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Abstract 

Quantum computing (QC) promises to revolutionize data-intensive fields due to its potential for exponential 

speedups and novel computational paradigms. Satellite image processing (also called Earth Observation, EO) is one 

such domain, where large volumes of high-dimensional data (e.g., multispectral or hyperspectral images) challenge 

classical methods in terms of computation, memory, and latency. In this review, we survey the state-of-the-art at the 

intersection of quantum computing and satellite image processing. We first outline quantum image representations, 

key quantum algorithms proposed for image processing (e.g., edge detection, segmentation, classification), and 

quantum machine learning (QML) models. We then examine recent studies that target Earth observation data, 

including resource estimation and hybrid quantum-classical architectures. Next, we delineate the major challenges 

(hardware, encoding, noise, scalability) and propose potential solutions, focusing on suitable quantum algorithms and 

hybrid strategies. Finally, we discuss future directions and research opportunities. 

Index Terms: Quantum image processing, satellite imagery, Earth observation, Quantum machine learning, Quantum 

algorithms, Remote sensing. 

1.0 Introduction 

Satellite imagery plays a central role in modern global monitoring systems, supporting 

applications such as climate change assessment, land-use classification, disaster management, 

precision agriculture, and military surveillance. With the increasing deployment of high-resolution 

passive and active sensors—ranging from multispectral imagers to hyperspectral sensors and 

synthetic aperture radar (SAR)—satellite data has become richer, more complex, and extremely 

large in volume. For instance, hyperspectral images may contain hundreds of narrow spectral 

bands, yielding millions of high-dimensional feature vectors per scene. Processing such datasets 

using traditional algorithms has become computationally demanding, especially in scenarios 

requiring real-time or large-scale analysis. Classical image processing and machine learning 

methods have advanced significantly, yet they confront inherent constraints including memory 

bottlenecks, energy consumption, algorithmic inefficiencies, and the curse of dimensionality. 

Quantum computing (QC) offers a fundamentally different computational paradigm capable of 

addressing these challenges by exploiting quantum superposition and entanglement to process 

high-dimensional data more efficiently. Theoretical studies suggest speedups in similarity search, 

optimization, and linear-algebra-based operations—core components of remote sensing tasks. 

In this context, Quantum Image Processing (QIP) has emerged as a promising sub-

discipline, focusing on encoding, storing, processing, and analyzing image data using quantum 

systems. Foundational efforts include the development of quantum image representations such as 
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the Flexible Representation of Quantum Images (FRQI) and the Novel Enhanced Quantum 

Representation (NEQR), which allow pixel values and spatial coordinates to be encoded into 

quantum states. These representations enable the implementation of quantum operations for tasks 

such as edge detection, segmentation, filtering, and classification. As recent work begins applying 

QIP concepts to real satellite imagery, new hybrid quantum-classical frameworks, quantum 

machine learning models (e.g., QCNNs), and quantum optimization techniques are being explored. 

Although the field remains nascent and quantum hardware is constrained by noise and limited 

qubit counts, early results indicate potential advantages for remote sensing use cases. 

This paper expands on these developments by providing a comprehensive review of QIP 

research with a focus on satellite imagery. We analyze classical-to-quantum image encoding 

methods, relevant quantum algorithms, use-cases in Earth observation, technical challenges, and 

future pathways toward achieving quantum advantage in remote sensing. 

2.0 Background and Quantum Foundations 

A. Quantum Computing Basics 

Qubits and Quantum States At the heart of quantum computing lies the qubit, the quantum 

analogue of the classical bit. Unlike a classical bit, which  can  exist  in  one  of  two  states—0  or  

1—a  qubit  can exist   in   a   superposition   of   both   states  simultaneously, represented  as           

|𝜓⟩=𝛼|0⟩+𝛽|1⟩, where α and β are complex  numbers  that  satisfy  the  normalization  condition 

|𝛼|2+|𝛽|2=1.    This    property    allows    quantum computers   to   perform   computations   on   

multiple   states. simultaneously, offering   a   form   of   parallelism   that   is exponentially more 

powerful than classical computing as shown in Figure 2.1. However, Issues such as coherence, 

noise, and gate errors remain central challenges. 

 

                     

Figure 2.1 

B. Quantum Image Representation 

A core question in quantum image processing (QIP) is how to encode a classical image into 

a quantum state. Several proposals have been proposed: 
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1. Flexible Representation of Quantum Images (FRQI): Encodes pixel positions in basis 

states and pixel values in amplitude. 

2. Quantum Probability Image Encoding (QPIE): Encodes probabilities. 

3. Other schemes: more compact amplitude-based encodings. 

Ruan, Xue et.al present opportunities and challenges regarding QIP representations, 

arguing that while quantum parallelism grants advantages, some claims of “quantum superiority” 

are overstated. Furthermore, research has explored transformation from classical to quantum 

images and noise mitigation strategies in the encoding process. 

3.0 Literature in Quantum Image Processing 

3.1  Classical Image Processing Tasks on Quantum Computers 

1. Edge Detection: 

• Xi-Wei Yao et al. (2017) propose encoding a grayscale image into a 

quantum state (amplitudes) and devise a quantum edge detection 

algorithm that remarkably requires a single-qubit operation, 

independent of image size.  

2. Improved Edge Detection Algorithms: 

 Shubha, et al. (2024) introduced a modified quantum Hadamard Edge 

Detection (QHED) algorithm combined with FRQI encoding to handle 

non-binary images more accurately.  

3. Image Classification: 

 Dang, et al. (2018) propose a quantum k-nearest neighbor (kNN) 

algorithm for image classification. They extract classical feature 

vectors, load them into a quantum superposition, compute similarity in 

parallel, and use a quantum minimum search. Their complexity is 

𝑂(√𝑘𝑀) vs. classical 𝑂(𝑘𝑀), showing a quadratic speed-up. 

4. Quantum Convolutional Neural Networks (QCNN): 

 Prajapat, Tomar, Kumar, Kumar, and Vasilakos (2025) propose a QCNN 

model for image classification, showing that combining quantum 

circuits and deep learning can yield efficient processing.  

3.2 Reviews and Surveys of Quantum Image Processing 
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 Ebrahimpour et al. (2024) provide a comprehensive survey of quantum 

computing in image processing, covering compression, enhancement, 

pattern recognition, recovery, and future directions. AIAI Journal+1 

 Sungheetha (2023) surveys applications and challenges specifically in 

quantum image processing, noting both promise and practical bottlenecks. 

IRO Journals 

 Mamatha et al. (2024) analyze advanced image processing tasks via 

quantum computing, emphasizing scalability and hardware constraints. 

IJISAE 

3.3 Quantum Computing for Satellite / Remote Sensing (Earth Observation) 

 Otgonbaatar et.al (2023) present a detailed review in IEEE Transactions on 

Quantum Engineering, specifically for satellite image processing, 

estimating quantum resource requirements and assessing hybrid HPC + QC 

architectures for Earth observation data. IEEE Transactions on Quantum 

Engineering+2IEEE Transactions on Quantum Engineering+2 

More recently, Sebastianelli, et al. (2024) introduces a quanvolutional neural 

network (quanvolution = quantum convolution) model that directly targets Earth 

observation data. The authors report up to 5% accuracy improvement over classical 

methods in remote sensing tasks, with a parameter-efficient design and no need for training 

quantum kernels. arXiv. However, Comparison among various Quantum Image 

Representation Approaches is shown in Table 3.1. 

  Table 3.1: Comparison among various Quantum Image Representation Approaches                                          

  

3.4 Quantum Simulation & Evaluation 

• Hasegawa et.al. (2024) evaluate quantum image processing workflows 

on classical hardware using GPU-based quantum simulations (e.g., cu 

Quantum). Their experiments verify that many quantum image-
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processing algorithms can be simulated, exploring performance and 

resource tradeoffs. 

4.0 Challenges in Applying Quantum Computing to Satellite Image Processing 

Exploring literature, the main challenges are: 

1. Encoding High-Dimensional Satellite Data: 

Satellite images (especially hyperspectral data) have many bands and high resolution. 

Representing each pixel’s spectral vector in a quantum state is nontrivial. Quantum 

image representations (e.g., FRQI) may be poor. 

2. Quantum Resource Constraints: 

Quantum circuits require qubits, gates, and coherence time. As shown by Otgonbaatar 

et al, resource estimation (e.g., number of T-gates after transpiration) is critical. IEEE 

Transactions on Quantum Engineering+1 

3. Noise / Error: 

Real quantum hardware (especially NISQ) suffers from decoherence and gate errors. 

These errors can degrade encoded image data and algorithmic performance. 

4. Scalability and Circuit Depth: 

Deep circuits for complex tasks (e.g., quantum convolution, segmentation) may 

exceed coherence time, making them infeasible on current hardware. 

5. Hybrid Architecture Complexity: 

Deciding how to partition processing between classical HPC and quantum resources 

is challenging. Suboptimal   partitioning could    eliminate   quantum   advantage. 

Otgonbaatar et al.  investigate   this trade-off.   IEEE Transactions on Quantum 

Engineering 

6. Benchmarking and Validation: 

There is a lack of standard datasets and benchmarks for evaluating quantum image-

processing on EO data. Also, simulating quantum algorithms (e.g., via cu Quantum) 

has limits. 

7. Misleading Claims of Quantum Superiority: 

As Ruan, Xue, and Shen argue, not all claims of exponential speedup are realistic 

under practical constraints. OUCI 

5.0      Possible Solutions and Suitable algorithms 

Given the challenges, literature and theory point to several possible strategies and 

algorithms: 

A. Hybrid Quantum-Classical Architectures 
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 Partitioning tasks: Use classical pre-processing (e.g., down sampling, PCA) 

to reduce data dimensionality, then apply quantum circuits on the compressed 

representation. For instance, classical PCA followed by Quantum Principal 

Component Analysis (QPCA) can reduce the effective qubit count. 

 Hybrid training: Parameterized quantum circuits (PQCs) / variational 

quantum algorithms (VQAs) can be trained using classical optimizers, as in 

variational quantum classifiers or QCNNs. 

B. Quantum Algorithms for Core Tasks 

1. Quantum Edge Detection: 

 Use amplitude-encoded image representations (like FRQI) together with single-

qubit operations to detect edges with quantum speed-up. The Phys. Rev. X 

method is a key example. Physical Review Journals 

 Modify QHED with more flexible encodings (e.g., FRQI), as in the work by 

Shubha et al. arXiv 

2. Quantum Classification / Clustering: 

 Quantum kNN: Using quantum parallelism to compute similarity and then 

quantum minimum search yields a quadratic speed-up. arXiv 

 Quantum Convolutional Neural Networks (QCNN): For EO images, one can 

design QCNNs tailored to remote sensing features. The Quanv4EO model is 

promising: quanvolution layers followed by quantum circuits processing 

spectral/spatial patches. arXiv 

 Quantum PCA (QPCA): Use QPCA to reduce dimensionality of hyperspectral 

data before further processing. 

3. Quantum Optimization / Segmentation: 

 Formulate segmentation as a QUBO (Quadratic Unconstrained Binary 

Optimization) problem and solve using QAOA (Quantum Approximate 

Optimization Algorithm). Such an approach can be particularly useful for 

partitioning land cover, change detection, or clustering pixel groups. 

 Alternatively, use quantum annealing (if hardware available) for segmentation 

or clustering tasks. 

C. Error Mitigation and Circuit Optimization 

 Error mitigation techniques: Use techniques such as zero-noise extrapolation, 

mitigation via calibration, dynamical decoupling, or circuit cutting. For 

example, quantum circuit cutting decomposes large circuits into smaller ones 

to reduce resource needs. 

 Shallow circuit design: Focus on minimal-depth circuits, small, parameterized 

gates, and low entanglement — critical for NISQ devices. 
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 Encoding optimizations: Use more compact encodings, compress information 

before loading, or hybrid encoding to minimize qubit usage. 

D. Simulation and Benchmarking 

 Use classical simulators optimized for quantum circuits (e.g., GPU-based 

simulators like cuQuantum) to prototype and evaluate algorithms before 

deploying on real QC hardware. Hasegawa et al. demonstrated this approach. 

Fukushima Laboratory 

 Develop EO-specific quantum benchmarking datasets (e.g., small patches of 

multispectral or hyperspectral images) that can be used to compare quantum vs 

classical performance. 

6.0 Scope of Future Research Directions 

1. Scalable Quantum Representations: Research on new quantum image encoding 

schemes explicitly tailored for high-dimensional EO data (e.g., hyperspectral bands) to 

minimize qubit overhead. 

2. Hybrid Learning Frameworks: Develop variational quantum circuits that incorporate 

domain knowledge from remote sensing (e.g., spatial-spectral correlations) and 

classical deep learning. 

3. Resource-efficient Quantum Circuits: Design PQCs for image processing with 

minimal T-gates, shallow depth, and noise robustness. 

4. Quantum Segmentation & Change Detection: Extend QAOA-based methods for 

segmentation, and dynamic circuits for detecting temporal changes in satellite images. 

5. Quantum Benchmarking for EO: Establish standard quantum benchmarking 

protocols and datasets for satellite imagery to compare quantum methods fairly. 

6. Error Mitigation in Remote Sensing Use Cases: Explore advanced error mitigation 

strategies specifically in image processing pipelines. 

7. Hybrid HPC+QC Deployment Strategies: Explore architectures where large-scale 

EO processing is distributed between HPC clusters and quantum accelerators, 

optimizing performance, cost, and resource utilization (extending analyses like those 

in Otgonbaatar et al.). 

7.0 Conclusion 

Quantum computing holds significant promise for satellite image processing (Earth 

observation), offering potential advantages in speed, dimensionality reduction, and novel 

processing paradigms. However, as the literature shows, many challenges remain—from 

encoding and hardware limitations to error, resource constraints, and hybrid architecture 

design. Current research (e.g., quantum edge detection, QCNNs, resource-estimation for 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 11 2025

PAGE NO: 120

https://fukushima.web.nitech.ac.jp/paper/2024_fst_hasegawa.pdf?utm_source=chatgpt.com


EO datasets) provides proof-of-concept and initial benchmarks but realizing practical 

quantum advantages in real-world EO tasks will require careful algorithmic design, 

efficient encoding, error mitigation, and hybrid computation strategies. Future work 

combining quantum algorithm development, realistic simulation, and hardware-aware 

deployment may pave the way for quantum-enhanced remote sensing workflows. 
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