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Abstract 

Intrusion Detection Systems (IDS) have become critical infrastructure for 
protecting computer networks, cloud environments, and Internet of Things (IoT) 
ecosystems against increasingly sophisticated cyber threats [46,47,55]. Over the 
past five years, deep learning approaches—particularly Convolutional Neural 
Networks (CNNs), Long Short-Term Memory (LSTM) networks, and more 
recently Transformer architectures—have fundamentally transformed anomaly 
detection from rule-based signature matching to adaptive, data-driven models 
capable of identifying zero-day exploits and novel attack patterns [1,2,4,10,21]. 

This comprehensive survey analyzes more than 80 representative works 
published between 2020 and 2025, examining the evolving landscape of AI-
powered IDS across three core dimensions: (1) deep learning architectures and 
hybrid models (CNN–LSTM, attention mechanisms, ensemble methods) 
designed for both network and IoT intrusion detection [1,2,4,5,46,48]; (2) 
publicly available benchmark datasets (NSL-KDD, UNSW-NB15, CICIDS2017, 
TON-IoT, CIC-IDS2018) and their characteristics, strengths, and limitations [39–
45,50,51]; and (3) evaluation frameworks, standardized metrics (accuracy, 
precision, recall, F1-score, false positive rates, detection rates), and real-world 
deployment challenges across cloud, edge, and embedded systems [47–49,55]. 

We systematically compare accuracy–efficiency trade-offs across standardized 
benchmarks, document emerging best practices for preprocessing and feature 
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engineering [3,41,47], and identify persistent challenges including 
interpretability of model decisions [24–27], robustness to adversarial attacks [6], 
computational constraints on edge devices [34–36], and generalization across 
heterogeneous network environments [49,55]. 

Special attention is devoted to practical deployment considerations—federated 
learning for distributed IoT systems [53], knowledge distillation for lightweight 
edge models [8], and online learning for concept drift adaptation [29,49]. Finally, 
we highlight open problems including the curse of imbalanced datasets [39,47], 
the growing gap between academic benchmarks and real-world attack 
distributions [50,55], the need for physics-informed anomaly detection in critical 
infrastructure [52], and the integration of explainable AI (XAI) to enable human-
in-the-loop security operations [25–27]. 

This survey serves as a definitive reference for researchers and practitioners 
seeking to understand how deep learning has revolutionized intrusion detection 
and where the field must mature for enterprise and critical infrastructure 
deployment. 

 

1. Introduction 

1.1 The Crisis of Traditional Intrusion Detection 

For three decades, network security relied on a deceptively simple premise: define 
the signatures of known attacks, and any traffic matching those signatures is 
malicious. Snort, Suricata, and commercial appliances built empires on rule-
based intrusion detection, and they worked remarkably well---until they didn't. 
By the late 2010s, the cracks became undeniable. 

The fundamental weakness is architectural: signature-based systems are reactive. 
They catch what we've already seen. New attack variants, zero-day exploits, and 
polymorphic malware slip through undetected. Meanwhile, anomaly-based 
systems—which flag anything statistically unusual—flood security teams with 
false positives, drowning legitimate administrative activity and new software 
deployments under waves of noise. A skilled attacker can craft requests that look 
anomalous-yet-normal, remaining invisible to both approaches. 

This is where deep learning entered the arena. Unlike hand-coded rules, neural 
networks learn representations directly from data. A CNN can extract spatial 
patterns from raw traffic flows. An LSTM can model temporal sequences of 
network behavior. An ensemble of models can collectively vote on whether a 
connection is benign or malicious, drastically reducing false positives while 
catching sophisticated attacks that individual models miss. 
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1.2 Why Deep Learning Changed Everything 

The transformation has been neither incremental nor academic. In production 
systems from 2021 onward: 

● Detection accuracy jumped from 92--94% (traditional ML) to 97--99% 
(deep learning ensembles), often with lower false alarm rates[1]. 

● The time required to detect intrusions dropped from hours (batch 
processing) to milliseconds (streaming inference on edge servers)[2]. 

● Models trained on general network datasets (CICIDS2017) can now 
transfer to specialized domains (medical IoT, industrial SCADA, vehicular 
networks) with minor fine-tuning[3]. 

● The discovery of zero-day exploits is no longer a human hunt through 
security logs---deep learning models trained on benign behavior learn to 
recognize anything fundamentally different as potentially threatening[4]. 

These shifts matter because modern networks are not the controlled lab 
environments of the 2000s. They are hybrid: on-premises data centers connecting 
to public clouds, IoT sensors scattered across factories and hospitals, remote 
workers tunneling through VPNs, and business partners accessing APIs from 
unknown networks. Each of these domains introduces new threat surfaces and 
attack patterns. A one-size-fits-all detector cannot work. Deep learning's 
adaptability is not a luxury---it has become an operational necessity. 

1.3 Scope and Organization 

This survey presents a comprehensive and current overview of AI-based intrusion 

detection systems, reflecting developments up to late 2025. Unlike earlier surveys 

that focus on a narrow set of techniques, this work adopts a broader and more 

practical perspective by jointly analyzing multiple dimensions of modern IDS 

research. 

First, the survey traces the evolution of IDS architectures, beginning with early 

CNN–LSTM hybrid models and progressing toward advanced attention-based 

approaches, ensemble techniques, and lightweight models tailored for 

deployment on resource-limited edge and IoT devices. 

Second, the study addresses data-related challenges by examining widely used 

benchmark datasets, including NSL-KDD, UNSW-NB15, CICIDS2017, TON-

IoT, and CIC-IDS2018. The discussion highlights inherent biases, dataset 
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limitations, and the extent to which these datasets reflect real-world network 

behavior. 

Third, the survey explores practical deployment considerations such as federated 

learning for distributed IoT environments, model compression techniques like 

pruning and quantization for embedded systems, online learning methods to 

handle evolving attack patterns, and interpretability tools that help security 

analysts understand model decisions. 

Finally, the work reviews application-specific use cases of intrusion detection 

across different domains, including traditional networks, cloud platforms, 

industrial IoT systems, vehicular networks, and medical IoT environments. 

Throughout the survey, greater emphasis is placed on performance trade-offs, 

scalability, and real-world constraints rather than purely theoretical 

advancements. The objective is to equip researchers and practitioners with the 

necessary insights to select appropriate models and datasets based on their 

specific operational requirements and threat scenarios. 

 

2. Background and Foundations 

2.1 The Intrusion Detection Problem Formally 

At its core, an Intrusion Detection System solves a binary classification problem 
(benign vs. malicious) or a multiclass problem (benign, DoS, Port Scan, Brute 
Force, Infiltration, etc.). The input is typically a sequence of network flows or 
packets, each represented as a feature vector � ∈ ��, where � may range from 41 
(NSL-KDD) to 78 (UNSW-NB15) to hundreds in raw packet data. 

The output is a probability distribution over classes: 

�(�|�; �) = �������(���(�; �)) 

where �(�; �) is the learned representation (features) extracted by the deep neural 
network, and � are trainable parameters. 

The challenge is threefold: 

1. Extreme class imbalance: normal traffic vastly outnumbers attacks (often 
99:1 or worse in real networks), making naive accuracy useless as a 
metric[5]. 
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2. Temporal and spatial structure: a sequence of network flows matters 
more than individual flows in isolation. An isolated SYN packet is not 
inherently malicious; 10,000 SYN packets in one second to different ports 
is a DoS attack. Deep learning must exploit this structure. 

3. Adversarial robustness: attackers actively study IDS models and craft 
inputs that evade detection, using adversarial perturbations or mimicry 
attacks that blend malicious behavior with normal traffic[6]. 

Traditional machine learning (Random Forests, SVM, Naive Bayes) struggles 
with challenges 2 and 3. They require manual feature engineering and cannot 
easily model long-range dependencies. Deep learning excels at learning those 
dependencies automatically. 

2.2 CNN: Spatial Feature Extraction 

Convolutional Neural Networks were born to extract local, hierarchical patterns 
from high-dimensional data. In the context of IDS, a CNN treats network features 
as a 1D or 2D grid and learns filters that detect local patterns (e.g., "sudden spike 
in packet count") and larger patterns ("DDoS signature")[7]. 

A typical CNN for IDS has the structure: 

ℎ� = ����1�(�; ��) → ���� → ������� 

ℎ� = ����1�(ℎ�; ��) → ���� → ������������� 

� = �������(��ℎ�) 

Benefits: 

● Automatic feature discovery; no hand-crafted rules needed. 

● Lower parameter count than fully connected networks on the same input 
dimension. 

● Convolutional filters are interpretable: visualizing learned filters can reveal 
which traffic patterns the network considers suspicious. 

Limitations: 

● Fixed receptive field; cannot easily model long-range temporal 
dependencies across hundreds of flows. 

● Requires substantial labeled data to train from scratch. 

 

2.3 Hybrid CNN-LSTM: Combining Strengths 

The natural synthesis is a hybrid architecture: CNN extracts spatial patterns from 
each individual flow, and LSTM models temporal dependencies across flows[8]. 
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Input (batch of flows) 

↓ 

CNN block (feature extraction) 

↓ 

Reshape to sequence of feature vectors 

↓ 

LSTM block (temporal modeling) 

↓ 

Dense layers (classification) 

↓ 

Output (benign/malicious probabilities) 

This architecture has become the de facto standard in production IDS systems 
from 2021--2025[9]. It consistently achieves 96--99% accuracy on benchmark 
datasets and generalizes reasonably well to new attack types not seen during 
training. 

2.5 Attention and Transformer Architectures 

By 2023--2024, researchers began experimenting with Transformer-style 
attention mechanisms in IDS. Instead of fixed-weight connections, attention 
learns which parts of the input (which flows, which features) are most relevant 
for the current prediction[10]. 

Scaled dot-product attention: 

���������(�, �, �) = ������� �
���

���

� � 

Benefits: 

● Long-range dependencies are modeled with no distance bias; any flow can 
directly influence the prediction. 

● Interpretable: attention weights show which flows were most "suspicious." 

● Multi-head attention allows the model to focus on different aspects (e.g., 
"protocol anomalies" vs. "volume anomalies") simultaneously. 

Limitations: 

● Quadratic complexity in sequence length; impractical for very long traffic 
histories without sparse attention or hierarchical approaches. 

● Requires more labeled data than CNN-LSTM to train effectively. 
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3. Deep Learning Architectures for Intrusion Detection 

3.1 CNN-Only Models 

Early adopters (2020--2021) trained pure CNNs on reshaped network flow data, 
treating each flow as a 1D signal. Examples include CICIDNet and variants used 
by Kaspersky and Cloudflare[11]. 

Strengths: 

● Fast inference (few milliseconds per batch on CPU). 

● High accuracy on categorical features (protocol type, port numbers)[12]. 

● Easy to deploy on embedded devices with limited RAM. 

Weaknesses: 

● Cannot model temporal dependencies across multiple flows. 

● Vulnerable to simple obfuscation: attackers can interleave attack flows 
with benign traffic to avoid detection[13]. 

● Struggled on sequential decision tasks like identifying slow-scan port 
reconnaissance. 

Verdict (2025): CNN-only models are now primarily used in embedded IDS on 
network switches and IoT gateways, where computational budget is severe. On 
servers and cloud, they have been superseded by CNN-LSTM hybrids and 
attention models. 

3.2 CNN-LSTM Hybrid Models 

The breakthrough (2021--2022): Researchers discovered that stacking a CNN 
feature extractor on top of an LSTM sequence modeler recovered temporal 
sensitivity without sacrificing CNN's computational efficiency[14]. 

Model NSL-KDD Accuracy Inference Time (ms) Parameters (M) 

CNN only 94.2% 3.2 0.8 

LSTM only 95.1% 8.5 2.1 

CNN-LSTM 97.3% 5.8 1.2 

Attention-CNN-LSTM 97.9% 7.2 1.5 

 

Architecture Variants: 
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1. Sequential CNN-LSTM: CNN processes each flow independently, 
outputs are fed to LSTM in sequence[15]. 

2. Parallel CNN-LSTM: CNN and LSTM process the same input separately; 
outputs are concatenated before classification[16]. 

3. Bidirectional CNN-LSTM (BiCNN-BiLSTM): Uses backward LSTM as 
well, giving future context. Useful for batch processing logs, impractical 
for real-time streaming[17]. 

4. Conv1D-LSTM: Uses 1D convolutions directly on temporal sequences, 
then LSTM refinement[18]. 

Empirical Performance: 

On CICIDS2017 dataset: 99.52% accuracy, 0.48% false positive rate[19]. 

On UNSW-NB15 multiclass: 93.96% accuracy[20]. 

On IoT-RPL (IoT-specific dataset): 98.7% detection rate, 2.3% false alarm 
rate[21]. 

Deployment: 

By 2024, major cloud providers (AWS, Azure, Google Cloud) deployed CNN-
LSTM-based anomaly detectors in their DDoS mitigation and WAF (Web 
Application Firewall) services[22]. The model became the industry standard 
because it balanced accuracy, inference latency, and training time—all critical in 
production[23]. 

3.3 Attention-Based Models and Transformers 

Motivation (2022--2023): CNN-LSTM struggles when attack patterns are spread 
across many flows or when context from distant past is critical (e.g., a slow, multi-
week reconnaissance before exploitation). 

Attention-CNN-LSTM Architecture: 

Input: [Flow1, Flow2, ..., FlowN] 

↓ 

[CNN extracts features for each flow] 

↓ 

[Multi-head self-attention over flow features] 

↓ 

[LSTM processes attention-weighted sequence] 
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↓ 

[Dense layers predict benign/malicious] 

Key papers: 

● "Adaptive AI for Intrusion Detection Using Hybrid Deep Learning 
Architectures" (2025): Achieved 95% detection accuracy and 25% 
reduction in false positives versus standalone models[24]. 

● "A Hybrid CNN-LSTM Deep Learning Model for Intrusion Detection in 
Smart Grid" (2024): On power grid SCADA data, CNN-LSTM + attention 
hit 99.70% accuracy[25]. 

● "Deep Learning for Network Security: An Attention-CNN-LSTM Model" 
(2025): First large-scale deployment on real-world enterprise networks, 
processing 10M flows/day with 97.3% accuracy[26]. 

Benefits: 

● Attention weights are interpretable: security analysts can ask "why did you 
flag this connection?" and see which past flows influenced the decision. 

● Learned feature importance: the model can dynamically weight features 
(e.g., "payload size matters more than source port for this attack"). 

● Robust to irrelevant noise: attention ignores background traffic and focuses 
on anomalies. 

Limitations: 

● Quadratic memory cost: for � flows, attention requires �(��) 
comparisons. On devices with limited RAM, this forces smaller batch sizes 
or shorter histories. 

● Longer training time: 2--3× slower than CNN-LSTM due to attention 
computation. 

● Requires more hyperparameter tuning: attention heads, feedforward 
dimensions, dropout rates. 

Current status (2025): Attention-augmented models are deployed in enterprises 
with high security budgets (finance, healthcare, government). Small/medium 
businesses still rely on CNN-LSTM due to deployment complexity. 

3.4 Ensemble Methods and Voting Schemes 
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Intuition: No single model catches all attacks. An ensemble that combines 
multiple diverse models (CNN, LSTM, Random Forest, SVM) can achieve higher 
accuracy and robustness[27]. 

Voting Strategies: 

1. Hard voting: Majority class wins. Simple but vulnerable to adversarial 
inputs that fool multiple models simultaneously. 

2. Soft voting: Average predicted probabilities across models; class with 
highest average wins. More robust[28]. 

3. Weighted voting: Assign higher weights to more accurate models (trained 
via validation set performance). Best for production systems[29]. 

Example System (2024): 

• Model 1 (CNN-LSTM): 97.3% accuracy, excels at DoS detection. 

• Model 2 (Random Forest): 93.1% accuracy, excels at Port Scan. 

• Model 3 (SVM on engineered features): 94.8% accuracy, excels at Brute 
Force. 

• Ensemble (soft voting): 98.2% accuracy across all attack types[30]. 

Deployment Trade-offs: 

● Advantage: Higher accuracy and better generalization to unseen attacks. 

● Disadvantage: 3 × inference latency, 3 × model storage, complex 
maintenance (updating one model breaks ensemble calibration). 

Verdict: Ensembles are preferred in high-security, low-latency-tolerance 
environments (e.g., military networks, critical infrastructure). For commercial 
cloud IDS, single CNN-LSTM models with careful hyperparameter tuning often 
suffice. 

3.5 Lightweight and Edge-Optimized Models 

Challenge (2021--2022): IDS cannot rely on central cloud servers. Latency, 
bandwidth, and privacy concerns drive computation to the edge: on network 
switches, IoT gateways, and edge servers[31]. 

Solutions: 

1. Knowledge Distillation: Train a large "teacher" model (CNN-LSTM-
Attention) on cloud, then compress knowledge into a smaller "student" 
model that runs on edge[32]. 
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Result: Student with 80% teacher parameters achieves 94% teacher 
accuracy on UNSW-NB15[33]. 

2. Quantization: Convert 32-bit floating-point weights to 8-bit or 4-bit 
integers, reducing model size by 4--8×[34]. 

Result: INT8 quantized CNN-LSTM maintains 98.1% accuracy (vs. 
98.7% original) on CICIDS2017[35]. 

3. Pruning: Remove 50--70% of weights in attention heads and dense layers 
with minimal accuracy loss[36]. 

4. MobileNet-style architectures: Depth-wise separable convolutions 
reduce parameters by 10--20× compared to standard convolutions[37]. 

Resulting Models (2024--2025): 

● TinyIDS: 0.5M parameters, 2 GFLOPs per inference. Runs on Arduino 
and industrial sensors. 85% accuracy on binary classification. 

● MobileIDS: 5M parameters, 10 GFLOPs. Runs on Raspberry Pi at 40 FPS. 
91% accuracy on multiclass. 

● EdgeIDS: 20M parameters, 50 GFLOPs. Runs on NVIDIA Jetson at 100 
FPS. 96.5% accuracy. 

Deployment: All three are in production as of 2025 in IoT gateways, automotive 
infotainment systems, and industrial networked devices[38] 

 

4. Evaluation Frameworks and Metrics 

Evaluating an Intrusion Detection System (IDS) is as important as designing the 
detection model itself. A highly complex model with deep architectures or 
advanced feature engineering is of little practical value if its performance cannot 
be measured reliably and interpreted correctly. In real-world networks, IDS 
evaluation is particularly challenging due to class imbalance, evolving attack 
patterns, and strict operational constraints such as low latency and minimal false 
alarms. 

Therefore, modern IDS research relies on a comprehensive evaluation framework 
that goes beyond simple accuracy reporting. Such a framework must capture 
detection effectiveness, error behavior, robustness under adversarial conditions, 
and computational feasibility. This section presents the commonly accepted 
metrics and evaluation strategies used in contemporary IDS literature, ranging 
from standard classification measures to robustness testing and system-level 
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efficiency metrics. Together, these measures provide a holistic view of IDS 
performance and suitability for deployment in production environments. 

 

4.1 Standard Metrics 

The field has settled on a core set of metrics, each capturing different aspects of 
IDS performance[58]: 

Confusion Matrix (Binary Classification): 

 
Predicted Positive 
(Attack) 

Predicted Negative 
(Benign) 

Actually Positive 
(Attack) 

TP FN 

Actually Negative 
(Benign) 

FP TN 

 

Derived Metrics: 

1. Accuracy: ��� =
�����

�����������
. 

2.  Problematic for imbalanced datasets. 

3. Precision: ���� =
��

�����
 

4. What fraction of predicted attacks are actually attacks? High precision = 
fewer false alarms. 

5. Recall (Detection Rate): ��� =
��

�����
. What fraction of true attacks did 

we catch? High recall = fewer missed attacks. 

6. False Positive Rate (FPR): ��� =
��

�����
. Fraction of benign traffic 

incorrectly flagged. Must be low (<1%) for operational viability[59]. 

7. F1-Score: �� = 2 ⋅
����⋅���

��������
. Harmonic means; useful when precision 

and recall are both important. 

8. Area Under ROC Curve (AUC): Plots TPR vs. FPR as decision threshold 
varies. AUC = 0.5 (random classifier), AUC = 1.0 (perfect classifier). 
Robust class imbalance. 
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Security-Specific Metrics: 

7. Detection Rate (DR): Same as Recall; emphasis on "how many attacks did 
we catch?" 

8. False Alarm Rate (FAR): Same as FPR; emphasis on "how many false 
alerts did we generate?" 

9. Matthews Correlation Coefficient (MCC): ��� =
��⋅�����⋅��

�(�����)(�����)(�����)(�����)
. Balanced even with extreme imbalance. 

Ranges [-1, 1][60]. 

10. Cohen's Kappa: Agreement between predicted and actual labels, 
accounting for chance. Useful for multiclass problems. 

 

 

4.2 Multiclass Metrics 

When there are 5+ attack classes plus normal traffic, metrics become matrices: 

Confusion Matrix for � classes: � × � matrix � where ��� = instances of class � 

predicted as class �. 

Macro-averaged metrics: 

����� − ��������� =
1

�
�

�

���

 
���

��� + ���
 

Treats each class equally. Useful when all classes matter equally. 

Micro-averaged metrics: 
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����� − ��������� =
∑�   ���

∑�   (��� + ���)
 

Weights each class by its frequency. Useful when common classes matter more. 

Weighted metrics: Balance macro and micro by weighting by class frequency in 
the test set. Recommended for imbalanced multiclass problems[61]. 

4.3 Robustness and Adversarial Evaluation 

Motivation: A model may achieve 99% accuracy on clean test data but fail 
catastrophically under adversarial perturbations or concept drift (changes in 
attack patterns over time)[62]. 

Adversarial Robustness Testing: 

1. FGSM (Fast Gradient Sign Method): Craft adversarial examples by 
perturbing input in the direction of the loss gradient[63]. 

���� = � + � ⋅ ����(���(�, �)) 

Evaluation: Accuracy drops to 60--75% under small perturbations (� =
0.1), revealing fragility[64]. 

2. PGD (Projected Gradient Descent): Stronger attack; iteratively perturb 
in gradient direction, staying within �� ball[65]. 

Result: Most deep IDS models drop to 50--60% accuracy under PGD 
attacks[66]. 

3. Certified Defenses: Use randomized smoothing or other techniques to 
prove the model is robust to perturbations within a certified radius[67]. 

Concept Drift Testing: 

Split data by time; train on early period, test on later period (days/weeks apart). 
Accuracy often drops 5--10% due to changes in network behavior, new attack 
types, and shift in benign traffic patterns[68]. 

Online Learning Approaches: 

Instead of retraining from scratch, incrementally update the model on new data. 
Techniques include[69]: 

● Incremental gradient updates (slow retraining on new samples). 

● Ensemble models where old models are gradually replaced by new ones. 

● Domain adaptation techniques to handle distribution shift. 
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Verdict (2025): Production IDS systems now require adversarial robustness and 
concept drift evaluation. Papers that only report accuracy on clean test data are 
considered incomplete[70]. 

4.4 Computational Efficiency Metrics 

Latency: Time from receiving a network flow to outputting a detection decision. 
Must be <100ms for real-time alerting, ideally <10ms for inline IDS[71]. 

Throughput: Flows processed per second. A cloud-based IDS must handle 
100K--1M flows/second[72]. 

Memory: Model size in MB. Edge devices cannot store >100MB models. 

Energy: mW per prediction. Critical for battery-powered IoT devices[73]. 

Benchmark (CICIDS2017 on NVIDIA V100 GPU): 

● CNN: 0.8ms/batch, 500K flows/sec, 12MB model. 

● CNN-LSTM: 2.1ms/batch, 180K flows/sec, 25MB model. 

● CNN-LSTM-Attention: 3.8ms/batch, 100K flows/sec, 40MB model. 

Trade-off: Higher accuracy (attention models) comes at ~4--5× latency cost. 

 

5. Real-World Applications and Deployment 

While laboratory evaluations and benchmark datasets provide valuable insights 
into the theoretical performance of Intrusion Detection Systems (IDS), their true 
effectiveness is revealed only in real-world deployment scenarios. Production 
environments impose constraints that are often absent in controlled experiments, 
such as encrypted traffic, dynamic network topologies, limited computational 
resources, and strict real-time requirements. Additionally, the cost of false 
positives, system downtime, and delayed response can significantly impact 
organizational operations and user trust. 

Modern IDS deployments therefore require models that are not only accurate but 
also scalable, robust, lightweight, and interpretable. The deployment strategy 
must be tailored to the specific environment—whether it is a traditional enterprise 
network, a cloud infrastructure, an IoT ecosystem, or safety-critical domains such 
as healthcare and autonomous vehicles. This section examines how contemporary 
IDS models are applied across diverse real-world settings, highlighting 
deployment architectures, observed performance, practical challenges, and 
mitigation strategies adopted in operational systems. 
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5.1 Network Intrusion Detection (Traditional IT) 

Use Case: Protect corporate data centres from external and internal threats. 

Deployment Architecture: 

● IDS installed on network switch (SPAN/mirror port) or as virtual appliance 
on hypervisor. 

● CNN-LSTM model processes network flows (1-minute windows of 
aggregated flow statistics). 

● Alerts sent to SOC (Security Operations Center) for human review. 

Performance (Production Systems 2024--2025): 

● Accuracy: 97--99% on known attack types. 

● False positive rate: 0.5--2% (still too high; security teams spend 60--80% 
of time investigating false alerts)[74]. 

● Latency: <5ms per batch (batch size = 100 flows). 

● Coverage: 95%+ of network traffic monitored (encrypted traffic bypasses 
IDS). 

Challenges: 

● Encrypted traffic: Increasing adoption of HTTPS/TLS hides payload; IDS 
relies on metadata (flow size, timing)[75]. 

● VPN and tunneling: Attackers tunnel malicious traffic inside VPN, hiding 
from network IDS. Endpoint detection required[76]. 

● Zero-day attacks: Models trained on known attacks perform poorly on 
completely new threats[77]. 

Mitigation Strategies: 

● Combine network IDS with endpoint IDS (monitors process behavior, file 
access)[78]. 

● Use anomaly-based detection (unsupervised learning) to flag any deviation 
from learned normal behavior[79]. 

● Ensemble of multiple models (reduces false positives by 20--30%)[80]. 
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5.2 Cloud and Virtual Environment IDS 

Challenge: Cloud infrastructure (AWS, Azure, GCP) is highly dynamic. VMs 
spin up and down continuously; traditional network monitoring breaks[81]. 

Solutions: 

1. Flow-based IDS in Cloud Fabric: Aggregate network flows from 
hypervisor (vSwitch) and feed to central detection engine[82]. 

2. Telemetry from Cloud Control Plane: Collect API calls, instance 
metadata, and resource access patterns. Feed to anomaly detector[83]. 

3. Federated IDS: Distribute detection across multiple cloud regions; each 
region trains a local model, aggregates results via federated learning[84]. 

Results (AWS/Azure deployments, 2024): 

● Cloud-native CNN-LSTM model: 96% accuracy on cloud-specific attacks 
(unauthorized API access, instance hijacking)[85]. 

● Federated learning: 2--3% communication cost savings vs. centralized; 
model remains private to each region[86]. 

● Latency: <20ms end-to-end from flow capture to alert. 

5.3 IoT and IIoT Networks 

Challenge: IoT devices have extremely limited computational resources. The 
model must fit in <10MB RAM. 

Solutions: 
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1. Quantized and Pruned Models: Knowledge-distilled CNN-LSTM, 
converted to INT8, deployed on edge gateway (Raspberry Pi, Jetson 
Nano)[87]. 

2. Federated Learning: Train central model, distribute compressed version 
to each IoT gateway; gateways compute gradients locally, send aggregated 
updates to central server[88]. 

3. Unsupervised Anomaly Detection: Use Isolation Forest or Autoencoders 
on simple statistical features (bytes/sec, packets/sec) computed locally on 
device[89]. 

Performance (IIoT testbed, 2024): 

● Quantized MobileIDS on Raspberry Pi: 96% accuracy, 5W power 
consumption, 2MB model[90]. 

● Federated learning across 100 edge gateways: 94.8% average accuracy, 
50% less communication than centralized training[91]. 

Deployments: 

● Smart grids (power distribution): CNN-LSTM detects voltage anomalies 
and meter tampering[92]. 

● Medical IoT (hospital devices): Autoencoder detects unauthorized access 
to infusion pumps and monitors[93]. 

● Industrial (manufacturing floor): Hybrid CNN-LSTM detects abnormal 
vibration, temperature, and energy consumption patterns indicating 
equipment failure or sabotage[94]. 

5.4 Vehicular Networks (VANETs) and Autonomous Vehicles 

Unique Challenge: Vehicles are mobile, network topology changes rapidly, 
attacks can be physical (jamming, spoofing GPS) or cyber (CAN bus message 
injection)[95]. 

Solutions: 

1. RNN-based IDS on Vehicle CAN Bus: LSTM processes message 
sequences (200 messages/sec) to detect injection attacks[96]. 

2. Federated Learning Across Fleet: Each vehicle trains a small model 
locally, aggregates with the fleet. Enables rapid detection of new attacks 
across all vehicles[97]. 

Results (Tesla Model Y, 2024--2025): 

● RNN-LSTM detects CAN message injection with 99.7% accuracy[98]. 
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● Latency: <10ms (critical for real-time vehicle response). 

● Deployment: Integrated into onboard ECU (Electronic Control Unit). 

5.5 Medical and Healthcare IoT 

Threat Model: Attacks on connected medical devices (ventilators, infusion 
pumps, cardiac monitors) can directly harm patient safety[99]. 

Solutions: 

1. Lightweight Anomaly Detection: Autoencoder trained on normal device 
behavior (flow rate, pressure readings). Detects any deviation[100]. 

2. Federated Learning with Privacy: Train models without exposing patient 
data; sensitive data stays on-premises[101]. 

Results (Hospital deployment, 2023--2024): 

● Autoencoder on IoT gateway detects 98% of injection attacks, 2% false 
positive rate[102]. 

● No performance impact on medical devices (computation offloaded to 
gateway). 

 

 

6. Recommendations and Best Practices 

6.1 For Researchers 

1. Always report multiple metrics: Accuracy alone is misleading for 
imbalanced data. Report precision, recall, F1-score, and AUC. 

2. Validate on multiple datasets: CICIDS2017 + UNSW-NB15 + at least 
one domain-specific dataset (TON-IoT for IoT, SCADA datasets for IIoT, 
etc.). 

3. Test adversarial robustness: Use FGSM or PGD with � = 0.1. Report 
accuracy under attack. 

4. Measure computational cost: Report latency, throughput, model size, and 
training time. Academic papers often ignore deployment realities. 

5. Compare with baselines: Include CNN, LSTM, Random Forest, and 
SVM in your experiments. Show that your hybrid/ensemble approach 
improves over individual models. 
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6. Address concept drift: Train on early time period, test on later time 
period. Report performance degradation. 

7. Use consistent preprocessing: Describe how you normalized features, 
handled missing values, and split data (time-based for temporal data, 
random for static data). 

6.2 For Practitioners 

1. Start with CNN-LSTM: It is the industry standard, well-understood, and 
balances accuracy with deployment complexity. 

2. Validate on your network: Before deploying, collect 1--2 weeks of 
benign traffic from your network, fine-tune the model, and test locally. 

3. Monitor false positive rate religiously: If it exceeds 2%, security analysts 
will ignore alerts. Spend effort reducing false positives. 

4. Combine network IDS with endpoint IDS: No single tool catches 
everything. Network IDS catches external attackers; endpoint IDS catches 
insider threats and lateral movement. 

5. Retrain regularly: At least monthly, more frequently if the threat 
landscape changes rapidly. 

6. Keep a human in the loop: Automated detection is useful, but human 
analysts understand context. Implement alert prioritization and context-
aware filtering. 

7. Log all decisions: For regulatory compliance and incident response, 
maintain an audit trail of why the system flagged each alert. 

6.3 For Vendors and Service Providers 

1. Publish model performance transparently: Report accuracy, precision, 
recall, and false positive rates on standard benchmarks. Avoid cherry-
picked metrics. 

2. Offer interpretability: Provide LIME, SHAP, or attention visualization 
so customers understand why alerts were triggered. 

3. Support custom training: Allow customers to retrain on their own data to 
improve accuracy in their environment. 

4. Optimize for latency: Most enterprise customers tolerate <5ms per 
decision. Batch requests if necessary to achieve this. 
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5. Provide threat intelligence: When the model detects an attack, provide 
context: known CVEs, MITRE ATT&CK techniques, threat actor 
attribution if available. 

 

 

7. Future Directions (2026--2030) 

7.1 Unified Multimodal Detection 

Vision: A single model that combines network traffic, endpoint behavior, cloud 
logs, and threat intelligence into a cohesive detection decision. 

Challenge: Integrating heterogeneous data types (time-series flows, categorical 
logs, image-like heat maps, text descriptions). 

Approach: Vision Transformers and multimodal Transformers (e.g., CLIP) are 
emerging as candidates[135]. 

7.2 Graph Neural Networks for Network Topology 

Idea: Model the network as a graph (nodes = IPs, edges = connections). Use 
Graph Convolutional Networks (GCNs) to learn node embeddings that capture 
both local and global topology[136]. 

Promise: Detect botnet command-and-control by finding anomalous graph 
patterns (sudden star topology around a single node)[137]. 

Current State (2025): Early research; no production deployments yet. 

7.3 Causal Reasoning and Root Cause Analysis 

Goal: Not just detect attacks, but identify why they succeeded. Was it a 
misconfigured firewall? Unpatched vulnerability? Phishing email? 

Approach: Combine IDS with vulnerability scanners, asset inventory, and 
incident response logs. Use causal inference to link alerts to root causes[138]. 

7.4 Integration with Automated Response 

Vision: Detect attack → Isolate affected system → Patch vulnerability → 

Resume operation, all automatically. 

Challenges: False positives could cause unnecessary downtime. Requires high 
confidence and regulatory approval[139]. 
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 Conclusion 

By 2025, the field of intrusion detection has undergone a major transformation 
compared to a decade earlier. Deep learning models, especially hybrid CNN–
LSTM architectures enhanced with attention mechanisms, now form the 
foundation of modern IDS solutions. These systems demonstrate high accuracy 
and recall on standard benchmark datasets and are capable of processing large 
volumes of network traffic in real-world deployments. With appropriate domain 
adaptation, they can generalize reasonably well across different network 
environments, making them practical for enterprise-scale use. 

Significant progress has also been made in efficiency, scalability, and 
interpretability. Techniques such as model compression, knowledge distillation, 
and quantization have enabled deployment on resource-constrained edge and IoT 
devices with low latency. Federated learning and ensemble methods allow IDS 
models to scale across organizations while preserving data privacy and improving 
robustness. At the same time, attention mechanisms and feature attribution 
methods like SHAP have improved transparency, helping analysts better 
understand why alerts are generated. 

Despite these advances, several challenges remain unresolved. Deep IDS models 
still struggle to generalize to unseen real-world traffic without careful adaptation, 
and adversarial attacks can significantly degrade their performance. Concept drift 
caused by evolving attack strategies and changing network behavior continues to 
require costly and frequent retraining. Moreover, current explainability 
techniques provide only partial insight, and privacy-preserving approaches often 
introduce performance and communication overheads. 

Looking ahead, future IDS research is expected to move toward more holistic and 
robust solutions. Multimodal models that combine network, endpoint, and cloud 
data, graph-based approaches that explicitly model network structure, and 
methods with formal robustness guarantees are likely to shape the next generation 
of systems. Greater integration with automated incident response will further 
reduce reaction time to attacks. 

In summary, deep learning has effectively addressed the core detection capability 
of IDS by enabling accurate and scalable identification of malicious activity. The 
remaining limitations are largely operational rather than theoretical. Fully 
autonomous and provably robust IDS systems are not yet a reality, but the field 
has matured enough for widespread deployment with human oversight. Over the 
coming years, the most effective intrusion detection will result from close 
collaboration between intelligent models and skilled security analysts, combining 
machine efficiency with human judgment. 
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