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Abstract

Quantum computing (QC) promises to revolutionize data-intensive fields due to its potential for exponential
speedups and novel computational paradigms. Satellite image processing (also called Earth Observation, EQ) is one
such domain, where large volumes of high-dimensional data (e.g., multispectral or hyperspectral images) challenge
classical methods in terms of computation, memory, and latency. In this review, we survey the state-of-the-art at the
intersection of quantum computing and satellite image processing. We first outline quantum image representations,
key quantum algorithms proposed for image processing (e.g., edge detection, segmentation, classification), and
quantum machine learning (OML) models. We then examine recent studies that target Earth observation data,
including resource estimation and hybrid quantum-classical architectures. Next, we delineate the major challenges
(hardware, encoding, noise, scalability) and propose potential solutions, focusing on suitable quantum algorithms and
hybrid strategies. Finally, we discuss future directions and research opportunities.

Index Terms: Quantum image processing, satellite imagery, Earth observation, Quantum machine learning, Quantum
algorithms, Remote sensing.

1.0 Introduction

Satellite imagery plays a central role in modern global monitoring systems, supporting
applications such as climate change assessment, land-use classification, disaster management,
precision agriculture, and military surveillance. With the increasing deployment of high-resolution
passive and active sensors—ranging from multispectral imagers to hyperspectral sensors and
synthetic aperture radar (SAR)—satellite data has become richer, more complex, and extremely
large in volume. For instance, hyperspectral images may contain hundreds of narrow spectral
bands, yielding millions of high-dimensional feature vectors per scene. Processing such datasets
using traditional algorithms has become computationally demanding, especially in scenarios
requiring real-time or large-scale analysis. Classical image processing and machine learning
methods have advanced significantly, yet they confront inherent constraints including memory
bottlenecks, energy consumption, algorithmic inefficiencies, and the curse of dimensionality.
Quantum computing (QC) offers a fundamentally different computational paradigm capable of
addressing these challenges by exploiting quantum superposition and entanglement to process
high-dimensional data more efficiently. Theoretical studies suggest speedups in similarity search,
optimization, and linear-algebra-based operations—core components of remote sensing tasks.

In this context, Quantum Image Processing (QIP) has emerged as a promising sub-
discipline, focusing on encoding, storing, processing, and analyzing image data using quantum
systems. Foundational efforts include the development of quantum image representations such as
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the Flexible Representation of Quantum Images (FRQI) and the Novel Enhanced Quantum
Representation (NEQR), which allow pixel values and spatial coordinates to be encoded into
quantum states. These representations enable the implementation of quantum operations for tasks
such as edge detection, segmentation, filtering, and classification. As recent work begins applying
QIP concepts to real satellite imagery, new hybrid quantum-classical frameworks, quantum
machine learning models (e.g., QCNNs), and quantum optimization techniques are being explored.
Although the field remains nascent and quantum hardware is constrained by noise and limited
qubit counts, early results indicate potential advantages for remote sensing use cases.

This paper expands on these developments by providing a comprehensive review of QIP
research with a focus on satellite imagery. We analyze classical-to-quantum image encoding
methods, relevant quantum algorithms, use-cases in Earth observation, technical challenges, and
future pathways toward achieving quantum advantage in remote sensing.

2.0 Background and Quantum Foundations

A. Quantum Computing Basics

Qubits and Quantum States At the heart of quantum computing lies the qubit, the quantum
analogue of the classical bit. Unlike a classical bit, which can exist in one of two states—O0 or
I—a qubit can exist in a superposition of both states simultaneously, represented as
[Y)=a|0)+p|1), where a and 3 are complex numbers that satisfy the normalization condition
|a|2+|p|2=1. This property allows quantum computers to perform computations on
multiple states. simultaneously, offering a form of parallelism that is exponentially more
powerful than classical computing as shown in Figure 2.1. However, Issues such as coherence,
noise, and gate errors remain central challenges.

Bit Qubit
1 1)

“‘ :‘ " “] : ) = al0) + BI1),
0 10)
Figure 2.1

B. Quantum Image Representation

A core question in quantum image processing (QIP) is how to encode a classical image into
a quantum state. Several proposals have been proposed:
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1. Flexible Representation of Quantum Images (FRQI): Encodes pixel positions in basis
states and pixel values in amplitude.

2. Quantum Probability Image Encoding (QPIE): Encodes probabilities.
3. Other schemes: more compact amplitude-based encodings.

Ruan, Xue et.al present opportunities and challenges regarding QIP representations,

arguing that while quantum parallelism grants advantages, some claims of “quantum superiority”

are overstated. Furthermore, research has explored transformation from classical to quantum
images and noise mitigation strategies in the encoding process.

3.0

Literature in Quantum Image Processing
3.1 Classical Image Processing Tasks on Quantum Computers
1. Edge Detection:

*  Xi-Wei Yao et al. (2017) propose encoding a grayscale image into a
quantum state (amplitudes) and devise a quantum edge detection
algorithm that remarkably requires a single-qubit operation,
independent of image size.

2. Improved Edge Detection Algorithms:

e Shubha, et al. (2024) introduced a modified quantum Hadamard Edge
Detection (QHED) algorithm combined with FRQI encoding to handle
non-binary images more accurately.

3. Image Classification:

e Dang, et al. (2018) propose a quantum k-nearest neighbor (kNN)
algorithm for image classification. They extract classical feature
vectors, load them into a quantum superposition, compute similarity in
parallel, and use a quantum minimum search. Their complexity is

O(VkM) vs. classical O(kM), showing a quadratic speed-up.
4. Quantum Convolutional Neural Networks (QCNN):

e Prajapat, Tomar, Kumar, Kumar, and Vasilakos (2025) propose a QCNN
model for image classification, showing that combining quantum
circuits and deep learning can yield efficient processing.

3.2 Reviews and Surveys of Quantum Image Processing
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e Ebrahimpour et al. (2024) provide a comprehensive survey of quantum
computing in image processing, covering compression, enhancement,

pattern recognition, recovery, and future directions. AIAI Journal+1

e Sungheetha (2023) surveys applications and challenges specifically in
quantum image processing, noting both promise and practical bottlenecks.

IRO Journals

e Mamatha et al. (2024) analyze advanced image processing tasks via
quantum computing, emphasizing scalability and hardware constraints.

LJISAE

3.3 Quantum Computing for Satellite / Remote Sensing (Earth Observation)

e Otgonbaatar et.al (2023) present a detailed review in /[EEE Transactions on

Quantum Engineering,

specifically for satellite
estimating quantum resource requirements and assessing hybrid HPC + QC
architectures for Earth observation data. [EEE Transactions on Quantum

Engineering+2IEEE Transactions on Quantum Engineering+2

More recently, Sebastianelli, et al. (2024) introduces a quanvolutional neural
quantum convolution) model that directly targets Earth
observation data. The authors report up to 5% accuracy improvement over classical
methods in remote sensing tasks, with a parameter-efficient design and no need for training

network (quanvolution =

quantum kernels. arXiv. However, Comparison among various Quantum Image

Representation Approaches is shown in Table 3.1.

Table 3.1: Comparison among various Quantum Image Representation Approaches

Quantum Image
Representation Approach

Key Features

Advantages

Challenges

Flexible Representation of
Quantum Images (FRQI)

Novel Enhanced Quantum
Representation (NEQR)

Quantum Image Processing

(QIP)

Encodes image information
using amplitude and phase
of quantum states

Uses a biary sequence to
encode pixel values directly
into quantum states

Utilizes quantum
algorithms  to  perform
image transformations

Efficient storage of image
data

Higher fidelity in
representing image details

Potential for faster
processing times compared
to classical methods

Requires complex quantum
circuits for operations

Increased resource
requirements (more qubits)

Still in early stages of
development;  hardware
limitations

3.4 Quantum Simulation & Evaluation

Hasegawa et.al. (2024) evaluate quantum image processing workflows
on classical hardware using GPU-based quantum simulations (e.g., cu
Quantum). Their experiments verify that many quantum image-
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processing algorithms can be simulated, exploring performance and
resource tradeoffs.

Challenges in Applying Quantum Computing to Satellite Image Processing
Exploring literature, the main challenges are:

1. Encoding High-Dimensional Satellite Data:
Satellite images (especially hyperspectral data) have many bands and high resolution.
Representing each pixel’s spectral vector in a quantum state is nontrivial. Quantum
image representations (e.g., FRQI) may be poor.

2. Quantum Resource Constraints:
Quantum circuits require qubits, gates, and coherence time. As shown by Otgonbaatar
et al, resource estimation (e.g., number of 7-gates after transpiration) is critical. IEEE
Transactions on Quantum Engineering+1

3. Noise / Error:
Real quantum hardware (especially NISQ) suffers from decoherence and gate errors.
These errors can degrade encoded image data and algorithmic performance.

4. Scalability and Circuit Depth:
Deep circuits for complex tasks (e.g., quantum convolution, segmentation) may
exceed coherence time, making them infeasible on current hardware.

5. Hybrid Architecture Complexity:
Deciding how to partition processing between classical HPC and quantum resources
is challenging. Suboptimal partitioning could eliminate quantum advantage.
Otgonbaatar et al. investigate this trade-off. [EEE Transactions on Quantum

Engineering

6. Benchmarking and Validation:
There is a lack of standard datasets and benchmarks for evaluating quantum image-
processing on EO data. Also, simulating quantum algorithms (e.g., via cu Quantum)
has limits.

7. Misleading Claims of Quantum Superiority:
As Ruan, Xue, and Shen argue, not all claims of exponential speedup are realistic
under practical constraints. OUCI

Possible Solutions and Suitable algorithms
Given the challenges, literature and theory point to several possible strategies and
algorithms:

A. Hybrid Quantum-Classical Architectures
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Partitioning tasks: Use classical pre-processing (e.g., down sampling, PCA)
to reduce data dimensionality, then apply quantum circuits on the compressed
representation. For instance, classical PCA followed by Quantum Principal
Component Analysis (QPCA) can reduce the effective qubit count.

Hybrid training: Parameterized quantum circuits (PQCs) / variational
quantum algorithms (VQASs) can be trained using classical optimizers, as in
variational quantum classifiers or QCNNSs.

B. Quantum Algorithms for Core Tasks

Quantum Edge Detection:

Use amplitude-encoded image representations (like FRQI) together with single-
qubit operations to detect edges with quantum speed-up. The Phys. Rev. X
method is a key example. Physical Review Journals

Modity QHED with more flexible encodings (e.g., FRQI), as in the work by
Shubha et al. arXiv

Quantum Classification / Clustering:

Quantum kNN: Using quantum parallelism to compute similarity and then
quantum minimum search yields a quadratic speed-up. arXiv

Quantum Convolutional Neural Networks (QCNN): For EO images, one can
design QCNN:Ss tailored to remote sensing features. The Quanv4EO model is
promising: quanvolution layers followed by quantum circuits processing
spectral/spatial patches. arXiv

Quantum PCA (QPCA): Use QPCA to reduce dimensionality of hyperspectral
data before further processing.

Quantum Optimization / Segmentation:

Formulate segmentation as a QUBO (Quadratic Unconstrained Binary
Optimization) problem and solve using QAOA (Quantum Approximate
Optimization Algorithm). Such an approach can be particularly useful for
partitioning land cover, change detection, or clustering pixel groups.
Alternatively, use quantum annealing (if hardware available) for segmentation
or clustering tasks.

C. Error Mitigation and Circuit Optimization

Error mitigation techniques: Use techniques such as zero-noise extrapolation,
mitigation via calibration, dynamical decoupling, or circuit cutting. For
example, quantum circuit cutting decomposes large circuits into smaller ones
to reduce resource needs.

Shallow circuit design: Focus on minimal-depth circuits, small, parameterized
gates, and low entanglement — critical for NISQ devices.
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¢ Encoding optimizations: Use more compact encodings, compress information
before loading, or hybrid encoding to minimize qubit usage.

D. Simulation and Benchmarking

e Use classical simulators optimized for quantum circuits (e.g., GPU-based
simulators like cuQuantum) to prototype and evaluate algorithms before
deploying on real QC hardware. Hasegawa et al. demonstrated this approach.
Fukushima Laboratory

e Develop EO-specific quantum benchmarking datasets (e.g., small patches of
multispectral or hyperspectral images) that can be used to compare quantum vs
classical performance.

6.0 Scope of Future Research Directions

1.

Scalable Quantum Representations: Research on new quantum image encoding
schemes explicitly tailored for high-dimensional EO data (e.g., hyperspectral bands) to
minimize qubit overhead.

Hybrid Learning Frameworks: Develop variational quantum circuits that incorporate
domain knowledge from remote sensing (e.g., spatial-spectral correlations) and
classical deep learning.

Resource-efficient Quantum Circuits: Design PQCs for image processing with
minimal T-gates, shallow depth, and noise robustness.

Quantum Segmentation & Change Detection: Extend QAOA-based methods for
segmentation, and dynamic circuits for detecting temporal changes in satellite images.

Quantum Benchmarking for EQO: Establish standard quantum benchmarking
protocols and datasets for satellite imagery to compare quantum methods fairly.

Error Mitigation in Remote Sensing Use Cases: Explore advanced error mitigation
strategies specifically in image processing pipelines.

Hybrid HPC+QC Deployment Strategies: Explore architectures where large-scale
EO processing is distributed between HPC clusters and quantum accelerators,
optimizing performance, cost, and resource utilization (extending analyses like those
in Otgonbaatar et al.).

7.0 Conclusion

Quantum computing holds significant promise for satellite image processing (Earth

observation), offering potential advantages in speed, dimensionality reduction, and novel
processing paradigms. However, as the literature shows, many challenges remain—from
encoding and hardware limitations to error, resource constraints, and hybrid architecture
design. Current research (e.g., quantum edge detection, QCNNSs, resource-estimation for

PAGE NO: 120


https://fukushima.web.nitech.ac.jp/paper/2024_fst_hasegawa.pdf?utm_source=chatgpt.com

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 11 2025

EO datasets) provides proof-of-concept and initial benchmarks but realizing practical
quantum advantages in real-world EO tasks will require careful algorithmic design,
efficient encoding, error mitigation, and hybrid computation strategies. Future work
combining quantum algorithm development, realistic simulation, and hardware-aware
deployment may pave the way for quantum-enhanced remote sensing workflows.
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