Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

“Serverless Computing and Function-as-a-Service: A Survey of Architectures,
Scheduling, and Optimization Techniques”

Prof. Ruksar Fatima Syeda Sheeba
Dept. of Computer Science and Engineering M.tech Student
Khaja Bandanawaz University Dept. of Computer Science and Engineering

Khaja Bandanawaz University

Aliza Mahvash Ayesha Siddiqua
M.tech Student M.tech Student
Dept. of Computer Science and Engineering| Dept. of Computer Science and Engineering
Khaja Bandanawaz University Khaja Bandanawaz University

ABSTRACT

Serverless platforms, particularly Function-as-a-Service (FaaS), have redefined the landscape of
cloud application development by allowing developers to deploy code without managing servers
or runtime environments. Instead of maintaining persistent infrastructure, applications operate as
lightweight functions that execute only when invoked. This operational model accelerates
development, minimizes administrative overhead, and introduces cost structures aligned with
actual usage rather than reserved capacity.

The accelerating adoption of services like AWS Lambda and Azure Functions has pushed
serverless computing to the forefront of modern cloud design. These platforms provide
automated provisioning, elastic scaling, and built-in reliability, enabling applications to
seamlessly adapt to unpredictable and fluctuating workloads. Underneath this convenience lies a
complex orchestration of scheduling algorithms, resource allocation techniques, and performance
optimization strategies designed to manage millions of concurrent short-lived tasks.

Despite its advantages, serverless computing introduces notable engineering challenges—cold-
start delays, cost-efficient scaling, performance unpredictability, and energy consumption among
them. This survey explores the architectural foundations of serverless computing, evaluates
scheduling and optimization mechanisms, and examines emerging concerns around performance,
multi-tenancy, fairness, and sustainability. As research and industry innovations continue
to advance, serverless platforms are poised to deliver more efficient, resilient, and
environmentally responsible solutions for diverse computing needs.

PAGE NO: 192

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

1. INTRODUCTION

Serverless computing and FaaS represent a fundamental shift in cloud

architectures, offering a model where developers focus exclusively on application logic while
the underlying infrastructure is fully abstracted and automated. In this paradigm, functions are
triggered by events—HTTP requests, data updates, queue signals, or scheduled tasks—
simplifying deployment and enabling near-instant

scalability. Prior studies (Baldini et al., 2017; Jonas et al., 2019) highlight serverless

as a catalyst for cloud-native application evolution.

Major platforms such as AWS Lambda and Azure Functions have accelerated this adoption by
offering streamlined runtime environments capable of handling

dynamic workloads with minimal developer intervention. However, architectural simplifications
come with engineering complexities, motivating deeper research into scheduling, performance
optimization, cold-start mitigation, and energy-aware computing (Eismann et al., 2021).

1.1 Serverless Architecture and FaaS Platforms

Serverless designs eliminate infrastructure management by providing ephemeral, event-driven
execution environments. Developers break applications into stateless functions that are
deployed independently and invoked automatically. This

decomposition enhances modularity and scalability but requires developers to adapt to
constraints such as memory limits, execution time caps, and constrained runtime control (Eivy,
2017). Despite these restrictions, serverless architectures significantly boost developer

productivity by shifting operational responsibilities to the cloud provider.

1.2 Scheduling Mechanisms and Resource Management

FaaS platforms must orchestrate vast numbers of short-lived function invocations, demanding
fast, intelligent scheduling. Schedulers must determine where and how to execute functions
while maintaining low latency and high throughput (Shahrad et al., 2020). Unlike VM-based
systems where workloads are predictable and long- running, FaaS scheduling requires
instantaneous responses to erratic, spiky workloads. Research focuses on container reuse,
dynamic load distribution, and resource-aware mappings that minimize delays and optimize
overall system

efficiency (Wang et al., 2018).

PAGE NO: 193

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

1.3 Cold-Start Latency and Performance Optimization

A well-known drawback of serverless platforms is cold-start latency—the delay incurred when
initializing a fresh container or runtime before executing a function.

This overhead affects latency-sensitive workloads such as real-time APIs or interactive
applications. Studies propose pre-warming strategies, optimized

container runtimes, and predictive scheduling to reduce cold-start frequency and impact (Akkus

et al., 2018; Eismann et al., 2021).

1.4 Auto-Scaling Strategies and Elasticity

Serverless systems automatically scale functions based on demand, enabling applications to
rapidly adapt to fluctuating load patterns (Baldini et al., 2017). While auto-scaling is one of
FaaS’s strongest features, aggressive or poorly tuned scaling can lead to inefficient resource
utilization or increased execution costs (Jonas et al., 2019). Research now emphasizes hybrid,
adaptive, and workload- aware scaling policies that strike a balance between responsiveness
and cost control (Shahrad et al., 2020).

1.5 Energy Efficiency and Operational Considerations

The massive scale of serverless platforms introduces substantial energy challenges for data
centers. Frequent cold starts, unnecessary container activations, and suboptimal scheduling
contribute to increased power consumption. Energy-aware heuristics, workload consolidation,
and intelligent resource reuse are emerging as key approaches to enhance sustainability (Buyya
et al., 2019). Additional deployment concerns—performance opacity, vendor lock-in, and

limited debugging capabilities—still influence real-world serverless adoption (Eivy, 2017).

PAGE NO: 194

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

2. BACKGROUND AND FOUNDATIONS

Cloud computing has spent the last decade reinventing itself—from the heavy, hardware-
hugging era of dedicated servers to today’s sleek, abstracted execution layers that scale like
they’re fueled by ambition alone. In the early days,

developers wrestled with virtual machines, operating systems, and capacity planning, often over-
allocating resources “just in case.” This not only inflated costs but buried teams under
operational overhead.

The rise of serverless computing flipped that script. Suddenly, the cloud provider handled the
grunt work—provisioning, scaling, and maintaining infrastructure— while developers focused
purely on logic. This shift marked a major inflection point in how cloud applications were
designed, deployed, and optimized.

As virtualization matured, Function-as-a-Service (FaaS) stepped into the spotlight as a
lightweight, event-driven execution model. Instead of deploying

always-on services, applications could be split into small, stateless, trigger-based functions.
Platforms like AWS Lambda and Azure Functions propelled this

paradigm into the mainstream with automatic scaling, granular pay-per-use pricing, and built-in
resilience. This model democratized cloud development and

accelerated the move toward microservices and event-driven architectures across industries.

But no innovation arrives without its growing pains. As FaaS usage expanded, performance
bottlenecks surfaced—chief among them the notorious cold start, where a function needs to spin
up its environment before it can execute. For latency-sensitive applications, this unpredictability
became a deal-breaker. These challenges ignited research into faster container startup, runtime
optimization, smarter provisioning, and scheduling techniques designed to shrink response times
and boost reliability.

Parallel to performance tuning came the realization that serverless elasticity— while dazzling—
needs discipline. Scaling from zero to thousands of invocations is impressive, but unmanaged
spikes can introduce contention, inflate costs, and waste energy. This sparked a wave of research
into adaptive scaling strategies, workload-aware scheduling, and policies that aim for balance
rather than brute force.

As serverless ecosystems grow in size and ambition, sustainability has become a strategic
priority. Massive data centers powering FaaS platforms consume substantial energy, and
frequent invocations, cold starts, and inefficient resource

allocation compound that footprint. Modern research increasingly emphasizes eco- efficient
designs—improved scheduling, workload consolidation, and resource reuse—ensuring that
scalability doesn’t come at the planet’s expense.

Together, these advancements carve the foundation of contemporary serverless computing: a
landscape where simplicity meets sophistication, where performance aligns with efficiency, and
where the next generation of FaaS platforms strives to be not just powerful and scalable, but also
sustainable.

PAGE NO: 195

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Table 1: Key Differences Between Traditional Cloud Computing and Serverless (FaaS)
Architectures

Aspect Traditional Cloud Serverless / FaaS Architecture
Computing
Resource Requires provisioning Abstracts all infrastructure;
Management configuring, and managing resources are provisioned
servers or virtual machines. automatically and transparently.
Scalability Scaling is manual or semi- Automatically scales up and down
automated; often requires based on event triggers and
Cost Model Pay only for execution time and
resource consumption of individual
Pay for allocated resources, functions.
regardless of actual usage.
Deployment Applications deployed as Logic deployed as individual
Model monolithic or microservice stateless functions triggered by
units requiring full events.
lifecycle management.
Performance Generally consistent, as servers May face cold-start latency due to
Consistency remain warm and always on-demand provisioning.
available.

Operational Minimal—platform handles
Overhead monitoring, scaling, patching, and
High—requires fault tolerance.

monitoring, patching, load
balancing, and infrastructure
maintenance.

PAGE NO: 196

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Scheduling Relies on VM- or container- Uses fine-grained event-driven
Complexity level scheduling optimized for rapid,
short-lived execution.
orchestration, often
heavyweight.
Optimization Focus on VM/container tuning Focus on reducing cold starts,
Techniques autoscaling optimizing memory/runtime
configuration, and adaptive function
strategies, and resource placement.
allocation.
State Applications may maintain in- Functions are stateless; state must be
Management memory state or local storage. stored externally in databases or
storage services.
Adaptability Scaling or adopting new Highly flexible—new functions can
architectures requires be deployed, tuned, or
architectural redesign. migrated with minimal changes.

3. ARCHITECTURAL OVERVIEW

3.1 Event-Driven Architectures for Serverless Computing

In modern serverless systems, nothing moves until an event rings the bell. Whether it’s an API
request, a message landing in a queue, a database change, or an IoT device whispering data into

the cloud—functions come alive only when needed.

This event-centric design replaces the old world of always-on servers with nimble, stateless

execution units that respond on demand.

By removing the overhead of maintaining persistent infrastructure, developers can orchestrate highly
scalable, reactive workflows built entirely around cloud-native triggers. These patterns power
everything from real-time analytics pipelines to automated backend processes, forming the
operational spine of contemporary FaaS deployments.

3.2 Hybrid Architectures Integrating Functions and Services

Real-world applications rarely revolve around compute alone—the magic happens when
functions team up with the cloud’s supporting cast. Modern serverless solutions weave together
functions, storage layers, messaging systems, and workflow engines to create cohesive,

production-ready ecosystems.

PAGE NO: 197

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

A typical hybrid architecture blends:

Function execution environments

Storage systems (object stores, databases, key-value layers)
Messaging and event distribution channels

Workflow orchestrators

This partnership enables sophisticated patterns such as multi-step transactions, event-driven
ML pipelines, and distributed application logic. The result is an architecture where
lightweight functions collaborate with durable services to deliver solutions that scale
gracefully and behave predictably.

3.3 Foundation Architectures for Large-Scale Serverless Platforms

When a platform handles billions of function invocations, the underlying architecture must be
engineered for raw throughput and global responsiveness. Cloud providers rely on foundational
designs that combine speed, isolation, and elasticity without sacrificing developer simplicity.
Key components typically include:

MicroVMs or ultra-light containers for near-instant start times

Distributed schedulers that smartly position functions closer to data or users

Adaptive resource managers that fine-tune compute, memory, and network allocations
Robust multi-tenant isolation ensuring workloads coexist safely

These architectures empower functions to run efficiently across varied hardware and
geographies, supporting everything from massive batch computations to high- frequency event
streams. Their secret strength lies in abstraction—developers enjoy effortless scaling while the
system quietly choreographs thousands of moving parts.

3.4 Architectures for Fairness, Observability, and Reliability

As serverless becomes the engine room of enterprise infrastructure, platforms must deliver not just
performance, but fairness, transparency, and dependability. Modern designs now embed capabilities
that make large-scale systems easier to monitor, debug, and trust.

These enhancements include:

® Fair-queuing schedulers that prevent noisy neighbors from hogging resources.

® Deep observability layers revealing cold starts, execution paths, and resource
footprints.

® Tracing and debug hooks for diagnosing complex, distributed workflows

® Reliability features such as automated retries, checkpointing, and
geographic redundancy.

PAGE NO: 198

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Together, these mechanisms combat multi-tenant interference and help maintain predictable
performance. They transform serverless from a black-box wonder into a well-instrumented,
enterprise-grade platform ready for mission-critical

operations.

Serverless Computing:

Architectures, Scheduling & Optimization

Function Orchestration Engines

Frameworks that coordinate multi-step
workflows, state management, retries, ad
event chaining across distributed functions

Autoscaling & Scheduling Systems

Mechanisms that dynamically allocate
resources, manage cold starts, balanceload,
and schedule functions efficiently

under varying demand

FaaS Foundation
Platforms

General-purpose execution
environments providing
isolation (microVMs/conta-
ners), runtime managem-
ent, provisioning, and
secure multi-tenancy

Cost & Performance
Optimization

Techniques focused on
reducing execution time,
cold-start latency, overhead
and resource waste while
maximizing throughput and
efficiency

Fairness & QoS in
Serverless Systems

Approaches for ensuring
equltable resource sharing,
preventing nolsy-neigbor
issues, and maintaining
predictable Quality-of-
Service under multi-tenat

workloads

Fig 1: Core Pillars of Serverless Computuing & FaaS

4 CHALLENGES IN SERVERLESS COMPUTING (RESOURCE
FAIRNESS, SCHEDULING BIAS & MULTI-TENANCY ISSUES)

In serverless ecosystems, bias doesn’t stem from human traits—it shows up in how resources are
carved up, how schedulers make decisions, and how workloads jostle for space in shared
environments. With FaaS platforms firing off millions of

invocations for countless users, even subtle quirks in scheduling logic or resource allocation
can snowball into noticeable performance gaps.

Latency-sensitive apps may end up waiting behind compute-heavy batch jobs.

Smaller tenants might experience more frequent cold starts while enterprise workloads glide
through optimized paths. Hardware differences across regions or datacenter generations only
widen these cracks. Between 2019 and 2025, research has increasingly spotlighted these
imbalances, pushing for fairness-driven scheduling, predictable performance, and multi-tenant
awareness.

Fairness isn’t a luxury—it’s the currency of trust. When resources are shared at global scale,
ensuring every user gets equitable performance is essential for cost transparency, user
confidence, and platform-wide reliability.

PAGE NO: 199

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

4.1 Unequal Resource Distribution

Functions don’t always get an even share of compute, memory, or bandwidth.

Some tenants—or certain workload patterns—may receive more favorable

treatment during scheduling or scaling, leaving others grappling with bottlenecks and variability.

4.2 Performance Gaps Across Workloads

Not all workloads thrive equally on serverless platforms. Stateless, event-driven, bursty tasks
often excel, while data-heavy or latency-sensitive operations run into architectural limits that
slow them down or inflate tail latencies.

4.3 Cold-Start Bias

Workloads deployed in niche runtimes, underused regions, or low-traffic applications frequently
face longer cold-start delays. Meanwhile, popular or frequently invoked functions benefit from
warmer caches and optimized provisioning.

4.4 Provider-Region & Hardware Bias

Execution speed can vary dramatically across geographic regions or hardware generations.
Differences in virtualization layers—containers vs. microVMs, for example—introduce their own
quirks, making identical workloads behave inconsistently.

4.5 Multi-Tenant Interference

When multiple customers share CPU, memory, 1/O, and network pathways, the classic “noisy
neighbor” problem reappears. One tenant’s heavy workload can degrade another’s performance
through throttling, queueing delays, or outright starvation.

4.6 Need for Fairness & QoS Metrics

Average execution time no longer cuts it. Modern evaluation must factor in fairness indicators:
latency percentiles, cold-start frequency, queue delays,

throttling rates, and cross-tenant performance variability. These metrics paint a truer picture of
system behavior under load.

4.7 Solutions: Scheduling Improvements & Fairness Mechanisms
Emerging solutions aim to level the playing field through:

Tenant-aware scheduling and placement

Stronger resource isolation

Smarter autoscaling tuned to workload patterns
Load-balancing techniques that minimize contention

Hardware-aware provisioning

QoS policies aligned with application intent

Together, these innovations push serverless platforms toward equitable performance, predictable
behavior, and resilient multi-tenant operation.

PAGE NO: 200

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

S PRIVACY IN SERVERLESS COMPUTING AND FUNCTION-AS-A-
SERVICE (FAAS)

As serverless technology cements itself at the heart of modern application ecosystems, millions
of functions now run across cloud-managed environments every second. This shift brings
incredible agility—but also places sensitive data squarely inside infrastructures controlled by
third-party providers. In these highly dynamic, multi-tenant settings, privacy becomes more than
a compliance checkbox; it becomes the north star for trust, operational integrity, and sustainable
adoption of FaaS within enterprise landscapes.

5.1 Why Privacy Matters in Serverless Systems

Serverless functions regularly process confidential information: user identities, financial records,
authentication tokens, telemetry, and more. Because the underlying environment is abstracted
away:

® Requests may travel through short-lived execution spaces.

® Temporary logs or caches may momentarily store sensitive details.
® (loud providers may replicate data internally for resilience or diagnostics.

Even though developers no longer manage servers, the obligation to protect user data doesn't
vanish. Misrouted events, weak isolation, and insecure data flows can quickly turn into privacy
breaches if not carefully managed.

5.2 Key Privacy Risks in Serverless Computing

5.2.1Exposure Risks from Multi-Tenancy

Serverless platforms host workloads for many organizations on the same physical infrastructure. If
isolation falters or side-channel vulnerabilities arise—such as
cache timing or speculative execution leaks—one workload may infer details about another.

5.2.2Data Leakage Through Function Footprints

Sensitive information can unintentionally surface via:

5.2.2.1 Debug output

5.2.2.2 Environment variables
5.2.2.3 Temporary directories
5.2.2.4 Over-privileged IAM roles

Attackers may exploit these traces through event replay, analyzing warm-start artifacts, or
harvesting leftover memory from cold-start containers.

PAGE NO: 201

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

5.2.3Risks from External Integrations

Serverless apps often rely on third-party APIs and SaaS tools. Without strict oversight, sensitive
payloads may be forwarded, stored, or mirrored across these external systems without clear
visibility or control.

5.2.4 Storage and Configuration Vulnerabilities

Cloud functions typically interact with storage buckets, message queues, and databases. Weakly
secured access keys, misconfigured permissions, or publicly exposed storage endpoints can lead
to unintended data disclosure.

5.3 Protecting Privacy in Serverless Environments

Modern best practices and ongoing research emphasize privacy-centric design principles:

® Ephemeral, isolated execution: each function instance begins in a clean state,
eliminating cross-tenant residue.

® Least privilege access: functions operate with only the permissions strictly required.

® Encrypted data flows: protection applied end-to-end across all triggers and
communication channels.

e Differentially private telemetry: preventing sensitive details from leaking through
monitoring systems.

® Secure event routing: ensuring data reaches only authorized components.

® Federated and privacy-preserving computation: processing raw data locally
while sending only sanitized or aggregated insights to the cloud.

® Comprehensive auditing and lifecycle controls: maintaining visibility into every data
access and ensuring proper cleanup.

5.4 Balancing Innovation with Responsibility

Serverless technology unleashes speed, scalability, and reduced operational overhead—but
none of that matters if data privacy collapses. Trust is the engine that drives serverless adoption,
and that trust depends on:

Clear, transparent handling of user data
Strong isolation boundaries
Privacy-aware orchestration and scheduling

Default security baked into the platform itself

Only when privacy becomes a foundational design principle—not an
afterthought—can FaaS reach its full potential as a reliable, enterprise-ready computing model.

PAGE NO: 202

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Table 2: Overview of Ethical and Legal Concerns in Serverless Computing & FaaS Systems

Category Key Challenges Explanation
Ethical Resource Fairness | Certain workloads or tenants may receive better
Challenges & performance due to biased scheduling policies,

Scheduling Bias priority rules, or hardware
placement—creating unequal access to compute
resources in multi-tenant environments.
Lack of Serverless platforms operate as black boxes.
Transparency in Developers often do not know how
Scheduling & functions are scheduled, scaled, throttled, or routed,
Platform making it difficult to diagnose
Decisions performance issues or optimize applications.
User Autonomy & | Developers have limited control over where and how
Data Control data is processed inside FaaS environments.

Automated replication, ephemeral storage, or cross-
region routing may violate user expectations about
data

sovereignty and autonomy.

Accountability in
Case of Failures

When a serverless system produces incorrect results,
experiences outages, or loses data, it is unclear
whether the fault lies with the developer, the cloud
provider, the

orchestration rules, or the underlying

platform—making responsibility and ethical
accountability difficult.

PAGE NO: 203

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Legal Data Privacy & Regulations such as GDPR, HIPAA, or India’s
Challenges Protection DPDP Act require strict control over data flows.

Compliance Because serverless platforms handle data across
distributed systems and regions, ensuring
compliance becomes complex and requires strong
access controls and auditability.

Cloud Vendor Proprietary FaaS APIs, event formats, and execution

Lock-In & environments may lock

Regulatory organizations into a particular vendor. This creates

Risks legal and operational risk when
migrating systems or complying with regional data
laws.

Certification & Serverless architectures used in critical industries

Security (finance, healthcare, government) may require

Assurance for formal certification and

Serverless Systems | y]idation of security, isolation, and
reliability—but current standards for FaaS platforms
are still evolving.

Liability in Case of | There are no universally clear legal rules determining

Data Breach or who is liable if a function

Execution Failure | .16, ctions, data is leaked, or an event is processed
incorrectly—the developer, the organization, or the
cloud provider—creating legal uncertainty.

6. FUTURE SCOPE

As serverless computing stretches deeper into enterprise stacks, edge devices, and mission-
critical digital ecosystems, the conversation around ethics, transparency, and responsible
architecture will only grow louder. The next aim to sculpt FaaS platforms that deliver not just
performance and elasticity, but also clarity, accountability, and security. The road ahead is wide,
and several major avenues are already taking shape.

PAGE NO: 204

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

6.1 Establishing Global Standards for Serverless Architectures

With serverless adoption crossing borders and industries, the world will need unified frameworks
that define how these platforms should behave. Future initiatives will work toward:

® Shared architectural principles
® International performance and fairness benchmarks
® C(Cross-cloud auditing mechanisms

These standards will help build consistent trust across vendors, regions, and regulatory
environments.

6.2 Advancing Privacy-Preserving Serverless Technologies

Protecting sensitive data in multi-tenant environments will remain a cornerstone challenge.
Upcoming innovations will strengthen:

Differential privacy in logs and monitoring tools
Federated computation for secure distributed pipelines

Homomorphic encryption that allows computation on encrypted data

® TEEs (Trusted Execution Environments) for high-sensitivity workloads These advances
will let organizations tap into serverless agility without sacrificing confidentiality.

6.3 Legal Frameworks Tailored for Serverless Computing

Current laws were crafted for traditional servers—not ephemeral functions that scale themselves.
Future legal reforms are likely to define:

Liability models specific to serverless architectures
Responsibilities in auto-scaling or autonomous scheduling events
Transparency requirements for opaque scheduling algorithms

Clear boundaries between provider duties and developer obligations
This legal clarity will help enterprises navigate disputes, audits, and compliance expectations.
6.4 Certification and Compliance Auditing for Serverless Platforms

As serverless becomes foundational infrastructure, verification systems will evolve to include:

® Official certification programs for performance, isolation, and security
® Independent auditing authorities
® Specialized labs for cold-start, latency, and multi-tenancy testing

Such certifications will reassure organizations that serverless stacks meet stringent operational
demands before going live.

PAGE NO: 205

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

6.5 Explainability in Scheduling and Optimization Systems

The future will demand more than speed—it will demand transparency. Serverless orchestrators
will need to explain:

® Why certain functions were throttled
® How regions or runtimes were selected
® What triggered scaling actions or QoS priorities

Explainability will shift from a “nice-to-have” debugging tool to a mandatory regulatory and
operational requirement.

6.6 User-Centric Governance and Policy Controls

Governance models will increasingly center around user autonomy, including:
® C(lear visibility into how and where data moves
® Options to limit geographic routing
® Tenant-level insights into scheduling decisions
°

Explicit consent for cross-region execution

These controls will strengthen trust and give organizations more say over their compute
environments.

6.7 Ethical Frameworks for Large-Scale Serverless Foundation Models

As serverless platforms begin powering massive Al pipelines and cloud-native foundation models,
new ethical guardrails will be needed:

Safe deployment practices for distributed Al workloads
Fairness-aware scheduling across shared infrastructures

Responsible dataset and workload curation

Oversight mechanisms to prevent misuse of scalable compute
Such governance will be vital for balancing innovation with societal responsibility.
6.8 Expanding Serverless Computing into Low-Resource and Global South Contexts

A key research frontier involves making serverless technology accessible to environments with:

® Unstable network connectivity
® [Limited hardware resources
® (Cost-sensitive organizations and developing countries

This evolution will help serverless scale inclusively, beyond well-funded enterprises and high-
income regions.

PAGE NO: 206

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

6.9 Continuous Monitoring in Real-World Settings
Future best practices and regulations will emphasize ongoing evaluation, including:

Multi-tenant performance tracking
Fairness monitoring in autoscaling and scheduling
Anomaly detection and real-time safety reporting

Continuous audits and post-deployment optimization

The goal is to ensure serverless systems remain dependable as workloads shift and infrastructure
evolves.

7. CONCLUSION

Serverless computing is rapidly rewiring the digital landscape, changing not just how
applications run, but how teams think about scalability, resilience, and innovation. By removing
the burden of server management and embracing event- driven execution, FaaS platforms offer a
level of agility and cost efficiency that

traditional architectures struggle to match. Continuous improvements in scheduling intelligence,
autoscaling behavior, and resource stewardship are expanding what

cloud-native systems can deliver, allowing developers to channel their energy into building rather
than maintaining. But the success of serverless is tied to more than raw performance metrics. As
these platforms become the backbone of enterprise workloads, expectations around fairness,
transparency, and reliability grow equally strong. Issues such as tenant interference, latent
scheduling biases, data privacy risks, and opaque orchestration decisions highlight the need for
responsible architectural practices. With businesses placing critical operations in the hands of
serverless systems, providers and

researchers must champion predictable behavior, strong isolation, and trustworthy platform
mechanics.

Looking forward, widespread adoption of FaaS will depend on the development of robust
governance frameworks, privacy-preserving technologies, and real-time monitoring systems
capable of adapting to dynamic workloads. Progress will hinge on collaboration—between cloud
designers, industry leaders, policymakers, and engineering communities—to ensure serverless
platforms remain secure, equitable, and accountable.

In the end, the power of serverless computing extends far beyond its ability to execute code at
scale. Its promise lies in democratizing access to compute, reducing barriers for innovators, and
enabling a more inclusive, resilient, and globally connected cloud ecosystem. When paired
with ethical design and thoughtful oversight, serverless computing stands poised to become a
defining pillar of the next generation of distributed systems.

PAGE NO: 207

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

8. REFERENCES

[1] E. Jonas et al., “Cloud programming simplified: A Berkeley view on serverless computing,”
UC Berkeley, Tech. Rep. UCB/EECS-2019-3, 2019.

[2] A. Baldini et al., “Serverless computing: Current trends and open problems,” in Proc.
Springer Research Advances in Cloud Computing, 2017, pp. 1-20.

[3] G. McGrath and P. R. Brenner, “Serverless computing: Design,
implementation, and performance,” in Proc. IEEE Int. Conf. Distributed Computing
Systems Workshops (ICDCSW), 2017, pp. 405-410.

[4] J. M. Hellerstein et al., “Serverless computing: One step forward, two steps back,” in
Proc. Conf. Innovative Data Systems Research (CIDR), 2019.

[5] P. Castro et al., “The rise of serverless computing,” Communications of the ACM, vol.
62, no. 12, pp. 44-54, 2019.

[6] J. Spillner, “Programming paradigms for serverless computing,” IEEE Cloud Computing,
vol. 8, no. 2, pp. 30-37, 2021.

[7] W. Lloyd et al., “Serverless computing: An investigation of factors influencing microservice
performance,” in Proc. IEEE IC2E, 2018, pp. 159-169.

[8] M. Roberts, Serverless Architectures. Sebastopol, CA, USA: O’Reilly Media, 2018.

[9] P. Leitner et al., “A comprehensive study of cold starts in serverless
computing,” in Proc. IEEE Cloud Engineering, 2020, pp. 1-10.

[10] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing the serverless
workload,” in Proc. USENIX ATC, 2020, pp. 1-15.

[11] A. Wang et al., “Fairness and efficiency in serverless scheduling,” in Proc. ACM
Symposium on Cloud Computing (SoCC), 2021, pp. 1-14.

[12] S.A.Baset et al., “Function placement and scheduling in serverless edge clouds,” in
Proc. ACM EdgeSys, 2021, pp. 1-7.

[13] A.Klimovic et al., “Pocket: Elastic ephemeral storage for serverless analytics,”
in Proc. USENIX OSDI, 2018, pp. 1-14.

[14] C. Wang et al., “Predicting latency for serverless functions,” arXiv preprint
arXiv:2010.13067, 2020.

[15] A.Oakes etal., “SAND: Towards high-performance serverless computing,” in Proc.
USENIX ATC, 2022, pp. 1-14.

PAGE NO: 208

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

[16] E.van Eyk et al., “The SPEC-RG reference architecture for FaaS systems,” in Proc. ACM
PDSW, 2018, pp. 1-6.

[17] V.Ishakian et al., “Performance isolation in FaaS,” arXiv preprint
arXiv:1812.10682, 2019.

[18] H.Mao et al., “Resource management for highly dynamic serverless
platforms,” in Proc. ACM SIGMETRICS, 2022, pp. 1-13.

[19] F.Zhang et al., “Multi-tenant interference and mitigation in cloud functions,”
IEEFE Trans. Cloud Computing, vol. 9, no. 3, pp. 1-14, 2021.

[20] N. Katsalis et al., “FaaSR: Multi-tenant serverless runtime isolation,” in Proc. ACM
Middleware, 2020, pp. 1-14.

[21] S.Bardsley et al., “Serverless multi-tenancy: Challenges and opportunities,”
IEEFE Cloud Computing, vol. 8, no. 3, pp. 3644, 2021.

[22] D.Bermbach et al., “Energy efficiency in serverless computing,” IEEE Cloud Computing,
vol. 7, no. 6, pp. 1-10, 2020.

[23] Y. Guo etal., “GreenFaaS: Energy-aware serverless scheduling,” in Proc. ACM
SoCC, 2022, pp. 1-14.

[24] S.Behrmann et al., “Towards sustainable serverless computing,” Future Generation
Computer Systems, vol. 141, pp. 1-15, 2023.

[25] M. Singh, J. Lee, and D. Kim, “Privacy challenges in multi-tenant cloud and serverless,”
IEEFE Access, vol. 9, pp. 1-13, 2021.

[26] A. Curtis et al., “Serverless privacy: Data protection in FaaS,” in Proc. IEEE Security &
Privacy Workshops, 2022, pp. 1-6.

[27] N. Samragh et al., “Homomorphic encryption for cloud functions,” in Proc. IEEE
Symposium on Security and Privacy, 2020, pp. 1-15.

[28] Z.Wu etal., “SecFaaS: Secure serverless execution via TEEs,” in Proc. ACM CCS, 2021,
pp. 1-14.

[29] M. Backes et al., “Side-channel attacks in serverless platforms,” in Proc. USENIX
Security Symposium, 2021, pp. 1-15.

[30] Amazon Web Services, “Isolation and multi-tenant guarantees in AWS Lambda,”
AWS Security Whitepaper, 2023.

PAGE NO: 209

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

[31] J. Spillner, “Observability challenges in FaaS applications,” Journal of Systems
and Software, vol. 176, pp. 1-12, 2021.

[32] S.Hendrickson et al., “Serverless debugging: A call for transparency,” in Proc. USENIX
HotCloud, 2020.

[33] P. Wurster et al., “Distributed tracing in serverless architectures,” in Proc. IEEE
Cloud, 2022, pp. 1-10.

[34] Google Cloud, “Serverless observability best practices,” Whitepaper, 2023.

[35] F. Casteleyn et al., “Towards regulatory frameworks for serverless
computing,” in Proc. ACM Digital Government, 2022, pp. 1-10.

[36] M. Whittaker and J. Dean, “Liability models for cloud autonomy,”
Communications of the ACM, vol. 65, no. 6, pp. 28-31, 2022.

[37] European Union GDPR Working Party, “Guidelines for cloud and serverless data
processing,” EU Report, 2023.

[38] Cloud Security Alliance, “Serverless security and compliance controls,” CSA Whitepaper,
2022.

[39] A.loannidis et al., “EdgeFaaS: Serverless computing at the edge,” IEEE Internet of
Things Journal, vol. 8, no. 9, pp. 1-14, 2021.

[40] J. Lin et al., “Latency-aware FaaS scheduling in edge networks,” in Proc. IEEE
INFOCOM, 2022, pp. 1-10.

[41] M. Satyanarayanan, “The role of edge in future serverless architectures,”
IEEE Computer, vol. 55, no. 2, pp. 1-8, 2022.

[42] S.Fouladi et al., “From laptop to lambda,” in Proc. USENIX ATC, 2019, pp. 1-14.

[43] J. Heller et al., “Serverless for large-scale ML inference,” in Proc. ACM SoCC,
2021, pp. 1-14.

[44] B. Thalinger, “Optimizing Java for serverless workloads,” in Proc. JVM Language
Summit, 2022.

[45] M. Hsieh et al., “FaaS for big data analytics: Opportunities and challenges,” in Proc. IEEE
BigData, 2021, pp. 1-8.

PAGE NO: 210

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

[46] M. Shahrad et al., “The serverless traces initiative,” in Proc. USENIX ATC, 2021, pp. 1-
12.

[47] D. Schleier-Smith et al., “FaaSBench: Benchmarking function-as-a-service,” in Proc.
IEEE Cloud, 2020, pp. 1-10.

[48] SPEC Research Group, “FaaS benchmarking standards,” SPEC RG Report, 2022.
[49] Gartner Research, “The future of serverless platforms,” Gartner Report, 2023.

[50] Cloud Native Computing Foundation, “Serverless landscape report,” CNCF Whitepaper,
2023

PAGE NO: 211

