTER 

algorithm) 

 

 

 

 

500Hz 

(downsa 

mpled to 

200Hz) 

 

 

77.78% 

(Public 

dataset), 

95.61% 

(Own 

dataset) 

 

 

[25] 

 

SGP-SL  (Self- 

attention Graph 

Pooling with 

Soft Label) 

 

 

- 

128 for 

high- 

density 

EEG, 3 

for 

simplifi 

ed EEG 

 

 

- 

 

MODMA dataset, 

recorded under resting- 

state condition 

EEG signals 

segmented into 2- 

second sub-subjects, 

augmentation 

applied 

 

 

250 Hz 

 

 

84.91% 

 

 

 

 

 

 

[26] 

 

 

Regularization 

Parameter-Based 

Improved 

Intrinsic Feature 

Extraction 

Method via 

Empirical Mode 

Decomposition 

(EMD) 

 

 

 

 

 

1 Hz-40 

Hz 

 

 

 

 

64- 

channel 

,  128- 

channel 

, and 3- 

channel 

 

 

 

 

Prefrontal lobe (Fp1, 

Fpz, Fp2) and signals 

from frontal lobe and 

bilateral temporal 

region 

 

 

 

MODMA  and  64- 

channel Brain Products 

(BP) electrode cap, 128- 

channel HydroCel 

Geodesic Sensor Net, 

and 3-channel wearable 

EEG devic 

 

 

EEGLAB toolbox. 

Signals were 

downsampled to 250 

Hz, filtered between 

1-40 Hz, and cleaned 

of artifacts using 

ICA and Kalman 

filtering. 

 

1000 Hz( 

64- 

channel 

EEG 

downsam 

pled to 

250 Hz), 

250 Hz 

(128- 

channel 

and 3- 

channel) 

87.50%(6 

4-channel) 

, 88.50% 

(MODMA 

), 84.85% 

(3-channel 

resting- 

state), 

77.68% ( 

3-channel 

auditory 

stimulus- 

evoked 
signals) 

 

 

 

 

 

 

 

[27] 

Combination of 

Vision 

Transformer, 

pre-trained CNN 

networks 

(ResNet, 

DenseNet, 

EfficientNet), 

and 1D-CNN 

with LSTM for 

feature 

extraction from 

EEG and speech 

signals 

 

0.5 Hz to 

28 Hz, 

covering 

frequen 

cy bands 

Alpha, 

Beta1, 

Beta2, 

Beta3, 

Theta, 

and 

Delta 

 

 

 

 

 

 

 

- 

 

 

 

 

 

 

 

- 

 

 

 

 

MODMA dataset, 

which includes EEG 

and speech data 

collected from 52 

subjects (both clinically 

depressed and normal 

control 

 

 

 

Spatial filtering to 

reduce variations, 

short-time Fourier 

Transform (STFT) 

for spectrogram 

extraction, and 

transformation into 

mel spectrograms 

 

 

 

 

 

 

 

- 

99.12%- 

left 

hemispher 

e and 

97.66%- 

right 

hemispher 

e.  CNN- 

based 

framewor 

ks 

achieved 

85.62% 

for mild 

depression 

detection 
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Refe 

renc 

es 

 

 

Algorithm 

Best 

frequency 

band 

 

No. of 

electrodes 

 

Brain areas 

 

Data collection 

 

Data preprocessing 

Sampli 

ng 

freque 

ncy 

rate 

 

Accuracy 

 

 

 

 

 

 

 

 

 

 

[28] 

DIL-MDD 

(Data-Free 

Domain 

Incremental 

Learning for 

Major 

Depressive 

Disorder 

Detection) 

framework, 

which 

includes 

Adaptive 

Class-tailored 

Threshold 

Learning 

(ACTL) and 

Data-Free 

Domain 

Alignment 
(DFDA) 

 

 

 

 

 

 

 

 

 

 

- 

 

 

 

 

 

 

 

 

 

 

- 

 

 

 

 

 

 

 

 

 

 

- 

 

 

 

 

 

 

 

Multiple   datasets 

including DAIC- 

WOZ, CMDC, and 

MODMA. It includes 

audio, textual, and 

neuroimaging data 

 

 

 

 

 

 

 

 

Feature extraction 

using openSMILE for 

audio data and 

BERT/Chinese-BERT 

for text-based features 

 

 

 

 

 

 

 

 

 

 

- 

 

 

 

 

 

Accuracy 

ranges 

from 

61.54% to 

82.29% 

depending 

on the 

dataset 

and the 

experimen 

tal setup 

 

 

 

 

[29] 

 

MS²-GNN 

(Modal- 

Shared 

Modal- 

Specific 

Graph Neural 

Network) 

 

 

 

 

- 

 

The 

MODMA 

dataset 

includes 

128- 

channel 

EEG 
signals 

 

 

 

 

- 

DAIC-WOZ dataset: 

Includes audio, video, 

and text collected 

from 189 subjects. 

MODMA dataset: 

Contains 128-channel 

EEG and audio 

signals from 37 

subjects 

 

 

LSTM, graph-based 

transformations, 

reconstruction 

networks 

 

 

 

 

- 

 

Accuracy 

of  89.13 

with 

DAIC- 
WOZ and 

86.49 with 

MODMA 

 

 

 

 

[30] 

 

 

 

 

Linear SVM 

The alpha 

band led to the 

best 

classification 

performance 

in  the 

Neu_block, 

while the 

gamma band 

was best in the 
Emo_block 

 

 

 

 

16 

 

 

Electrodes were 

placed covering 

frontal, central, 

temporal, parietal, 

and occipital 

regions 

Collected using a 

128-channel HCGS, 

amplified by an EGI 

system, and recorded 

with Net Station 

software. The 

EyeLink 1000 

Desktop Eye Tracker 

was used to collect 

EM data 

 

 

EEG data were 

filtered (1–40 Hz), 

cleaned of artifacts 

using FastICA, and 

normalized using z- 

score normalization 

 

 

 

 

250Hz 

 

 

 

83.42% 

using the 

Linear 

SVM 

 

 

 

[31] 

Binary linear 

support vector 

machine 

(SVM) 

classifier with 

leave-one-out 

cross- 
validation. 

 

 

1-40 Hz 

 

128- 

channel 

HydroCel 

Geodesic 

Sensor Net 

 

Left frontal, 

temporal, and 

parietal lobes, and 

the right occipital 

lobe 

 

Resting-state EEG 

data were recorded 

for 5 minutes with 

eyes closed 

Filtered using a 

Hamming windowed 

Sinc FIR filter, artifact 

removal was 

performed, and data 

were re-referenced 

using  the  REST 
method 

 

 

 

250 Hz 

Accuracy 

of 92.73% 

with an 

area under 

the curve 

(AUC) of 

0.98 

 

 

 

 

 

 

[32] 

Linear Graph 

Convolution 

Network 

(LGCN) 

integrated 

with 

Weighted 

Focal Binary 

Hinge 

(WFBH) loss 

and a 

Transformer 

model for 

classification 

 

 

 

 

 

Beta and low 

gamma (25– 

140Hz) 

 

 

 

 

 

19 

 

 

 

 

 

Frontal, temporal, 

parietal, occipital, 

and central brain 

regions 

Hospital Universiti 

Sains Malaysia 

(HUSM)  64 

participants (34 with 

MDD and 30 healthy) 

Filtered using a 

Butterworth bandpass 

filter (0.5 Hz - 70 Hz) 

and a 50 Hz notch 

filter for noise 

removal. Independent 

Component Analysis 

(ICA) to remove 

artifacts like eye 

blinks and muscle 

movements 

4- 

second 

epochs 

(1024 

sample 

s each), 

suggest 

ing a 

256 Hz 

sampli 

ng 

frequen 

cy 

 

 

99.92% 

accuracy, 

99.90% 

sensitivity 

,  99.95% 

specificity 

, and 

99.97% 

precision 

 

This gives a better comprehension of how depression works. 
As the field progresses, we support focusing on real-time 
monitoring. It also needs to be scalable for clinical use. 
Classification performance greatly increases with feature 
extraction technique improvements. SVD-improved EMD 

and Time-Frequency Convolutional Networks are two 
substantially important examples. 

Models can make personalized mental health assessments 
better by using several demographic variables[18]. These 
assessments can result in customized therapeutic treatments. 
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Effective AI tools in clinics are needed to detect depression in 
its early stages, research indicates. 

Expanding the breadth of all datasets helps to fully grasp 
AI methods. These steps will greatly improve the efficacy of 
EEG-based depression detection systems while also providing 
more thorough and accessible mental health care solutions. 
Through energetic innovation and strong cross-disciplinary 
collaboration, we can truly advance the field. Research 
understandings are translatable into clinical applications that 
are important for all people affected by depression. 

VI. CONCLUSION 

In summary, advances in artificial intelligence and 
multimodal data are enhancing the potential of EEG-based 
methods for detecting depression. AGTG + GCGRU + 
GTMP, SGP-SL and other new frameworks show that 
adaptive graph learning and self-attention mechanisms are 
important, as these frameworks are very accurate in 
classifying depression [24][25]. Hybrid deep learning CNN- 
LSTM models are quite effective when processing EEG 
signals, a truly important improvement in diagnostics 
[3][10][23][27]. 

Changed functional connectivity is shown by the findings 
to be an important neural marker for depression 
[7][13][16][31]. 

VII. FUTURE ENHANCEMENT 

Future research should focus on thoroughly improving the 
utilization of EEG signals for depression detection. Several 
compact, portable EEG systems developed for real-time 
monitoring will further ease routine assessment of patients' 
mental health, offering data useful for clinicians and patients 
alike [17]. To guarantee ultimate robustness across 
depression severity levels, the model validation will be 
considerably improved via the expansion of the EEG datasets 
collection to include populations that are greatly larger and 
more diverse. Artificial intelligence models should be more 
interpretable. This would be an improvement. By enabling 
healthcare professionals to understand as well as rely on the 
decision- making processes of these systems, trust is 
encouraged. Complete optimization of hardware as well as 
software is necessary for real-time applications, in order to 
make EEG- based depression detection tools practical for all 
everyday uses. When machine learning models are 
personalized, diagnoses and treatments may improve since 
interventions can be better suited to each patient. Lastly, 
exploring advanced analytical techniques, such as attention 
mechanisms and deep learning architectures, will likely 
improve the reliability and performance of EEG analyses in 
detecting depression [5]. By focusing on these enhancements, 
future research can significantly advance the field, ultimately 
leading to better patient outcomes and more effective 
treatment options. 
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