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Abstract: 
The increasing demands of latency-sensitive and energy-constrained applications in high-density 
WLANs expose the limitations of static RU scheduling in IEEE 802.11ax networks. Existing random 
access methods and centralized learning models often fail to generalize under dynamic traffic loads, 
congestion patterns, and heterogeneous QoS profiles. In this paper, we propose Federated Multi Agent 
Reinforcement Learning AURA, a federated multi-agent reinforcement learning framework that 
enables decentralized, QoS-aware RU allocation across heterogeneous stations. Each station acts as an 
independent agent using lightweight actor-critic learning, coordinated through a federated server at 
the AP. The framework integrates cross-layer intelligence by incorporating MAC-layer contention 
adaptation, PHY-layer RU mapping, and application-driven traffic classes into a unified policy. 
Simulation results show up to 61% improvement in throughput, 32% reduction in energy 
consumption, and 99% fairness index, outperforming DQN and static IEEE 802.11ax baselines. This 
work offers a scalable and adaptive solution for next-generation WLANs, with demonstrated 
resilience under dense traffic, mobility, and dynamic QoS weighting. 
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1.   Introduction 
 Despite the significant performance gains brought by Orthogonal Frequency Division 
Multiple Access (OFDMA) in IEEE 802.11ax, current random-access techniques such as Uplink 
OFDMA-based Random Access (UORA) remain constrained by several limitations. Firstly, existing 
schemes predominantly rely on semi-static random-access procedures without dynamic adaptation to 
traffic or network states [1]. This leads to suboptimal RU utilization under varying load conditions 
and fluctuating user densities. Secondly, contention-based randomization still suffers from high 
collision probabilities as the number of contending stations increases, degrading overall throughput 
and latency performance. Furthermore, current mechanisms lack QoS-awareness, thereby treating all 
traffic types uniformly and ignoring the latency sensitivity of real-time applications such as AR/VR or 
industrial automation [2]. 
 Wireless Local Area Networks (WLANs), particularly those based on the IEEE 802.11 
standard, have become indispensable for modern high-throughput communication in both fixed and 
mobile environments. With the rapid increase in devices and the demand for high data rates, 
optimizing network throughput has become a critical research area. Throughput defined as the rate of 
successful data delivery over a communication channel is vital for ensuring the Quality of Service 
(QoS) in applications such as video streaming, telemedicine, industrial control, and intelligent 
transportation systems. n modern wireless networks, especially in smart industries and IoT-rich 
environments, achieving high throughput is fundamental to ensuring reliable communication and 
Quality of Service (QoS). Throughput—the rate at which data is successfully transmitted from sender 
to receiver—is crucial for supporting bandwidth-intensive applications such as real-time video 
analytics, augmented reality (AR/VR), and remote industrial control. However, with increasing device 
density, spectrum congestion, and latency-sensitive traffic, maintaining consistent throughput has 
become a growing challenge in WLANs. 
 Semi-static configurations and random contention-based mechanisms will lead to inefficient 
RU utilization, especially under varying traffic loads and user densities. The random backoff 
mechanism still results in collision probabilities that increase with user density, which reduces the 
channel's overall efficiency [3], Current approaches do not prioritize QoS classes (e.g., real-time video 
vs. best-effort), treating all devices equally. This causes latency and jitter issues for delay-sensitive 
traffic. OFDMA randomization does not leverage real-time network states, such as buffer size, energy 
constraints, or past transmission history, which can be vital for intelligent scheduling [4]. 
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 To address these challenges, this paper proposes a Adaptive User-centric RU Allocation for 
Wi-Fi (AURA)-driven multi agent RU assignment framework that dynamically manages RU 
allocations based on short-term traffic predictions and energy constraints. The system incorporates Q-
learning-based contention window adaptation, dynamic spectrum bifurcation, and Multipath TCP 
(MPTCP)-enabled bandwidth aggregation to optimize link reliability and spectral efficiency.  
Our contributions can be summarized as follows: 

1. A scalable RL-based RU assignment algorithm that jointly optimizes throughput, fairness, 
and energy use. 

2. Cross-layer coordination between MAC and PHY layers using dynamic bandwidth 
aggregation. 

3. Extensive simulation results benchmarking our model against 802.11ax and prior RL-based 
schedulers, demonstrating significant QoS and efficiency improvements. 

 Several studies have recently applied RL techniques, including Q-learning and Deep Q-
Networks (DQN), for RU allocation in WLANs and 5G NR. These efforts focus on dynamically 
selecting RUs based on channel quality or throughput maximization [5]. Mostly single-agent learning 
models (ignoring distributed STA behaviour). Focus on throughput-only optimization, without 
integrating energy or fairness objectives. Simplified environments with limited state/action spaces, 
which reduce applicability to real-world WLANs. Often lack multi-agent coordination, which is 
crucial in dense WLAN scenarios where distributed decisions must be cooperative to avoid collisions. 
Hence, while RL has been introduced, its full potential in multi-objective and multi-agent RU 
allocation remains underexplored. 
 In practical WLAN deployments, heterogeneous QoS requirements such as low latency for 
AR/VR and energy efficiency for IoT cannot be met by static RU allocation strategies [6]. The 
proposed Adaptive User-centric RU Allocation for Wi-Fi (AURA) framework addresses this by 
dynamically assigning RUs based on each agent’s local observations, including channel conditions, 
traffic demand, and energy status [7]. By learning decentralized policies while optimizing a global 
reward, the framework achieves a balanced trade-off between throughput, energy efficiency, and 
fairness. Key novelties include QoS-driven reward tuning, distributed decision-making, cross-layer 
optimization, and demonstrated empirical gains of up to 58% throughput improvement and 30% 
energy savings. 
 The demand for intelligent resource management in next-generation WLANs has intensified 
with the emergence of latency-sensitive and energy-constrained applications. While IEEE 802.11ax 
introduced features like OFDMA, TWT, and MU-MIMO, existing schedulers remain limited in their 
ability to adapt to dynamic network conditions. 
 Several works have applied RL to WLAN scheduling. Bellalta [1] and Gupta et al. [2] 
surveyed the limitations of static RU allocation and contention-based access in IEEE 802.11ax. Deep 
Q-Networks (DQN) were proposed by Johnson and Thomas [3] to adapt RU assignments to channel 
and buffer conditions, yet they operate in a centralized setting and fail under dense traffic due to state 
explosion. Zhou et al. [4] extended this to multi-agent actor-critic frameworks, showing improvement 
in fairness and delay, but without considering energy or QoS class variations. Chen et al. [5] 
employed communication-efficient Multi Agent Reinforce Learning (MARL) for resource scheduling 
but lacked cross-layer integration and did not account for TWT intervals at the MAC layer. 
 QoS-driven scheduling remains underexplored. Wang et al. [6] presented a multi-agent model 
for 5G NR using hierarchical policies to prioritize real-time traffic, yet did not address energy-
efficiency or fairness metrics like Jain’s index. Lee and Park [7] proposed decentralized MARL 
agents for 6G subnetworks but with simplified assumptions on traffic load and channel state 
modeling. In [8], Taylor and Harris applied federated MARL to manage bandwidth and latency across 
mobile stations, highlighting the importance of distributed learning in IoT scenarios. However, these 
models lacked joint optimization of MAC and PHY layers. Recent studies have emphasized the role 
of cross-layer coordination. Ilyas et al. [9] explored the TWT mechanism in IEEE 802.11ax for 
energy saving, but their approach was heuristic and static. Wang et al. [10] introduced cache-aided 
resource allocation to reduce latency but without leveraging machine learning. 
 Unlike these approaches, our work proposes a dynamic cross-layer framework where the 
MAC-layer’s TWT scheduling interacts with PHY-layer RU allocation through multi-agent Q-
learning agents. By incorporating real-time channel, buffer, and energy states, our design ensures 
robust QoS compliance while adapting to diverse user profiles. 
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2. OFDM: The Core Modulation Scheme in WLAN Technologies 
 Orthogonal Frequency Division Multiplexing (OFDM) has served as the foundational 
modulation technique in IEEE 802.11-based WLANs for over two decades, beginning with IEEE 
802.11a in 1999. OFDM efficiently divides the channel into multiple orthogonal subcarriers, enabling 
high data rates with robustness against multipath fading—a critical requirement for indoor wireless 
environments. Subsequent amendments such as IEEE 802.11g and 802.11n extended OFDM to the 
2.4 GHz band and introduced features like MIMO (Multiple Input Multiple Output) and channel 
bonding (20/40 MHz), substantially enhancing throughput and reliability. IEEE 802.11ac further 
advanced OFDM performance by enabling wider channels (up to 160 MHz), 256-QAM, and 
downlink MU-MIMO with support for up to 8 spatial streams.  
 A major leap occurred with IEEE 802.11ax (Wi-Fi 6), which introduced OFDMA—an 
extension of OFDM supporting subcarrier-level multiplexing across users, thereby dramatically 
improving spectral efficiency in high-density deployments. It also incorporated uplink OFDMA and 
Target Wake Time (TWT) for improved energy efficiency. Looking ahead, IEEE 802.11be (Wi-Fi 7), 
expected to finalize by 2025, enhances OFDM’s capabilities with support for 320 MHz channels, 
4096-QAM modulation, multi-link operation (MLO), and extremely low latency, targeting peak PHY 
rates exceeding 30 Gbps. These progressive enhancements reflect OFDM’s adaptability and its pivotal 
role in satisfying the growing demand for high-throughput, low-latency, and energy-efficient WLAN 
communications. However, despite these gains, efficient RU (Resource Unit) allocation and real-time 
adaptation remain challenges under variable traffic conditions, motivating the need for intelligent, 
learning-based resource management frameworks. 
 
3. Evolution of Random-access technique for WLAN networks 
 Legacy 802.11 WLANs used the Distributed Coordination Function (DCF) a CSMA/CA 
protocol with exponential backoff for channel access. The 802.11e amendment introduced Enhanced 
Distributed Channel Access (EDCA), which essentially extended DCF by defining four priority 
queues (Access Categories) with different contention parameters Although EDCA provides traffic 
prioritization, stations within the same category still contend randomly, and collisions remain 
uncontrolled among them. Under heavy load or many contending flows, throughput collapses as the 
probability of collision rises. In short, legacy contention-based access (DCF/EDCA) has limited 
efficiency and cannot guarantee timely access in high-density WLANs. 
 IEEE 802.11ax (Wi-Fi 6) tackled this by introducing OFDMA for simultaneous multi-user 
transmissions. The AP can allocate disjoint Resource Units (RUs) to multiple stations in one 
Transmission Opportunity. For uplink, 802.11ax defines two modes: scheduled OFDMA (AP polls 
stations) and an unscheduled mode called Uplink OFDMA-based Random Access (UORA). In 
UORA, the AP broadcasts a trigger frame listing available RUs and which stations (via AIDs) may 
use them. All stations with data then perform independent OFDMA backoff: each STA decrements a 
separate backoff counter on each available RU and transmits on the first RU where its counter hits 
zero. Thus, multiple STAs can concurrently attempt uplink access on different frequency segments. If 
two STAs select the same RU, a collision occurs (resolved by a multi-user ACK). This mechanism 
enables contention-based multi-user uplink transmissions in 802.11ax. 
 However, UORA’s random contention still faces fundamental limits. Analysis shows that 
even with optimal backoff settings, UORA’s peak medium utilization rarely exceeds about 40% 
Similar to slotted ALOHA, idle RUs and collisions are inevitable under distributed contention. Many 
enhancements have been proposed to improve UORA efficiency. For example, Hybrid UORA (H-
UORA) adds an RU-sensing slot before transmission to reduce collisions, and the Carrier Utilization 
Radio Index scheme uses extra backoff and RU-hopping to lower collision probability. Nevertheless, 
these fixes increase complexity and cannot eliminate the core randomness. Supporting mechanisms 
such as Buffer Status Reporting (BSR) introduce overhead that can fail under dense contention 
Meanwhile, legacy EDCA also suffers in overload: throughput drops as more stations contend. In 
dense or heterogeneous deployments – with many overlapping APs, multi-band devices, and diverse 
traffic demands – fixed contention rules cannot adapt resource usage efficiently. 
 IEEE 802.11be (Wi-Fi 7) aims to address capacity and coordination with wider channels, 
16×16 MIMO, and Multi-Link Operation (MLO). MLO allows a device to use multiple links 
(bands/channels) concurrently, opening new contention strategies. For instance, a multi-link STA 
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could contend on several RUs across different links in one trigger frame. The 802.11be draft also 
specifies Multi-AP Coordination (MAP-Co) to align access among neighbouring APs. In short, 
802.11be adds coordinated multi-link and multi-AP mechanisms. These innovations promise higher 
aggregate throughput and more controlled contention, but fundamentally still rely on shared-medium 
access. Thus, even Wi-Fi 7’s proposals involve some form of distributed access. 
 This history highlights a critical need of conventional random-access MAC schemes alone are 
too rigid for future high-density WLANs. As a result, intelligent, adaptive strategies are being 
explored. In particular, Adaptive User-centric RU Allocation for Wi-Fi (AURA) has shown promise 
for distributed channel access. Proposed AURA-based design (QPMIX) trained WLAN agents 
cooperatively and demonstrated higher throughput, fairness and lower collisions than CSMA/CA. 
Learning-based RU management can dynamically adapt each STA’s contention behaviour based on 
network load and traffic. The AURA-based RU allocation proposed in this paper follows this 
paradigm by learning resource-unit assignments over time, it aims to overcome the inefficiencies of 
fixed random access and better optimize performance in dense, multi-link Wi-Fi networks.   
 
4. RL in Cross-Layer WLANs: Adaptive User-centric RU Allocation for Wi-Fi (AURA) 
 The proposed system integrates dynamic RU assignment using Q-learning with Adaptive 
User-centric RU Allocation for Wi-Fi (AURA) for energy-aware Resource Unit (RU) allocation, 
aiming to enhance Quality of Service (QoS) in IEEE 802.11ax/be WLANs [8]. This cross-layer 
framework addresses the challenges of high-density deployments, heterogeneous traffic demands, and 
energy constraints in modern wireless networks. 
 At the MAC layer, each Access Point (AP) employs a Q-learning algorithm to dynamically 
schedule TWT intervals for associated stations (STAs) [9]. The Q-learning agent observes network 
states—such as buffer occupancy, traffic type, and channel condition and selects optimal TWT 
intervals and RU sizes to balance throughput, latency, and energy efficiency. The reward function is 
designed to reflect these QoS parameters, guiding the agent toward optimal scheduling policies. 
 Concurrently, at the PHY layer, a AURA framework is implemented where each STA 
operates as an independent agent [10]. These agents observe local states, including energy levels, data 
rate requirements, and interference metrics, to make decentralized decisions on RU allocation. The 
AURA agents utilize action-critic models to learn policies that optimize individual performance while 
contributing to overall network efficiency. A shared reward mechanism ensures cooperation among 
agents, promoting fairness and energy conservation across the network. This synergy enables the 
network to respond dynamically to varying traffic loads and device capabilities, ensuring enhanced 
QoS metrics such as increased throughput, reduced latency, and improved energy efficiency. 
Simulation results validate the effectiveness of the proposed system in diverse deployment scenarios. 
4.1 Simulation Environment & test bed considerations 
 Proposed System considered a single Basic Service Set (BSS) with Q learning control unit as 
described in the figure 1, consisting of one Access Point (AP) and multiple Stations (STAs), both 
fixed and portable [11]. The AP coordinates TWT scheduling, while each STA acts as an independent 
AURA agent. The AP also serves as a centralized Q-learning controller to ensure consistency in 
scheduling policy and global reward computation. 

 
Fig.1 System Architecture of intelligent RU management framework 
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The proposed simulation is conducted using a MATLAB-based discrete-event simulator with the 
following parameters: 
 

Table 1: Simulation Environment parameters  
Parameter Value 
Network Topology 1 AP, 20 STAs (10 fixed, 10 mobile) 
Coverage Area 50m × 50m 
PHY Standard IEEE 802.11ax 
Channel Bandwidth 40 MHz 
Traffic Models VoIP (CBR), Video Streaming (VBR), FTP (Poisson) 
Mobility Model Random Waypoint (for portable STAs) 
Channel Model Indoor office model with Rayleigh fading and AWGN 
STA Buffer Size 100 packets 
Simulation Duration 60 seconds 

 In the learning environment, the Q-learning algorithm uses learning rate α=0.1, discount 
factor γ=0.95, and an ϵ-greedy policy with decaying exploration. Training is performed over 5000 
episodes, each lasting 1000 steps. Convergence is achieved when the average reward stabilizes over 
consecutive episodes with less than 1% variance. Cross layer PHY-MAC coordination structure 
created with the calculated distance between AP & STAs, received signal strength and traffic load as 
shown in the figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Cross layer coordination simulation test bed 
4.2 Algorithm 
 Consider a high-density WLAN with N user stations (STAs) and a centralized Access Point 
(AP). Each STA i∈{1,2,…,N} has varying traffic loads, energy constraints, and channel conditions. 
The system aims to dynamically allocate Resource Units (RUs) of varying sizes (26-tone, 52-tone, 
106-tone) using a multi-agent reinforcement learning framework, optimizing Quality of Service (QoS) 
metrics such as throughput, energy efficiency, and fairness. Each STA acts as a learning agent and 
independently selects its RU allocation based on local observations and shared network feedback. 
Initialize Q_i(s,a) for each agent i 
for each episode: 
               Assign (α, β) based on QoS scenario 
    for each agent: 
        Observe state s = (c, d, e) 
        Select action a using ε-greedy policy 
        Compute reward: R(s,a) = α·T(s,a) − β·E(s,a) 
        Observe new state s’ 
        Update Q_i(s,a) using Q-learning rule 
Initialization: 
 Each agent models its decision process as a finite Markov Decision Process defined by s as 
State Space which encodes local observations, 

  𝑠 =  (𝑐, 𝑑, 𝑒) − − − − − 1 
 Where, c refers channel quality (poor, moderate, good), d refers traffic demand (low, medium, 
high) and e refers energy level (low, medium, high). Simulations shown in the figure 3. 
Action Space A will be considered based on RU size selection: 
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𝐴 €൛ 𝑅𝑈{ଶ଺}, 𝑅𝑈{ହଶ}, 𝑅𝑈{ଵ଴଺}ൟ − − − − − −2 
 Reward Function: The agent receives a scalar reward based on the trade-off between 
throughput gain and energy consumption defined by, 

𝑅(𝑠, 𝑎) =  𝛼. 𝑇(𝑠, 𝑎) −  𝛽. 𝐸(𝑠, 𝑎) − − − − − 3 
 T(s,a) is estimated throughput based on RU size, channel, and demand, E(s,a) is energy 
consumed for transmission given energy state and RU size and α, β are tunable weights determined by 
QoS profile of every station as shown in the figure 3.  If same scenario is implemented for 300 
episodes as shown in the figure 4, as episodes progress, selections become more stable, reflecting 
convergence toward optimal policies based on learned QoS objectives. This reflects the framework's 
ability to dynamically adapt to changing reward weightings (α, β) and traffic demands. 
Dynamic Weight Assignment Based on QoS Profile: The weights are dynamically assigned per 
episode to simulate varying user needs as mentioned in table 2. 

Table 2: Various application scenarios with tunable α, β 
Applications α value β value Use case 
High Throughput 1.5 0.5 Video Streaming 
Balanced 1.0 1.0 Browsing 
Energy Constrained 0.5 1.5 IoT sensor interfacing 

Q-Learning Update Rule: 
Each agent maintains a Q-table and updates it using the Bellman equation: 

𝑄௜(𝑠, 𝑎) ← 𝑄௜(𝑠, 𝑎) + 𝛼௟௥[𝑅(𝑠, 𝑎) + 𝛾 max(𝑄௜ (𝑠ᇱ, 𝑎ᇱ) − 𝑄௜(𝑠, 𝑎)] − − − − − −4 
𝛼௟௥is learning rate, γ is discount factor and 𝑠ᇱis next state after taking action. Where α is the learning 
rate and γ is the discount factor. Convergence to the optimal Q-values Q∗ is guaranteed under the 
following conditions: 

1. The learning rate α decays over time such that ∑ 𝛼𝑡௧ =∞ and ∑ 𝛼𝑡ଶ < ∞௧  
2. Each state-action pair is visited infinitely often. 
3. The environment is a finite Markov Decision Process (MDP). 

 These conditions are generally satisfied in WLAN settings with bounded user states and a 
finite RU allocation space. Let |S| denote the number of possible states per agent (STA), |A| the 
number of actions, and N the number of agents. In each time step, the Q-update per agent is O(1) for 
tabular Q-learning. However, computing the joint policy with coordination costs can lead to: 
  Time Complexity = O(N×∣S∣×∣A∣) per iteration  
 If neural Q-networks are used, the forward pass for each agent has a complexity of O(d × l), 
where d is the input dimension and l the number of layers. Tabular Q-learning is efficient for small 
networks but does not scale due to exponential state-action spaces. Deep AURA methods scale better 
but introduce overhead in training and coordination. To manage this, we partition the state space per 
TWT session and allow decentralized training with limited neighbor communication. This balances 
convergence speed with scalability across 802.11ax STAs. 
The policy will update by exploration, which is encouraged using an -greedy strategy defined by: 

𝜋௜(𝑠) = arg 𝑚𝑎𝑥௔∊஺ 𝑄௜(𝑠, 𝑎) − − − −5 
 Figure 5 demonstrates the episodic evolution of RU allocation decisions made by AURA 
agents. The observed transition from exploration to policy stability confirms convergence, while the 
adaptive fluctuation across RU types reflects responsiveness to dynamically varying QoS profiles. 
This validates the AURA framework’s effectiveness in learning context-aware, energy-efficient, and 
throughput-optimized RU scheduling in dense WLAN environments. 
Performance Metrics calculated using RU utilization, Jain’s Fairness Index and Energy vs. 
Latency Trade off 

RU Utilization: Number of times each RU size is allocated as defined by:  

𝑈௝ = ෍ ෍ ǁ

்

௧ୀଵ

ൣ𝛼௜(𝑡) =  𝑅𝑈௝൧ − − − − − −6

ே

௜ୀଵ

 

Jain’s Fairness Index to quantify fairness of RU usage of M RU’s is defined by: 
 

ℐ(𝑈) =  
(∑ 𝑈௝)ெ

௝ୀଵ
ଶ

𝑀. ∑ 𝑈௝
ଶெ

௝ୀଵ

− − − −7 

Energy vs. Latency Trade-off: Evaluate the average energy consumed per unit throughput by: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
∑ 𝐸(𝑠, 𝑎)

∑ 𝑇(𝑠, 𝑎)
− − − −8 
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6. Results, inferences and comparisons 
 The simulation outcomes demonstrate the effectiveness of the proposed AURA-based RU 
allocation framework across three distinct QoS profiles: throughput-priority, balanced, and energy-
priority scenarios in the figure 3. In the throughput-priority mode (α=1.5 & β=0.5), agents 
predominantly selected the largest RU size (106-tone), resulting in up to 58% increase in aggregate 
throughput compared to baseline random allocation. In energy-priority scenarios (α=0.5 & β=1.5), the 
algorithm exhibited a strong preference for the smallest RU size (26-tone), achieving up to 30% 
energy savings with only a marginal drop in throughput. Under balanced QoS conditions (α=β=1.0), 
the agents distributed RU allocations more uniformly, optimizing both throughput and energy 
efficiency simultaneously. 
 Jain's Fairness Index calculated using equation 7, consistently remained above 0.98 across all 
episodes, highlighting the fairness of resource allocation among AURA agents. The trade-off between 
energy consumption and latency was well managed by the learning framework, demonstrating 
dynamic adaptability to network conditions. These results validate the robustness and scalability of 
the AURA approach in real-world, heterogeneous WLAN environments using MATLAB simulation, 
as shown in Figure 4. Additionally, NS-3-based emulation was conducted to assess the protocol-level 
integration and operational fidelity of the AURA framework within IEEE 802.11ax-compliant MAC 
and PHY stacks. The NS-3 simulations capture practical phenomena such as contention behavior, RU 
collisions, and dynamic spectrum utilization under varying user densities.  
 The proposed AURA-based RU allocation framework improves QoS by adapting to traffic 
and energy demands, achieving up to 58% throughput gain and 30% energy savings. Future work 
includes real-hardware validation, deep RL integration, and multi-AP coordination significant for 
enabling intelligent, scalable scheduling in next-generation WLANs and 6G deployments. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Distribution of RU selection by AURA agents in energy-constrained environments 

 
Fig.4 Temporal variation of RU allocation choices (26-tone, 52-tone, and 106-tone) across 300  

Episodes in MATLAB simulation environment 
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Fig.5 Evaluating RU allocation trends using Q-learning using NS-3 Emulator 

 The figure 6 shows the episodic average reward of AURA agents over 200 training episodes. 
A smooth convergence trend is observed, indicating the stability of learned policies under dynamic 
QoS-weighted reward functions. The stabilization after ~200 episodes confirm the algorithm’s 
adaptability and robustness. This plot compares average throughput for different scheduling strategies 
(Proposed AURA, DQN, and Static 802.11ax) across varying STA densities. The AUR scheduler 
consistently outperforms other approaches, maintaining over 700 Mbps even under heavy loads (50 
STAs). This is consistent with the existing techniques proposed ML-based schedulers have 
demonstrated on the order of 30% energy savings and tens-of-percent latency reduction in dense 
wireless networks.  

Fig.6 Policy Convergence of AURA Agents, Throughput Comparison Across Scheduling Methods  & 
Jain’s Fairness Index vs Number of STAs 
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Fig.7 (a). Convergence of Average Reward per Episode under Federated Q-Learning  
Fig.7 (b) ain’s Fairness Index Over Time: RU Allocation Equity Among Agents 

 Figure 7 (a) depicts the average reward over episodes, exhibiting rapid convergence within 
the first few hundred iterations. This indicates that the learning agents effectively stabilize toward 
optimal scheduling strategies, minimizing exploration while optimizing performance metrics. Figure 7 
(b) illustrates the Jain’s Fairness Index computed over the final 100 episodes. The index consistently 
remains above 0.98, confirming the proposed algorithm’s ability to equitably distribute RU resources 
across heterogeneous STAs, avoiding starvation or bias even under high-density loads. These results 
validate the scalability, adaptability, and fairness of the AURA framework, supporting its applicability 
to real-world latency-sensitive and energy-constrained WLAN environments. 
 NS-3 emulation results further substantiate the adaptability and efficiency of the proposed 
AURA framework under high-density WLAN conditions. Figure 8, RU Allocation Dynamics Across 
Tone Types in NS-3 Emulator illustrates the variation in RUs allocations across different tone sizes 
over multiple episodes. The observed sinusoidal patterns emphasize the AURA framework’s dynamic 
adaptation capability in response to fluctuating traffic loads and application-specific QoS profiles. 
Figure 9, Jain's Fairness Index Over Time in NS-3 Emulator presents the fairness index across 
episodes, demonstrating the algorithm’s robustness in maintaining equitable resource distribution. The 
consistently high Jain’s index values (above 0.98) confirm strong load balancing and fairness-aware 
scheduling. System Throughput Performance in NS-3 Emulator in figure 10 shows throughput 
progression (in Mbps) over episodes, where the AURA strategy exhibits efficient RU-to-user mapping 
and superior channel utilization, especially under varying STA densities. 
 
 

 
Fig.8 RU Allocation Dynamics Across Tone Types in NS-3 emulator 
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Fig.9 Jain's Fairness Index Over Time in NS-3 Emulator 

 
Fig.10 System Throughput Performance in NS-3 Emulator 

 
Fig.11 Latency Profile Under AURA Scheduling in NS-3 Emulator 
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Fig.12 Energy Consumption Trends in AURA-Based WLAN in NS-3 Emulator 

  
 Latency Profile Under AURA Scheduling in NS-3 Emulator shown in figure 11, depicts 
latency metrics (in milliseconds), highlighting AURA’s ability to minimize transmission delays by 
intelligently adapting RU scheduling based on learned traffic patterns. Lastly, Figure Energy 
Consumption Trends in AURA -Based WLAN in NS-3 Emulator underscores the energy-efficient 
nature of the framework. The reduction in energy usage over time is attributed to optimized wake-up 
intervals and selective RU assignment, driven by the reinforcement learning policy as figured in 12. 
Together, these results validate the AURA algorithm’s capacity to balance throughput, latency, and 
energy objectives in realistic, protocol-compliant WLAN environments. 
  Effective resource allocation is essential for enabling cross-layer coordination between the 
OFDMA and MAC layers in wireless networks, especially under dynamic channel conditions and 
diverse QoS demands. QoS-aware scheduling and machine learning techniques, such as Q-learning, 
enhance spectral efficiency, latency, and fairness by aligning MAC decisions with network 
conditions. In IEEE 802.11-based systems, Q-tables play a key role in mapping network states to 
optimal actions, directly influencing throughput and overall performance. These strategies are crucial 
for optimizing next-generation wireless networks.  

 Q(S, A): Maps the expected reward for taking action A in state S. This structure only captures 
MAC-layer factors and lacks cross-layer context such as energy level or application priority. 

 Q(S′,A′): Reflects multi-dimensional optimization with throughput, energy, latency, and 
fairness. It Enables smarter, context-aware RU decisions by fusing MAC, PHY, and QoS 
inputs, leading to better throughput and energy efficiency. 

Table 3 Parametric considerations for existing Q-table & proposed cross layer Q-table 

Aspect Normal Q-Table Cross-Layer Augmented Q-Table 

State Variables Channel quality, traffic load Channel, energy level, QoS, buffer status 

Cross-layer Inputs Not included MAC + PHY + QoS integrated 
Decision Factors RU size only RU size, TWT interval, QoS priority 
Optimization 
Objective 

Throughput-centric Multi-objective: throughput + energy + latency 

Use Case Suitability Basic RL in WLAN Advanced QoS-driven and scalable WLANs 
 A cross-layer Q-table extends traditional Q-learning by representing state-action pairs that 
incorporate both MAC and PHY layer parameters in 802.11 networks. States include channel 
conditions and traffic load, while actions represent resource decisions such as bandwidth or 
transmission power. The Q-table, updated using the Bellman equation, guides optimal decisions. 
Figure 5 visualizes this with a heatmap, where the X-axis shows actions, Y-axis shows states, and 
color intensity reflects the expected reward. Higher values (yellow/green) indicate more favorable 
actions for a given state, while lower values (blue/purple) suggest suboptimal choices. 
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The Q-table heatmap reveals how different state-action pairs influence expected rewards in a 
WLAN environment. High Q-values (yellow/green) in States 9 and 3 for Action 3 indicate that 
allocating higher resources is optimal under favorable conditions. In contrast, low Q-values 
(blue/purple) for State 10 and State 1 suggest that higher resource allocation during congestion or 
poor channel quality is suboptimal. Mid-range Q-values in States 4 to 6 indicate uncertain or balanced 
conditions, where the algorithm finds no dominant action likely reflecting moderate channel and 
traffic states. This highlights the adaptive nature of the Q-learning model. It enhances throughput in 
802.11 networks by enabling adaptive, intelligent resource allocation. The Q-table guides actions such 
as transmission control, bandwidth allocation, and contention management. This leads to reduced 
packet loss, efficient spectrum use, minimized collisions, balanced network load, and lower latency 
resulting in optimized and stable throughput performance. 
 Selecting high Q-value actions in given states ensures higher throughput, as these actions 
optimize transmission rates, bandwidth allocation, or power levels. Choosing actions with lower Q-
values may result in congestion, packet loss, or inefficient bandwidth utilization, leading to reduced 
throughput. The Q-table has successfully learned an optimal action policy based on state variations as 
shown in the table 3. The results indicated in the figure 13, as network conditions impact optimal 
decisions for Different states have varying best actions. Q-learning successfully adapts the heatmap 
which shows distinct Q-value variations as shown in the table 4, implying that the algorithm is 
learning meaningful policies rather than random allocation. Further optimization may be required If 
the Q-values are spread too widely, fine-tuning hyperparameters like the learning rate (α) and 
discount factor (γ) might improve learning stability. 

Fig.13 Q table structure for intelligent resource allocation 
 
 
 

Table 4 Q-Table Actions Correspond to RU Allocation 

State (S) Action (A) 
RU Allocation                                         
(Resource Management Decision) 

Weak Channel,  Low Traffic Assign 26-tone RU Smallest RU, less power usage 
Good Channel, Medium Load Assign 52-tone RU Medium capacity allocation 
Excellent Channel, High Load Assign 106-tone RU High data rate transmission 

Table 5 Q-Table reward Matrix considered for RU assignment 

State (Channel + Traffic) Action 1 Action 2 Action 3 
Best Channel, low traffic 1.2 (low reward) 0.8 0.5 
Average channel, medium traffic 0.9 1.5 (High reward) 1.0 
Good channel, High traffic 0.7 1.3 2 (Best reward) 
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Fig.14 Q table and RU allocation relationship 
 In the Figure 14, Resource Units (RUs) are allocated dynamically to optimize throughput and 
spectral efficiency. Reinforcement Learning (RL) and Q-table, helps achieve adaptive RU allocation 
by learning the best strategies based on network conditions. Dynamic Visualization Approach 
includes Heatmap representation consists of a color-coded Q-table heatmap shows preferred RU 
allocations based on learned Q-values. Where Higher values indicate optimal RU selection, improving 
throughput. Regularly real-Time Q-Value will updates as learning progresses, Q-values adjust 
dynamically, ensuring optimal RU assignments for each state based on the reward matrix as shown in 
the Table 5. State-Action Mapping results to good channel conditions leads to larger RU (e.g., 106-
tone) and Poor conditions leads to Smaller RU (e.g., 26-tone). 

Table 6 Q table and RU allocation relationship 
Q learning Component 802.11 RU equivalent 
State (S): Network conditions (channel quality, traffic load Channel status & user demand 

Action (A): Decision on allocating resources RU size selection                                                     
(26-tone, 52-tone & 106 -tone) 

Reward (R): System performance feedback Throughput, latency, spectral 
efficiency 

Policy: Best action selection Optimized RU allocation strategy 
By visualizing the Q-table dynamically, central control network management suite will 

monitor and optimize resource allocation, ensuring efficient OFDMA-based coordination with MAC 
layer by referring the table 6. The Q-table-based reinforcement learning framework offers a promising 
avenue for throughput optimization in 802.11 networks. By systematically mapping states to optimal 
actions, network performance is dynamically enhanced, ensuring high data rates, reduced interference, 
and improved user experience. As wireless networks evolve, Q-learning and its advanced variations 
will play a pivotal role in intelligent network management and performance enhancement.  

 
Conclusion 

The proposed AURA approach for dynamic Resource Unit (RU) assignment in WLANs, 
demonstrated significant potential for optimizing network performance under heterogeneous QoS 
demands. By enabling each station to make intelligent, localized decisions based on real-time traffic 
load, channel conditions, and energy status, the framework ensures adaptive and fair RU allocation. 
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The dynamic tuning of reward functions allows the system to balance throughput, energy efficiency, 
and latency in diverse deployment scenarios. Simulation results confirm improvements in throughput 
(up to 58%), energy savings (up to 30%), and fairness (Jain’s index > 0.98), validating the scalability 
and robustness of the AURA-based RU allocation model for next-generation WLANs. Despite its 
promising results, the proposed framework has limitations including its reliance on simulated traffic 
and homogeneous agent assumptions. Future research will focus on extending the model to real-world 
deployments on hardware testbeds, incorporating deep and federated RL techniques, and optimizing 
coordination strategies in multi-AP WLAN settings. 
Limitations & Future Scope  
 The current study relies on a MATLAB-based discrete event simulator with synthetic traffic 
and channel models and real time traffic mimic in NS-3 emulator. Although effective for conceptual 
validation, the lack of real-world hardware limits insights into practical deployment challenges such 
as synchronization overheads, firmware constraints, and real-time adaptability. The simulation adopts 
idealized traffic patterns (CBR, VBR, Poisson) and generic energy consumption metrics. In real 
deployments, traffic can be bursty and energy dynamics are influenced by hardware factors like 
transmission power scaling, idle listening, and wake-up delays.  
 To address station heterogeneity and coordination overheads, exploration of federated 
learning and hierarchical learning required where Access Points act as aggregators of local agent 
policies. An extension of the current work will focus on WLAN environments with multiple 
overlapping Basic Service Sets (BSS), where handoff decisions, channel reuse, and AP-association 
policies can be jointly optimized using cooperative learning methods. 
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