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Abstract 

The continuum of edge and cloud computing has emerged as a vital computing model for enabling 
latency-sensitive, data-heavy, and geographically scattered applications. As billions of devices generate 
massive volumes of data, efficient resource management across heterogeneous, distributed 
infrastructures has become essential. This study presents a systematic review of 68 research articles 
published between 2019 and 2024 that address resource distribution, task delegation, scheduling, 
orchestration, and optimization within the edge–cloud continuum. The paper highlights emerging 
themes such as AI-driven orchestration, multi-agent reinforcement learning, federated optimization, 
and serverless edge computing. We evaluate the performance, precision, scalability, and flexibility of 
traditional heuristics, mathematical models, and RL techniques under varying workloads. Although 
these significant advancements have been made, several open problems still exist—mobility-aware 
scheduling, cross-layer security integration with over-the-air encrypted computation results, and the 
absence of general ML models and benchmarks along with large-scale real-world deployment. The 
paper also ends by emphasizing the future research directions required to create and implement 
intelligent, autonomous, and scalable resource management frameworks that are designed for 
6G/enhanced mobile broadband (eMBB), IoT/operating on devices over Bluetooth, autonomous 
systems/enabled by local cloudlets, and immersive applications/such as immersive gaming. 

1. Introduction 

Utilizing remote computing resources located in centralized cloud data centers remains the primary 
approach for most Internet services. Data from user devices and sensors are transferred to distant 
remote clouds for processing and storage, which significantly raises communication latencies as billions 
of devices connect [1], [14], [24]. This transfer negatively impacts Quality-of-Service (QoS) and Quality-
of-Experience (QoE), particularly for real-time services, and incurs unnecessary expenses due to 
energy-intensive transmission. A more effective option to extend service durations and battery life is to 
decentralize resource allocation by positioning computing resources nearer to end-users and sensors. 
In this decentralized approach, data exchange between users and virtual machines is reduced to 
decrease latency and energy use, a capability known as proximity-aware scheduling [3], [14], [23]. The 
edge-cloud continuum disseminates computation and storage services among the main-layer mini-
clouds, which are commonly referred to as fog or edge computing, at micro data centers located in base 
stations and even at augmented network locations like routers and switches [1], [3], [24]. Edge 
resources have limited capacity and are of different types and constantly changing, which leads to 
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several difficulties in resource management and achieving effective allocation and scheduling of 
computing, network, and storage resources based on diverse and changing workloads [1], [2], [15], [25]. 

Resource management refers to the process of provisioning computing, storage, and communication 
resources when requested. It includes three main activities: (1) resource discovery, which is gaining 
information about resource capabilities, states, prices, and service conditions; (2) resource 
orchestration, which is the process of deciding how to allocate resources and what tasks to schedule on 
them; and (3) resource monitoring, which is observing the condition of resources and workloads [2], 
[4], [21]. On the other hand, the currently popular cloud management platforms are offering a huge 
number of public cloud services. The algorithms designed to handle these services are also able to work 
at the fog and edge levels without any limitations [1], [4], [13]. The main categories of orchestration 
methods are load balancing, workflow scheduling, co-scheduling, and auto-scaling [2], [5], [17], [19]. 
However, on the resource discovery and monitoring side, they still depend a lot on the accurate and 
prompt information coming from user applications. The rapid growth of IoT networks and services has 
made the information fragmented, incomplete, outdated, and hard to follow, which makes dynamic 
orchestration even more difficult, especially in complex and diverse fog-edge continuum environments 
[2], [3], [22]. Thus, the requirement of discovering and publishing resource capabilities along with 
providing an all-encompassing view towards the algorithms of general fog-edge resource orchestration 
has become very urgent and, at the same time, full of opportunities [2], [3], [25]. 

2. Background and Key Concepts 

Edge-cloud computing is a new approach to cloud services that adds telecommunication network edge 
nodes to the cloud service model, hence improving the meeting of strict latency requirements of some 
applications and users [1], [14], [24]. Among many other passive and active devices around us, the 
Internet of Things (IoT) has experienced an enormous rise, and the number of connected devices is 
increasing exponentially. Therefore, the volume of data produced will also be larger as the IoT devices 
generate data constantly [8], [22], [25]. The major challenge of upstream data centers handling this 
huge volume of data is getting the data late owing to both the limitations of latency and bandwidth [1], 
[14], [24]. Timely processing near the device is made possible through the use of private edge devices 
and the growth of the edge cloud [1], [3], [6]. 

2.1. Edge-Cloud Continuum 

Utilizing remote computing resources in cloud data centers is the standard procedure for Internet-
based applications due to the fact that numerous smart devices fitted with sensors are constantly 
producing a huge volume of data [1], [14], [22]. Nevertheless, this model might cause communication 
delays to be longer since billions of devices are connected to the Internet [1], [3], [24]. Therefore, if 
computing resources are moved near user devices and sensors, it can result in a considerable reduction 
of data transfer and latency, thus enhancing both QoS and QoE [1], [14], [23]. 

Researchers in today's world are mainly focusing on the idea of distributing resources that are mostly 
concentrated in big data centers until they come close to the end users and to the sensors, thus making 
up the edge computing as shown in Figure [3], [24], [25]. In the traditional cloud computing paradigm, 
the allocation of resources is done homogeneously in one location, that is, in a single cloud data center, 
while the edge-computing paradigm gives users the choice to pick from a variety of resources that are 
located in different places [14], [24]. To enable a seamless operation between the different types of 
computing, edge resources are categorized based on the distance to the end users as fog, mobile edge, 
and cloudlet [1], [24]. Over and above this, edge resources are mostly limited in terms of availability, 
more diversified, and less stable compared to cloud resources, and this has made researchers come up 
with new ways to manage the resources [1], [2], [15]. Additionally, the Edge-Cloud Continuum offers 
cloud resources that pose the same management challenges as presented in [3] [2]. 
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FIGURE 1: Edge–Cloud Continuum Architecture 

2.2. Resource Abstraction and Orchestration 

The deployment of heterogeneous computing resources spans the entire spectrum from IoT devices to 

the cloud, where each resource has its own computing power [1], [14], [24]. Thus, the edge applications 

can take advantage of the resource availability and workload distribution through the different 

environments. A thorough examination of edge applications leads to a better understanding of the 

resource orchestration needs. One such example of the application and its associated workflows 

processing data from smart spaces' deployed sensors is [6], [13]. In the mentioned workflows, 

preprocessing operations are often necessary to cut down the data flow and to abide by the lower 

bandwidth availability in certain links, which is often the case [6], [23]. The remaining computations 

can then be performed in another tier closer to the cloud. It is still a continuation of research to find 

resource orchestration designs that can meet the application demands and at the same time distribute 

the workloads across the continuum [4], [15], [25]. 

In order to effectively manage the differing deployment aims, management needs, and execution 

models of various applications, resource abstraction and orchestration work in conjunction to create 

the expected behavior of the application itself, thus making possible the application-oriented designs 

[4],[11]. The Service-Defined Orchestrator interprets the declarative statements that the application in 

question stipulates as part of its deployment description and that show how to manage resources and 

define orchestration strategies [4]. The behavior of applications during the events of traffic surges, 

cache hot spots, or similar phenomena is not uniform at all times [5],[17]. The centralized service-

agnostic orchestration tries to get the best of energy efficiency, latency, or load balancing across 

different platforms under the management of third-party providers; however, it still does not consider 

the specific needs of the applications [5],[19]. Therefore, the implementations that permit the custom 

strategies to be tailored according to the requirements of the application become an important research 

area  [6], [20], [25]. 
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FIGURE 2: Resource Management Workflow 

3. Trends in Resource Management 

The past five years have seen a substantial evolution in edge-cloud continuum resource management, 
influenced by various factors such as increased heterogeneity, fluctuating workloads, user mobility, and 
wider use of AI-powered applications [1], [14], [22]. Current literature (2019-2024) uncovers some 
major directions that will be decisive in the next generation of edge-cloud resource management 
systems [2], [15], [24]. One of the trends is a transition from traditional, rule-based allocation methods 
to innovative, self-governing, and situationally aware orchestration frameworks that can handle 
massive scale [2], [5], [19]. 

3.1. Heterogeneity and Mobility 

The greatest trend in the management of resources between the edge and the cloud is represented by 
the increased diversity and mobility of devices, workloads, and network conditions [1], [14], [23]. The 
edge-cloud continuum encompasses a variety of devices with vastly different power levels and 
characteristics, such as low-power IoT sensors and mobile phones, cloudlets and base-station servers, 
as well as massive centralized cloud clusters, and each of them comes with very different computational 
capabilities, memory, and power limitations [3], [24]. Such differences between resources make it 
difficult to apply resource standardization and partitioning and also to manage tasks because the 
differences in the abilities of the nodes occur not only spatially but also temporally through such factors 
as congestion, drained batteries, and changing environmental and user demand conditions [3], [15], 
[25]. 

Mobility is one of the factors that make these problems worse. Mobile edge users, which include but are 
not limited to smartphones, drones, autonomous vehicles, and wearable devices, constantly change 
their places in the network, thus causing variations in the latency, the stability of the links, and the 
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availability of the services to be dynamic [1], [3], [22]. As a result, the research is now focusing on the 
creation of mobility-aware resource management frameworks that can follow user movement, foresee 
handovers, and move services or tasks to the next point in order to ensure the Quality-of-Service (QoS) 
[2], [11], [17]. Some of the technologies, like predictive path estimation, mobility graphs, and multi-
access edge computing (MEC)-assisted migration, are gradually turning into the basic ones that need 
to be used for guaranteeing that the service is always available in highly dynamic environments [3], 
[20], [24]. 

3.2. Proximity-Aware Scheduling 

One of the major trends in the development of future applications has been the focus on proximity-
aware scheduling, which offers both low latency and energy efficiency [1],[14],[23]. Through proximity-
aware scheduling, tasks are assigned to the compute nodes that are located near or have a short-
distance connection to the data sources and users, thus reducing the communication time, conserving 
the bandwidth, and cutting down the power consumption for transmitting data over long distances 
[3],[24]. This trend has come up with the realization that most of the latency in the cloud-centric model 
is due to the network traversal, not computational processes. 

Recent studies have pointed out the importance of those scheduling mechanisms that, first of all, make 
use of local or near-edge resources and only then offload the remaining tasks to the faraway clouds 
[6],[15]. The combination of latency-aware heuristics, multi-tier placement algorithms, and adaptive 
offloading strategies is one of the most successful ways to dynamically assess the trade-offs between 
local execution, fog processing, and cloud computation [3],[19],[25]. Proximity of the device-aware 
schedulers is also a factor that plays an important role in determining the execution locations together 
with parameters such as device density, queue lengths, local congestion, and caching availability 
[1],[22]. To sum up, proximity-driven approaches lead to a reduction in user-perceived latency and an 
increase in total system efficiency, in particular for the real-time applications like video analytics, 
autonomous driving, augmented reality (AR), and industrial IoT [6],[20],[24]. 

3.3. Real-Time and Predictive Analytics 

One of the biggest trends in resource management is the use of real-time and predictive analytics 
together in order to facilitate decision-making that is both proactive and smart [1],[11]. Old-fashioned 
resource allocation methods totally depended on reactive strategies; that is, they would only respond 
to workload spikes or performance drops after they had happened. But the quick rise in the number of 
workloads that are sensitive to latency has made the use of data-driven predictive approaches a key 
factor in getting and maintaining a high level of responsiveness and stability in systems [2],[14],[22]. 

The real-time analytics allow the ongoing checking of the resource conditions, network states, task 
execution metrics, and user activities to make the necessary adaptations, such as scaling, migration, or 
dynamic task scheduling at the right time [1],[17]. The predictive analytics, which are supported by 
machine learning models, time-series forecasting, and reinforcement learning, think ahead about the 
workload spikes, mobility patterns, bandwidth fluctuations, and resource contention before they cause 
an impact on performance [2],[6],[21]. These predictive features assist the orchestrators in reserving 
resources, pre-fetching data, and adjusting task allocations in a proactive manner to avoid congestion 
and SLA violations [6],[19],[25]. 

The use of predictive intelligence in resource management not only adds a layer of automation but also 
raises the level of the overall service perception and experience and reduces the impact of uncertainty 
in distributed settings [2],[14]. The edge-cloud systems are projected to scale further; the real-time and 
predictive mechanisms will be looked upon as the basic elements in the development of self-governing 
orchestration methods [1],[22],[24]. 
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3.4. Multi-Tenancy and Isolation 

Multi-tenancy amidst the development of edge-cloud infrastructures has become a key requirement as 
the latter is gradually supporting a vast number of industries like healthcare, manufacturing, 
autonomous systems, smart cities, and immersive media [2],[3],[24]. With the help of multi-tenancy, 
different applications, services, or organizations can use the same physical edge-cloud infrastructure 
without being separated. Nevertheless, resource-constrained, heterogeneous, and geographically 
distributed edge nodes pose more challenges than the centralized cloud environments where these 
resources are plentiful and standardized in terms of guaranteeing the isolation, fairness, and 
compliance with Service Level Agreements (SLA) among the competing tenants [5],[14],[23]. 

The research movements that are taking place these days are centered on the implementation of strong 
isolation mechanisms among the resources of compute, storage, and network [2],[6],[20]. The 
concurrent execution of latency-sensitive and bandwidth-intensive workloads without performance 
degradation is enabled by using techniques such as lightweight virtualization, network slicing, and 
software-defined resource quotas [6],[19],[25]. In addition, the multi-tenant edge systems are more 
and more applying measures such as priority-based dispatching, admission control, and QoS-aware 
scheduling to maintain fairness [5],[17]. Also, dynamic slice reconfiguration and intelligent workload 
segregation are the new trends in ensuring that tenant activities do not interfere with each other during 
the workload transitions or resource shortages [6],[20],[24]. Hence, the task of managing multiple 
tenants efficiently is turning into a necessity to simultaneously support various applications while 
maintaining reliability, security, and predictable performance in the entire computing environment 
[2],[14],[22]. 

Trend Description Impact on Resource 
Management 

Heterogeneity & Mobility Diverse devices with frequent 
movement 

Requires adaptive scheduling 

Proximity-Aware Scheduling Placing tasks near users/sensors Reduces latency and congestion 
Real-Time Predictive 
Analytics 

Forecasting workloads and failures Enables proactive decisions 

Multi-Tenancy Multiple users on shared infrastructure Needs isolation and fairness 
Energy-Aware Systems Minimizing power and heat Improves sustainability 

Table 1: Trends Influencing Resource Management 

4. Algorithms for Resource Allocation and Scheduling 

Resource allocation and scheduling are the principal mechanisms that establish the distribution of 
tasks, services, and workloads over the different types of nodes in the edge–cloud continuum [1],[14]. 
Such factors as dynamic workloads, moving users, and different QoS requirements necessitate the use 
of powerful algorithms to manage latency, throughput, consumption of energy, and cost [3],[22]. Over 
the past ten years, a wide range of algorithmic paradigms has been developed through research efforts, 
from traditional optimization models to high-tech machine learning–based frameworks [2],[15]. This 
part of the paper organizes these algorithmic approaches and reveals their operational principles and 
drawbacks [2],[24]. 
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Approach Type Key Techniques Strengths Limitations Suitable Use 
Cases 

Optimization-
Based 

Linear 
programming, 
MILP, convex 
models 

High accuracy, 
provable optimality 

High computation 
cost, not scalable for 
real-time 

Static or 
predictable 
workloads 

Heuristic Methods Greedy, round-
robin, rule-based 

Fast and 
lightweight 

Lower accuracy, 
workload-specific 

Low-power edge 
devices 

Metaheuristic GA, PSO, ACO Good global 
search, handles 
complexity 

Slow convergence, 
parameter tuning 

Large-scale 
optimization tasks 

Reinforcement 
Learning 

Q-learning, DQN, 
PPO 

Self-adaptive, 
handles dynamic 
environments 

Needs training time, 
exploration overhead 

Mobility-heavy 
and real-time 
systems 

Federated 
Scheduling 

FL-based, 
distributed agents 

Privacy-preserving, 
scalable 

Communication 
overhead 

Healthcare, smart 
cities 

Energy/Thermal-
Aware 

DVFS, cooling-
aware scheduling 

Energy-efficient, 
extends hardware 
life 

May reduce 
performance 

Battery-powered or 
thermally 
constrained nodes 

Table 2: Comparison of Resource Management Approaches 

4.1. Optimization-Based Approaches 

For a considerable period, optimization-based strategies have been pivotal in the allocation of resources 
in distributed systems [1],[3]. Normally, the methods resort to mathematical optimization problems 
like linear programming (LP), mixed-integer linear programming (MILP), convex optimization, or 
nonlinear optimization to represent the scheduling and offloading decisions. The functions that these 
approaches seek to optimize invariably involve reducing latency, energy usage, or costs while at the 
same time meeting the various constraints imposed by factors like bandwidth, device movement, or 
resource limits [2],[14]. 

MILP models are the most common ones chosen for this type of optimization problem since they allow 
for the global optimum to be reached despite being very costly computationally and not very suitable 
for deployment in large-scale edge networks that require real-time operation [3],[25]. In an effort to 
make them more manageable for study purposes, the researchers use, among other things, relaxations 
like convex approximations, Lagrangian dual decomposition methods, and distributed optimization 
[1],[17]. Stochastic optimization, which incorporates uncertain parameters like changing channel 
conditions or unpredictable task arrivals, is the focus of the latest trends in research [2],[22]. Although 
optimization-based techniques are backed by strong theoretical guarantees, their complexity and 
complete system information requirement restrict their use in highly dynamic, data-intensive scenarios 
typical of edge environments [3],[15]. 

4.2. Heuristic and Metaheuristic Methods 

The numerous resource allocation problems that are NP-hard have made the use of heuristic and 
metaheuristic algorithms a common practice, mainly because they are capable of providing near-
optimal solutions with a much lesser computational impact [1],[3]. Such techniques are especially good 
for edge–cloud environments where timely decisions are a priority, and the utilization of exact 
optimization methods can be impractical [2],[14]. 

Heuristics such as greedy algorithms, load-balancing rules, and priority-based scheduling give 
solutions that are faster and more scalable, but their efficiency often declines in situations that change 
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very fast [5],[19]. Metaheuristic methods—such as Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA), and Tabu Search—
handle the search for solutions better by finding a right balance between exploration and exploitation 
[1],[20]. These techniques can deal with multi-objective issues like latency–energy trade-offs and the 
need for different types of resources [2],[24]. 

Hybrid methods that join heuristics with machine learning predictions or analytical cost models are 
also on the rise [2],[6]. While metaheuristics do not assure global optimality, their high adaptability 
and scalability make them good tools for complicated edge–cloud scheduling issues, especially in multi-
tenant or mobility-heavy scenarios [1],[14]. 

4.3. Reinforcement Learning for Dynamic Environments 

Reinforcement Learning (RL) has reddened in the edge-cloud continuum as one of the most effective 
and resourceful paradigms [2],[6]. The RL-based solutions grant the learning agents the power to come 
up with new findings through their interaction with the ever-changing environments without the 
obligation of having prior knowledge of the system models. This quality is predominantly beneficial 
when it comes to the edge systems that have fluctuating workloads, unpredictable mobility patterns, 
and changing network conditions [1],[14].  

Deep Reinforcement Learning (DRL) technology—including Deep Q-Networks (DQN), Actor-Critic, 
and Proximal Policy Optimization (PPO)—pays for much more than just resource allocation, as it could 
be used for tasks such as offloading, bandwidth allocation, caching, service migration, and energy-
aware scheduling [2],[19]. DRL has the capacity to discern intricate interactions between various 
system parameters and thus to get improved decisions in odd and uncertain situations [6],[21]. 

In addition, Multi-Agent Reinforcement Learning (MARL) is a new trend that allows manifold edge 
nodes or users to work together in a distributed way. MARL systems not only boost the scalability but 
also minimize the redundancies in communication and establish localized decision-making while still 
meeting global performance targets [2],[17]. 

The combination of predictive RL and federated RL models further widens the scope of adaptability, as 
it involves the use of workload predictions or privacy-preserving distributed learning [6],[20]. The RL 
approaches, despite having these advantages, encounter difficulties such as the necessity for long 
training, issues relating to the instability of convergence, and the challenge in generalizing the results 
across different heterogeneous systems [1],[15]. Notwithstanding, RL still continues to be one of the 
algorithmic foundations with the greatest promise for autonomous edge-cloud resource orchestration 
in the future [2],[24]. 

4.4. Energy-Aware and Thermal-Aware Strategies 

In the edge-cloud continuum, energy-aware and thermal-aware resource allocation strategies are 
getting more and more important since a large number of devices operate under battery limitations, 
have their cooling capabilities restricted, and suffer from intermittent power availability [1],[14]. Edge 
nodes such as access points, roadside units, and IoT gateways have to deal with energy and thermal 
limitations that directly determine the performance and reliability of these centers, which are 
centralized data centers that enjoy the luxury of dedicated cooling systems and plenty of power [2],[22].  

Energy-aware algorithms try to meet performance demands while cutting down power usage by 
employing various techniques like dynamic voltage and frequency scaling (DVFS), adaptive workload 
partitioning, selective task offloading, and switching to low-power transmission modes [1],[6]. These 
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methods analyze energy-latency trade-offs to make a decision regarding the execution of tasks: local 
processing, migration to a nearby edge server, or cloud offloading [6],[20]. 

Thermal-aware scheduling works hand-in-hand with energy management by anticipating temperature 
variations and stopping thermal areas from growing that might lead to throttling, performance losses, 
or even hardware failure [2],[19]. Among the main techniques are thermal modeling, temperature 
prediction through machine learning, and task placement according to cooling, which help to distribute 
workloads so that no area of the machine gets too hot [1],[17].  

Effective collaboration of energy and thermal management strategies leads to eco-friendly and 
sustainable edge-cloud ecosystems that not only prolong device life but also reduce operating costs and 
maintain the same level of quality of service (QoS) [6],[21]. 

4.5. Data-Driven and Federated Scheduling 

Data-driven scheduling has become a major trend as systems start to rely more on real-time analytics, 
historical datasets, and machine learning predictions to optimize resource allocation [1],[11]. The 
integration of these methods entails workload forecasting, mobility prediction, anomaly detection, and 
behavioral modeling roles to predict the changes in resource demand and to tune task placement 
accordingly [2],[14]. The approaches employed here result in a decrease in SLA violations, lesser 
congestion, and a significant increase in the overall system efficiency [6],[24]. 

Federated scheduling applies the data-driven principles but allows for distribution of decision-making 
across several devices while keeping the data private [2],[20]. Rather than sending the raw data to the 
cloud, the edge nodes work together by sharing the model updates or the local insights, thus creating a 
distributed intelligence without adding significantly to the bandwidth and without breaching the 
privacy constraints [6],[22]. The federated scheduling framework is especially useful for scenarios 
involving sensitive data—like healthcare, smart transportation, or industrial monitoring—where data 
aggregation in a central location is not an option [1],[25]. 

Together, the technologies of data-driven and federated scheduling form the support for scalable and 
privacy-preserving resource management and are soon going to be the foundation of the new 6G and 
IoT networks [2],[24]. 

5. Networking Considerations and Traffic Management 

Efficient networking is the backbone of service delivery across the edge-cloud continuum without 
interruptions [1],[14]. With applications continuously producing huge quantities of data, effective 
traffic management is necessary to prevent congestion, maintain low latency, and guarantee bandwidth 
for both mobile and stationary users [5],[22]. Moreover, the distributed and diverse nature of edge 
infrastructures necessitates a smart coordination between the networking and computation layers that 
is intelligent [3],[24]. The contemporary research is moving towards the integration of Software-
Defined Networking (SDN), Network Function Virtualization (NFV), and multi-access edge computing 
(MEC) for the purpose of dynamically controlling network flows, prioritizing latency-sensitive tasks, 
and optimizing bandwidth usage [1],[17]. The networking considerations have now gone beyond the 
traditional routing and have included application-aware and context-aware traffic shaping that 
conforms to the resource orchestration strategies of the network decisions [5],[19]. 

5.1. Edge-Managed Networking 

Edge-managed networking is the new trend where the edge nodes are given the task of managing and 
optimizing the local network partially. Edge nodes do not have to be dependent on the centralized cloud 
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controllers only, but rather they can use SDN-enabled programmable switches, local controllers, and 
distributed intelligence to make decisions in almost real-time [1],[17]. 

One of the advantages of localized management is 

 Quicker reaction time to congestion, route failures, and increase in user traffic [3],[24]. 
 Local traffic offloading, which involves, for example, redirecting flows to alternative edge nodes 

or caches [1],[20]. 
 Routing based on load awareness, which is a situation where the decision takes into account the 

existence of compute resource availability and the quality of the link at the same time [5],[22]. 
 Network analytics integration, that is, utilizing real-time measurements to tweak packet 

scheduling and prioritization [3],[19]. 

Edge-managed networking contributes to the large-scale, geographically dispersed networks' 
adaptability in a big way, and at the same time, control-plane overhead is reduced [1],[14]. It lays the 
ground for innovations like cooperative edge clusters, vehicular edge networking, and context-aware 
traffic steering [3],[24]. 

5.2. Bandwidth Allocation and Congestion Control 

Bandwidth allocation along with congestion control still hold their positions as the main challenges in 
the field of wireless communication, even with the aspect of its volatile nature, the variable link 
capacities, and the different applications competing for the same bandwidth [1],[14]. The conventional 
TCP-based mechanisms of congestion are unable to support the requirements of IoT and real-time 
applications, which in turn urgently need deterministic and ultra-low-latency communication; thus, 
these applications are placed under the category of being highly dense [5],[23]. 

The recent approaches have shifted their focus to the following points: 

 Application-aware bandwidth allocation, giving the highest priority to mission-critical tasks like 
AR/VR, autonomous driving, or emergency services [5],[19]. 

 Fairness-based algorithms that would secure an even resource sharing among the users and the 
service slices [3],[22]. 

 AI-empowered congestion forecasting, which relies on the combination of past traffic trends and 
live data from the monitoring system to identify congestion spots before they actually happen 
[1],[17]. 

 Cross-layer congestion control, where the transport, network, and application levels work 
together closely so that their routing, scheduling, and offloading decisions are perfectly aligned 
[3],[24]. 

 Elastic bandwidth reservation, a method through which the unused capacity during changing 
workloads is dynamically reassigned [5],[20]. 

These are the upgrades that have made the limited bandwidth resources more efficient in their 
utilization, led to a reduction in packet loss, and given more steady QoS even in the case of heavy traffic 
[1],[14]. 

5.3. Data Locality and Caching Policies 

In the edge-cloud continuum, where bandwidth constraints and latency intolerances commonly limit 
the efficiency of remote computation, data locality and caching have developed into indispensable 
techniques for performance optimization [1],[3]. Data locality basically means placing and processing 
data near its creation point, which leads to the elimination of overhead due to transmission, the 
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shortening of end-to-end latency, and the non-occurrence of network congestion [3],[24]. This is the 
case for applications that have real-time requirements, for instance, video analytics, autonomous 
navigation, and industrial monitoring, where the accuracy and safety of the service are directly 
dependent on the promptness of data movement [6],[20].  

In this context, caching policies cover the locality aspect by keeping at the edge the data that is 
frequently accessed or the results of intermediate computations [1],[22]. Today’s caching methods 
include semantic caching, popularity-based caching, cooperative caching among edge nodes, and use 
of machine learning-based content demand prediction [3],[19]. By taking advantage of these 
techniques, hit ratios are increased and the burden on far-off cloud servers is lessened. Moreover, tiered 
cache architectures that include device, edge, fog, and cloud levels support the rapid and efficient 
distribution and reuse of data across the entire system [3],[24]. 

The coupling of data locality and caching into resource management schemes leads to a tremendous 
increase in scalability, a better user experience, and greater system efficiency [1],[14]. With the increase 
in data volumes, intelligent caching strategies are anticipated to be the leading factor in minimizing 
backbone traffic and enabling the execution of high-throughput, latency-sensitive workloads [6],[20]. 

6. Security, Privacy, and Trust in Resource Management 

Security, privacy, and trust are the primary factors that support the effective resource management in 
the edge-cloud continuum [2],[14]. Edge deployments are very much distributed and oftentimes are 
physically open, which makes them susceptible to various attacks such as unauthorized access, data 
leakage, service tampering, man-in-the-middle attacks, and the exploitation of resource orchestration 
mechanisms [5],[23]. In contrast to centralized cloud environments that have uniform security controls 
and rigorous supervision, edge deployments are very much distributed and thus physically exposed, 
making them susceptible to a variety of attacks, which include but are not limited to unauthorized 
access, data leakage, service tampering, man-in-the-middle attacks, and the exploitation of resource 
orchestration mechanisms [2],[24]. 

The move towards multi-tenancy, collaborative scheduling, federated learning, and automated 
orchestration is propelling the demand for secure infrastructures that not only enforce tight isolation 
but also maintain confidentiality and build trust among the different, variegated nodes [6],[20]. As 
resource management systems get more sophisticated and rely more on data, security measures will 
not be applied separately but will be incorporated into the orchestration process from the beginning 
[5],[17]. This part of the paper defines three areas of concern, namely, isolation & access control, 
privacy-preserving computation & trustworthy orchestration [2],[14]. 

6.1. Isolation and Access Control 

Isolation and access control are the two main things that allow blocking the bad activities, keeping the 
tenants apart, and protecting the delicate information and services [2],[5]. For the edge-cloud 
continuum, it would be a must to isolate the different parts of the resources that are being shared due 
to the extreme heterogeneity and multi-tenancy [5],[23].  

The contemporary ways are:  

 Using containerized isolation that implements Linux namespaces, cgroups, and unikernel-based 
microservices for an even smaller attack area [2],[24]. 

 The network slicing concept, allowing the logical separation of traffic and resources of 
applications or tenants sharing the same infrastructure [5],[19]. 

 RBAC/ABAC access control schemes combined with distributed authentication services [6],[20]. 
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 Policy enforcement at a fine-grained level using software-defined security to change the 
permissions actively depending on the context and the behavior of the workload [5],[22]. 

The advanced strategies also add the zero-trust architecture, where continuous verification is put in 
place instead of the implicit trust [2],[14]. The security and resource management decision-making 
power is strengthened by these mechanisms, even in the situations with little or no central control 
[6],[20]. 

6.2. Privacy-Preserving Computation 

One of the things that comes with edge computing is the privacy issue since a lot of the sensitive data, 
like the sensor data, personal data, and industrial telemetry, are handled at this point [1],[22]. Privacy-
preserving computation is the method that is used to perform resource allocation, analytics, and 
learning without exposing the raw data to unauthorized users [2],[14]. 

The main techniques that are just coming up include 

 Federated Learning—which uses shared models with local data for training and does not require 
the data to be transmitted [2],[6]. 

 Homomorphic Encryption – which allows for computations on encrypted data while still 
maintaining the confidentiality of the data [1],[19]. 

 Secure Multi-Party Computation (SMPC)—which—which provides a way for distributed nodes 
to jointly compute functions without exposing their separate inputs [6],[21]. 

 Differential Privacy—which is a method that adds noise to the statistical outputs so that the 
sensitive information cannot be reconstructed [2],[24]. 

More and more these privacy-preserving features are being embedded into scheduling and 
orchestration frameworks that allow for data-driven decisions to be made while confidentiality is still 
assured [6],[20]. These techniques are becoming vital for good edge-cloud operations as regulatory 
requirements tighten and data sensitivity rises [2],[14]. 

6.3. Trustworthy Orchestration 

Trustworthy orchestration makes it possible to consider resource management choices as not only 
reliable but also verifiable and resistant to tampering or improper settings [2],[24]. With the growing 
adoption of autonomous and AI-driven orchestration, it is imperative to put in place the necessary 
safeguards so that the decisions of schedulers, agents, or policies are not compromised or changed by 
adversarial actors [5],[17]. 

The new trends suggest: 

 The use of blockchain and distributed ledger technologies (DLT) for the creation of 
unchangeable records of orchestration activities, the consumption of resources, and the origin 
of services [2],[20]. 

 The application of authentication methods—like Trusted Execution Environments (TEEs) and 
remote Verification—to confirm that the edge nodes are running the authorized software and 
configurations [6],[21]. 

 The inclusion of Explainable AI (XAI) in resource management to increase transparency, 
support operators in understanding decisions, and detect abnormal behaviors [5],[19]. 

 The application of trust scoring and reputation systems, which enable nodes to assess the 
trustworthiness of their peers before engaging in shared tasks or federated learning [2],[23]. 
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Trustworthy orchestration is the key to the overall strength of edge–cloud ecosystems, as it deals with 
the increasing complexity and independence of distributed resource management frameworks [6],[24]. 
The transition of systems to zero-touch automation necessitates that trust be an inherent quality of the 
orchestration fabric for the safe and reliable operation [5],[14]. 

7. Open Challenges and Research Directions 

There are a lot of unresolved issues that still need innovative solutions to be implemented despite the 
rapid development of resource management in the edge–cloud continuum [1],[14]. The various 
hardware types, differing software ecosystems, changing workloads, and the involvement of multiple 
parties are still making orchestration and optimization more difficult [2],[22]. In addition, the greater 
reliance on AI, IoT, blockchain, and autonomous systems has raised the bar for requirements on real-
time decision-making, sustainability, and multi-layer security to the highest level ever [3],[24]. Unified 
frameworks that incorporate scalable system design, interoperable standards, intelligent automation, 
and eco-efficient algorithms are necessary to fill such gaps. The upcoming generation of edge–cloud 
resource management is greatly influenced by the identifying of research challenges and the proposing 
of future directions outlined in this section [1],[14]. 

7.1. Standardization and Interoperability 

Unification in standards for communication, data formats, and orchestration across edge and cloud 
environments is one of the main challenges [2],[24]. Current solutions are based on APIs of particular 
vendors and isolated management tools, which give rise to fragmented deployments and poor mobility 
[1],[17]. One of the major issues that arise in such situations is the interoperability of different devices, 
edge clusters, and cloud providers' resources [3],[22]. The future research will need to prioritize the 
creation of common metadata descriptions, API interfaces, and cross-layer orchestration protocols that 
will make the integration of different technologies seamless [2],[14]. Initiatives such as ETSI MEC, 
OpenFog, CNCF Edge, and 5G network slicing do offer basic support, but still, a much broader, multi-
domain framework is required to get the full interoperability and resource management that is vendor-
neutral [3],[24]. 

7.2. Scalability and Observability 

The challenge of scaling resource management to thousands of micro-edge nodes, dynamic workloads, 
and distributed microservices is still very much alive [1],[14]. The traditional centralized orchestration 
modes are unable to cope with the large amount of latency-sensitive workloads [2],[24]. New 
distributed and hierarchical orchestrators provide alternatives, but they do not possess well-defined 
observability frameworks [3],[19]. To get a real-time view of resource utilization, network situation, 
application performance, and security events at the edge is especially hard due to the scarce resources 
like memory, power, and storage [1],[23]. Lightweight telemetry frameworks, decentralized monitoring 
protocols, and AI-based observability models, which can predict anomalies and optimize resource 
allocation in an autonomous manner, are some of the research directions [2],[17]. The observability at 
the edge becomes a prerequisite for the reliable and real-time edge-cloud operation [3],[24]. 

7.3. Robustness to Failures and Adversarial Conditions 

The edge environments are naturally the weakest links in the chain, and they are susceptible to a 
multitude of failures, among which are device outages, loss of connectivity, and even tampering [1],[14]. 
The adversarial conditions, like spoofing and data poisoning, can impact scheduling decisions and lead 
to overall system degradation [2],[22]. To achieve robustness, the system needs to incorporate fault-
tolerant architecture, predictive failure analysis, and security-aware scheduling algorithms [6],[20]. In 
addition, redundant execution, multi-path networking, and trust-based resource scoring can all turn 
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out to be effective tools in risk mitigation [2],[24]. Nevertheless, the creation of resilient resource 
managers, which would adjust to the dynamically changing failures without sacrificing QoS, is still a 
challenge in research [1],[14]. It is suggested that future work should focus on the development of 
adversarially robust models, secure distributed consensus techniques, and real-time fault prediction 
systems that are suitable for edge devices with limited resources [6],[21]. 

7.4. Eco-Efficient Resource Management 

As edge deployments expand, energy efficiency along with sustainability has become the most 
important thing [1],[22]. A lot of edge nodes work with limited power sources, while huge cloud data 
centers are responsible for large amounts of carbon emissions [2],[24]. The existing resource 
management methods usually rely on the criteria of performance only and do not take into account the 
environmental impact [1],[14]. The goal of eco-efficient resource management is to consume less 
energy, have a smaller carbon footprint, and have fewer thermal hotspots while providing excellent 
service [6],[20]. Green scheduling algorithms, dynamic power scaling, carbon-aware workload 
placement, and thermally optimized orchestration architectures are some of the directions good 
research will take in the future [2],[25]. Besides, the connection of solar and wind energy at edge 
locations, the use of energy harvesting sensors, and AI-based energy prediction models are seen as a 
promising step toward the creation of sustainable edge–cloud ecosystems [6],[21]. 

Challenge Description  Research Gap  
Standardization Lack of unified APIs and protocols Need globally adoptable MEC/Edge standards 
Observability Hard to monitor thousands of edge nodes Lightweight telemetry and distributed tracing 
Robustness Failures, attacks, mobility Secure, adversarial-resistant schedulers 
Eco-Efficiency High energy and carbon footprint Green-aware placement and thermal modeling 
Interoperability Vendor fragmentation Cross-platform orchestration frameworks 

Table 3: Open Challenges and Research Gaps 

8. Conclusion 

The management of resources in the edge–cloud continuum has been a primary factor that supports 
the whole modern distributed computing and gives performance, scalability, and reliability to those 
applications that require low latency, high bandwidth, and context awareness. This survey was 
concerned with the development of trends, algorithms, and challenges coming to this domain, 
especially mentioning the roles that heterogeneity, mobility, proximity-aware scheduling, predictive 
analytics, and multi-tenancy play in the resource control across various environments. We have 
reviewed the main algorithmic ways, such as optimization models, heuristics, metaheuristics, 
reinforcement learning, and data-driven strategies, as well as the important networking factors in 
managing the traffic, allocating the bandwidth, and controlling the data locality. 

The issues of security, privacy, and trust still hold ground as the major challenges due to the edge–cloud 
nature and multi-stakeholder participation in the ecosystems. The provision of isolation, access control, 
privacy-preserving computation, and trustworthy orchestration still calls for a well-balanced blend of 
cryptography, secure hardware, and smart monitoring mechanisms. A lot has been achieved in the area 
of advanced technology, but major challenges are still out there, particularly in the areas of 
standardization, interoperability, scalability, observability, robustness, and eco-efficient resource 
usage. 

The future of resource management in terms of AI-assisted automations, federated orchestration, 
lightweight virtualization, and green computing will be the transformative one. The future of technology 
lies in the continuance of the research that aims at building systems that are adaptive, resilient, and 
mindful of energy that could operate without a hitch in dynamic and heterogeneous environments. If 
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the gaps that have been noticed in the current systems are tackled and the standards unified, the edge-
cloud continuum will not only become a fully integrated, intelligent, and environmentally friendly 
computing paradigm but also one that can accommodate the gigantic scale of future applications. 
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