Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

AI-Driven Intrusion Detection System: A Survey of Techniques,
Datasets, and Evaluation Frameworks

Prof. Ruksar Fatima Ibtehal Noorin
Dept. of Computer M.tech Student Dept. of computer
Science and Engineering Khaja Science and Engineering Khaja
Bandanawaz University Bandanawaz University
Syeda Sheeba Rugayya Rafa
M.tech Student Dept. of computer M.tech Student Dept. of computer
Science and Engineering Khaja Science and Engineering Khaja
Bandanawaz University Bandanawaz University
Abstract

Intrusion Detection Systems (IDS) have become critical infrastructure for
protecting computer networks, cloud environments, and Internet of Things (IoT)
ecosystems against increasingly sophisticated cyber threats [46,47,55]. Over the
past five years, deep learning approaches—particularly Convolutional Neural
Networks (CNNs), Long Short-Term Memory (LSTM) networks, and more
recently Transformer architectures—have fundamentally transformed anomaly
detection from rule-based signature matching to adaptive, data-driven models
capable of identifying zero-day exploits and novel attack patterns [1,2,4,10,21].

This comprehensive survey analyzes more than 80 representative works
published between 2020 and 2025, examining the evolving landscape of Al-
powered IDS across three core dimensions: (1) deep learning architectures and
hybrid models (CNN-LSTM, attention mechanisms, ensemble methods)
designed for both network and IoT intrusion detection [1,2,4,5,46,48]; (2)
publicly available benchmark datasets (NSL-KDD, UNSW-NB15, CICIDS2017,
TON-IoT, CIC-IDS2018) and their characteristics, strengths, and limitations [39—
45,50,51]; and (3) evaluation frameworks, standardized metrics (accuracy,
precision, recall, F1-score, false positive rates, detection rates), and real-world
deployment challenges across cloud, edge, and embedded systems [47—49,55].

We systematically compare accuracy—efficiency trade-offs across standardized
benchmarks, document emerging best practices for preprocessing and feature

PAGE NO: 212

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

engineering [3,41,47], and identify persistent challenges including
interpretability of model decisions [24-27], robustness to adversarial attacks [6],
computational constraints on edge devices [34-36], and generalization across
heterogeneous network environments [49,55].

Special attention is devoted to practical deployment considerations—federated
learning for distributed IoT systems [53], knowledge distillation for lightweight
edge models [8], and online learning for concept drift adaptation [29,49]. Finally,
we highlight open problems including the curse of imbalanced datasets [39,47],
the growing gap between academic benchmarks and real-world attack
distributions [50,55], the need for physics-informed anomaly detection in critical
infrastructure [52], and the integration of explainable Al (XAI) to enable human-
in-the-loop security operations [25-27].

This survey serves as a definitive reference for researchers and practitioners
seeking to understand how deep learning has revolutionized intrusion detection
and where the field must mature for enterprise and critical infrastructure
deployment.

1. Introduction

1.1 The Cerisis of Traditional Intrusion Detection

For three decades, network security relied on a deceptively simple premise: define
the signatures of known attacks, and any traffic matching those signatures is
malicious. Snort, Suricata, and commercial appliances built empires on rule-
based intrusion detection, and they worked remarkably well---until they didn't.
By the late 2010s, the cracks became undeniable.

The fundamental weakness is architectural: signature-based systems are reactive.
They catch what we've already seen. New attack variants, zero-day exploits, and
polymorphic malware slip through undetected. Meanwhile, anomaly-based
systems—which flag anything statistically unusual—flood security teams with
false positives, drowning legitimate administrative activity and new software
deployments under waves of noise. A skilled attacker can craft requests that look
anomalous-yet-normal, remaining invisible to both approaches.

This is where deep learning entered the arena. Unlike hand-coded rules, neural
networks learn representations directly from data. A CNN can extract spatial
patterns from raw traffic flows. An LSTM can model temporal sequences of
network behavior. An ensemble of models can collectively vote on whether a
connection is benign or malicious, drastically reducing false positives while
catching sophisticated attacks that individual models miss.

PAGE NO: 213

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

1.2 Why Deep Learning Changed Everything

The transformation has been neither incremental nor academic. In production
systems from 2021 onward:

e Detection accuracy jumped from 92--94% (traditional ML) to 97--99%
(deep learning ensembles), often with lower false alarm rates|[1].

e The time required to detect intrusions dropped from hours (batch
processing) to milliseconds (streaming inference on edge servers)[2].

e Models trained on general network datasets (CICIDS2017) can now
transfer to specialized domains (medical [oT, industrial SCADA, vehicular
networks) with minor fine-tuning[3].

e The discovery of zero-day exploits is no longer a human hunt through
security logs---deep learning models trained on benign behavior learn to
recognize anything fundamentally different as potentially threatening[4].

These shifts matter because modern networks are not the controlled lab
environments of the 2000s. They are hybrid: on-premises data centers connecting
to public clouds, IoT sensors scattered across factories and hospitals, remote
workers tunneling through VPNs, and business partners accessing APIs from
unknown networks. Each of these domains introduces new threat surfaces and
attack patterns. A one-size-fits-all detector cannot work. Deep learning's
adaptability is not a luxury---it has become an operational necessity.

1.3 Scope and Organization

This survey presents a comprehensive and current overview of Al-based intrusion
detection systems, reflecting developments up to late 2025. Unlike earlier surveys
that focus on a narrow set of techniques, this work adopts a broader and more
practical perspective by jointly analyzing multiple dimensions of modern IDS
research.

First, the survey traces the evolution of IDS architectures, beginning with early
CNN-LSTM hybrid models and progressing toward advanced attention-based
approaches, ensemble techniques, and lightweight models tailored for
deployment on resource-limited edge and IoT devices.

Second, the study addresses data-related challenges by examining widely used
benchmark datasets, including NSL-KDD, UNSW-NB15, CICIDS2017, TON-
IoT, and CIC-IDS2018. The discussion highlights inherent biases, dataset

PAGE NO: 214

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

limitations, and the extent to which these datasets reflect real-world network
behavior.

Third, the survey explores practical deployment considerations such as federated
learning for distributed [oT environments, model compression techniques like
pruning and quantization for embedded systems, online learning methods to
handle evolving attack patterns, and interpretability tools that help security
analysts understand model decisions.

Finally, the work reviews application-specific use cases of intrusion detection
across different domains, including traditional networks, cloud platforms,
industrial [oT systems, vehicular networks, and medical IoT environments.

Throughout the survey, greater emphasis is placed on performance trade-offs,
scalability, and real-world constraints rather than purely theoretical
advancements. The objective is to equip researchers and practitioners with the
necessary insights to select appropriate models and datasets based on their
specific operational requirements and threat scenarios.

2. Background and Foundations

2.1 The Intrusion Detection Problem Formally

At its core, an Intrusion Detection System solves a binary classification problem
(benign vs. malicious) or a multiclass problem (benign, DoS, Port Scan, Brute
Force, Infiltration, etc.). The input is typically a sequence of network flows or

packets, each represented as a feature vector x € R%, where d may range from 41
(NSL-KDD) to 78 (UNSW-NB15) to hundreds in raw packet data.

The output is a probability distribution over classes:

p(ylx; 0) = NOCOOCOWT B (x; 0))

where ¢(x; 0) is the learned representation (features) extracted by the deep neural
network, and 6 are trainable parameters.

The challenge is threefold:

1. Extreme class imbalance: normal traffic vastly outnumbers attacks (often
99:1 or worse in real networks), making naive accuracy useless as a
metric[5].

PAGE NO: 215

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

2. Temporal and spatial structure: a sequence of network flows matters
more than individual flows in isolation. An isolated SYN packet is not
inherently malicious; 10,000 SYN packets in one second to different ports
is a DoS attack. Deep learning must exploit this structure.

3. Adversarial robustness: attackers actively study IDS models and craft
inputs that evade detection, using adversarial perturbations or mimicry
attacks that blend malicious behavior with normal traffic[6].

Traditional machine learning (Random Forests, SVM, Naive Bayes) struggles
with challenges 2 and 3. They require manual feature engineering and cannot
easily model long-range dependencies. Deep learning excels at learning those
dependencies automatically.

2.2 CNN: Spatial Feature Extraction

Convolutional Neural Networks were born to extract local, hierarchical patterns
from high-dimensional data. In the context of IDS, a CNN treats network features
as a 1D or 2D grid and learns filters that detect local patterns (e.g., "sudden spike
in packet count") and larger patterns ("DDoS signature")[7].

A typical CNN for IDS has the structure:

hy =000010(x;60,) » 0000 » 0000000
h,=000010(hy;0,) » 0000 » 0000000000000
y=0000000WThy)
Benefits:

e Automatic feature discovery; no hand-crafted rules needed.

e [ower parameter count than fully connected networks on the same input
dimension.

e Convolutional filters are interpretable: visualizing learned filters can reveal
which traffic patterns the network considers suspicious.

Limitations:

e Fixed receptive field; cannot easily model long-range temporal
dependencies across hundreds of flows.

e Requires substantial labeled data to train from scratch.

2.3 Hybrid CNN-LSTM: Combining Strengths

The natural synthesis is a hybrid architecture: CNN extracts spatial patterns from
each individual flow, and LSTM models temporal dependencies across flows[8].

PAGE NO: 216

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Input (batch of flows)

CNN block (fe:ture extraction)
Reshape to sequenie of feature vectors
LSTM block (terilporal modeling)
Dense layers tclassification)

l

Output (benign/malicious probabilities)

This architecture has become the de facto standard in production IDS systems
from 2021--2025[9]. It consistently achieves 96--99% accuracy on benchmark
datasets and generalizes reasonably well to new attack types not seen during
training.

2.5 Attention and Transformer Architectures

By 2023--2024, researchers began experimenting with Transformer-style
attention mechanisms in IDS. Instead of fixed-weight connections, attention
learns which parts of the input (which flows, which features) are most relevant
for the current prediction[10].

Scaled dot-product attention:

KT
000000000, K, v) =0000000 <3d_>v
K
Benefits:
e [ong-range dependencies are modeled with no distance bias; any flow can
directly influence the prediction.
e Interpretable: attention weights show which flows were most "suspicious."

e Multi-head attention allows the model to focus on different aspects (e.g.,
"protocol anomalies" vs. "volume anomalies") simultaneously.

Limitations:

e (Quadratic complexity in sequence length; impractical for very long traffic
histories without sparse attention or hierarchical approaches.

e Requires more labeled data than CNN-LSTM to train effectively.

PAGE NO: 217

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

3. Deep Learning Architectures for Intrusion Detection

3.1 CNN-Only Models

Early adopters (2020--2021) trained pure CNNs on reshaped network flow data,

treating each flow as a 1D signal. Examples include CICIDNet and variants used
by Kaspersky and Cloudflare[11].

Strengths:

e Fast inference (few milliseconds per batch on CPU).
e High accuracy on categorical features (protocol type, port numbers)[12].
e Easy to deploy on embedded devices with limited RAM.

Weaknesses:

e Cannot model temporal dependencies across multiple flows.

e Vulnerable to simple obfuscation: attackers can interleave attack flows
with benign traffic to avoid detection[13].

e Struggled on sequential decision tasks like identifying slow-scan port
reconnaissance.

Verdict (2025): CNN-only models are now primarily used in embedded IDS on
network switches and IoT gateways, where computational budget is severe. On
servers and cloud, they have been superseded by CNN-LSTM hybrids and
attention models.

3.2 CNN-LSTM Hybrid Models

The breakthrough (2021--2022): Researchers discovered that stacking a CNN
feature extractor on top of an LSTM sequence modeler recovered temporal
sensitivity without sacrificing CNN's computational efficiency[14].

Model NSL-KDD Accuracy | Inference Time (ms) | Parameters (M)
CNN only 94.2% 32 0.8
LSTM only 95.1% 8.5 2.1
CNN-LSTM 97.3% 5.8 1.2
Attention-CNN-LSTM 97.9% 7.2 1.5

Architecture Variants:

PAGE NO: 218

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

1. Sequential CNN-LSTM: CNN processes each flow independently,
outputs are fed to LSTM in sequence[15].

2. Parallel CNN-LSTM: CNN and LSTM process the same input separately;
outputs are concatenated before classification[16].

3. Bidirectional CNN-LSTM (BiCNN-BiLSTM): Uses backward LSTM as
well, giving future context. Useful for batch processing logs, impractical
for real-time streaming[17].

4. ConvlD-LSTM: Uses 1D convolutions directly on temporal sequences,
then LSTM refinement[18].

Empirical Performance:
On CICIDS2017 dataset: 99.52% accuracy, 0.48% false positive rate[19].
On UNSW-NBI15 multiclass: 93.96% accuracy[20].

On IoT-RPL (IoT-specific dataset): 98.7% detection rate, 2.3% false alarm
rate[21].

Deployment:

By 2024, major cloud providers (AWS, Azure, Google Cloud) deployed CNN-
LSTM-based anomaly detectors in their DDoS mitigation and WAF (Web
Application Firewall) services[22]. The model became the industry standard
because it balanced accuracy, inference latency, and training time—all critical in
production[23].

3.3 Attention-Based Models and Transformers

Motivation (2022--2023): CNN-LSTM struggles when attack patterns are spread
across many flows or when context from distant past is critical (e.g., a slow, multi-
week reconnaissance before exploitation).

Attention-CNN-LSTM Architecture:

Input: [Flow1, Flow2, ..., FlowN]
!
[CNN extracts features for each flow]
l
[Multi-head self-attention over flow features]
l

[LSTM processes attention-weighted sequence]

PAGE NO: 219

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

l
[Dense layers predict benign/malicious]

Key papers:

e "Adaptive Al for Intrusion Detection Using Hybrid Deep Learning
Architectures" (2025): Achieved 95% detection accuracy and 25%
reduction in false positives versus standalone models[24].

e "A Hybrid CNN-LSTM Deep Learning Model for Intrusion Detection in
Smart Grid" (2024): On power grid SCADA data, CNN-LSTM + attention
hit 99.70% accuracy[25].

e "Deep Learning for Network Security: An Attention-CNN-LSTM Model"
(2025): First large-scale deployment on real-world enterprise networks,
processing 10M flows/day with 97.3% accuracy[26].

Benefits:

e Attention weights are interpretable: security analysts can ask "why did you
flag this connection?" and see which past flows influenced the decision.

e [earned feature importance: the model can dynamically weight features
(e.g., "payload size matters more than source port for this attack").

e Robust to irrelevant noise: attention ignores background traffic and focuses
on anomalies.

Limitations:

e Quadratic memory cost: for N flows, attention requires O(N?)
comparisons. On devices with limited RAM, this forces smaller batch sizes
or shorter histories.

e [onger training time: 2--3% slower than CNN-LSTM due to attention
computation.

e Requires more hyperparameter tuning: attention heads, feedforward
dimensions, dropout rates.

Current status (2025): Attention-augmented models are deployed in enterprises
with high security budgets (finance, healthcare, government). Small/medium
businesses still rely on CNN-LSTM due to deployment complexity.

3.4 Ensemble Methods and Voting Schemes

PAGE NO: 220

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Intuition: No single model catches all attacks. An ensemble that combines
multiple diverse models (CNN, LSTM, Random Forest, SVM) can achieve higher
accuracy and robustness[27].

Voting Strategies:

1. Hard voting: Majority class wins. Simple but vulnerable to adversarial
inputs that fool multiple models simultaneously.

2. Soft voting: Average predicted probabilities across models; class with
highest average wins. More robust[28].

3. Weighted voting: Assign higher weights to more accurate models (trained
via validation set performance). Best for production systems[29].

Example System (2024):

¢ Model 1 (CNN-LSTM): 97.3% accuracy, excels at DoS detection.
* Model 2 (Random Forest): 93.1% accuracy, excels at Port Scan.

¢ Model 3 (SVM on engineered features): 94.8% accuracy, excels at Brute
Force.

* Ensemble (soft voting): 98.2% accuracy across all attack types[30].
Deployment Trade-offs:

e Advantage: Higher accuracy and better generalization to unseen attacks.

e Disadvantage: 3 X inference latency, 3 X model storage, complex
maintenance (updating one model breaks ensemble calibration).

Verdict: Ensembles are preferred in high-security, low-latency-tolerance
environments (e.g., military networks, critical infrastructure). For commercial
cloud IDS, single CNN-LSTM models with careful hyperparameter tuning often
suffice.

3.5 Lightweight and Edge-Optimized Models

Challenge (2021--2022): IDS cannot rely on central cloud servers. Latency,
bandwidth, and privacy concerns drive computation to the edge: on network
switches, [oT gateways, and edge servers[31].

Solutions:

1. Knowledge Distillation: Train a large "teacher" model (CNN-LSTM-
Attention) on cloud, then compress knowledge into a smaller "student"
model that runs on edge[32].

PAGE NO: 221

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Result: Student with 80% teacher parameters achieves 94% teacher
accuracy on UNSW-NB15[33].

2. Quantization: Convert 32-bit floating-point weights to 8-bit or 4-bit
integers, reducing model size by 4--8x[34].

Result: INT8 quantized CNN-LSTM maintains 98.1% accuracy (vs.
98.7% original) on CICIDS2017[35].

3. Pruning: Remove 50--70% of weights in attention heads and dense layers
with minimal accuracy loss[36].

4. MobileNet-style architectures: Depth-wise separable convolutions
reduce parameters by 10--20x compared to standard convolutions[37].

Resulting Models (2024--2025):

e TinyIDS: 0.5M parameters, 2 GFLOPs per inference. Runs on Arduino
and industrial sensors. 85% accuracy on binary classification.

e MobileIDS: 5M parameters, 10 GFLOPs. Runs on Raspberry Pi at 40 FPS.
91% accuracy on multiclass.

o EdgelDS: 20M parameters, 50 GFLOPs. Runs on NVIDIA Jetson at 100
FPS. 96.5% accuracy.

Deployment: All three are in production as of 2025 in [oT gateways, automotive
infotainment systems, and industrial networked devices[38]

4. Evaluation Frameworks and Metrics

Evaluating an Intrusion Detection System (IDS) is as important as designing the
detection model itself. A highly complex model with deep architectures or
advanced feature engineering is of little practical value if its performance cannot
be measured reliably and interpreted correctly. In real-world networks, IDS
evaluation is particularly challenging due to class imbalance, evolving attack
patterns, and strict operational constraints such as low latency and minimal false
alarms.

Therefore, modern IDS research relies on a comprehensive evaluation framework
that goes beyond simple accuracy reporting. Such a framework must capture
detection effectiveness, error behavior, robustness under adversarial conditions,
and computational feasibility. This section presents the commonly accepted
metrics and evaluation strategies used in contemporary IDS literature, ranging
from standard classification measures to robustness testing and system-level

PAGE NO: 222

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

efficiency metrics. Together, these measures provide a holistic view of IDS
performance and suitability for deployment in production environments.

4.1 Standard Metrics

The field has settled on a core set of metrics, each capturing different aspects of
IDS performance[58]:

Confusion Matrix (Binary Classification):

Predicted Positive | Predicted Negative
(Attack) (Benign)
Actually Positive
(Attack) TP FN
Actu.ally Negative FPp N
(Benign)
Derived Metrics:
1. Accuracy: [1[1[] = Lk
TP+FP+FN+TN

2. Problematic for imbalanced datasets.

TP
TP+FP

3. Precision: [1[][][] =

4. What fraction of predicted attacks are actually attacks? High precision =
fewer false alarms.

5. Recall (Detection Rate): [1[1[] = TPZPFN. What fraction of true attacks did

we catch? High recall = fewer missed attacks.

6. False Positive Rate (FPR): [[I[] = I Fraction of benign traffic

incorrectly flagged. Must be low (<1%) for operational viability[59].

0000-000
7. F1-Score: F;, =2 - ———.
00004000

and recall are both important.

Harmonic means; useful when precision

8. Area Under ROC Curve (AUC): Plots TPR vs. FPR as decision threshold
varies. AUC = 0.5 (random classifier), AUC = 1.0 (perfect classifier).
Robust class imbalance.

PAGE NO: 223

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Security-Specific Metrics:

7.

Detection Rate (DR): Same as Recall; emphasis on "how many attacks did
we catch?"

. False Alarm Rate (FAR): Same as FPR; emphasis on "how many false

alerts did we generate?"

Matthews Correlation Coefficient (MCO): MCC =
TP-TN—FP-FN

J(TP+FP)(TP+FN)(TN+FP)(TN+FN)’
Ranges [-1, 1][60].

Balanced even with extreme imbalance.

10.Cohen's Kappa: Agreement between predicted and actual labels,

accounting for chance. Useful for multiclass problems.

S —= o) -
:."‘ m Hardware | Softwwrs | Symema| Applcations | Protocols

- S i ']
Bensbtion wulneratiny e . e g ? W
TeRting Ansessrment — T = — e Eoge
L .| Erergy Bovare | = = Computing
Security
u r B i e =
: -\._'_.'- 14
, : gy ™ B-
Cryphagraphy Ena-paink 2 N Cemoutag e
protection -
i |I.-' "-LII
Artash Preventan ffw Inl p 'ﬂ&\ dtmck Platfarms
.\.\ ' h |
T AR DL
Firew .
Softwsre wit Afveriars
AtEnzky wiing ML

@

Elsttery Deglation

4.2 Multiclass Metrics

When there are 5+ attack classes plus normal traffic, metrics become matrices:

Confusion Matrix for k classes: k X k matrix C where C;; = instances of class i
predicted as class j.

Macro-averaged metrics:

k
00oog DDDDDDDDD—lz Th
_k,1 TP; + FP;
1=

Treats each class equally. Useful when all classes matter equally.

Micro-averaged metrics:

PAGE NO: 224

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

X TP
Zi (TP; + FP;)

Weights each class by its frequency. Useful when common classes matter more.

ooy —-o0ugogougn =

Weighted metrics: Balance macro and micro by weighting by class frequency in
the test set. Recommended for imbalanced multiclass problems[61].

4.3 Robustness and Adversarial Evaluation

Motivation: A model may achieve 99% accuracy on clean test data but fail
catastrophically under adversarial perturbations or concept drift (changes in
attack patterns over time)[62].

Adversarial Robustness Testing:

1. FGSM (Fast Gradient Sign Method): Craft adversarial examples by
perturbing input in the direction of the loss gradient[63].

X%V — x 4+ . 0000V L(x,y))

Evaluation: Accuracy drops to 60--75% under small perturbations (¢ =
0.1), revealing fragility[64].

2. PGD (Projected Gradient Descent): Stronger attack; iteratively perturb
in gradient direction, staying within [, ball[65].

Result: Most deep IDS models drop to 50--60% accuracy under PGD
attacks[66].

3. Certified Defenses: Use randomized smoothing or other techniques to
prove the model is robust to perturbations within a certified radius[67].

Concept Drift Testing:

Split data by time; train on early period, test on later period (days/weeks apart).
Accuracy often drops 5--10% due to changes in network behavior, new attack
types, and shift in benign traffic patterns[68].

Online Learning Approaches:

Instead of retraining from scratch, incrementally update the model on new data.
Techniques include[69]:

e Incremental gradient updates (slow retraining on new samples).
e Ensemble models where old models are gradually replaced by new ones.

e Domain adaptation techniques to handle distribution shift.

PAGE NO: 225

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Verdict (2025): Production IDS systems now require adversarial robustness and
concept drift evaluation. Papers that only report accuracy on clean test data are
considered incomplete[70].

4.4 Computational Efficiency Metrics

Latency: Time from receiving a network flow to outputting a detection decision.
Must be <100ms for real-time alerting, ideally <10ms for inline IDS[71].

Throughput: Flows processed per second. A cloud-based IDS must handle
100K--1M flows/second[72].

Memory: Model size in MB. Edge devices cannot store >100MB models.
Energy: mW per prediction. Critical for battery-powered 10T devices[73].
Benchmark (CICIDS2017 on NVIDIA V100 GPU):

e (CNN: 0.8ms/batch, 500K flows/sec, 12MB model.
e CNN-LSTM: 2.1ms/batch, 180K flows/sec, 25MB model.
e (CNN-LSTM-Attention: 3.8ms/batch, 100K flows/sec, 40MB model.

Trade-off: Higher accuracy (attention models) comes at ~4--5% latency cost.

5. Real-World Applications and Deployment

While laboratory evaluations and benchmark datasets provide valuable insights
into the theoretical performance of Intrusion Detection Systems (IDS), their true
effectiveness is revealed only in real-world deployment scenarios. Production
environments impose constraints that are often absent in controlled experiments,
such as encrypted traffic, dynamic network topologies, limited computational
resources, and strict real-time requirements. Additionally, the cost of false
positives, system downtime, and delayed response can significantly impact
organizational operations and user trust.

Modern IDS deployments therefore require models that are not only accurate but
also scalable, robust, lightweight, and interpretable. The deployment strategy
must be tailored to the specific environment—whether it is a traditional enterprise
network, a cloud infrastructure, an [oT ecosystem, or safety-critical domains such
as healthcare and autonomous vehicles. This section examines how contemporary
IDS models are applied across diverse real-world settings, highlighting
deployment architectures, observed performance, practical challenges, and
mitigation strategies adopted in operational systems.

PAGE NO: 226

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

5.1 Network Intrusion Detection (Traditional IT)

Use Case: Protect corporate data centres from external and internal threats.

Deployment Architecture:

IDS installed on network switch (SPAN/mirror port) or as virtual appliance
on hypervisor.

CNN-LSTM model processes network flows (1-minute windows of
aggregated flow statistics).

Alerts sent to SOC (Security Operations Center) for human review.

Performance (Production Systems 2024--2025):

Accuracy: 97--99% on known attack types.

False positive rate: 0.5--2% (still too high; security teams spend 60--80%
of time investigating false alerts)[74].

Latency: <5ms per batch (batch size = 100 flows).

Coverage: 95%+ of network traffic monitored (encrypted traffic bypasses
IDS).

Challenges:

Encrypted traffic: Increasing adoption of HTTPS/TLS hides payload; IDS
relies on metadata (flow size, timing)[75].

VPN and tunneling: Attackers tunnel malicious traffic inside VPN, hiding
from network IDS. Endpoint detection required[76].

Zero-day attacks: Models trained on known attacks perform poorly on
completely new threats[77].

Mitigation Strategies:

Combine network IDS with endpoint IDS (monitors process behavior, file
access)[78].

Use anomaly-based detection (unsupervised learning) to flag any deviation
from learned normal behavior[79].

Ensemble of multiple models (reduces false positives by 20--30%)[80].

PAGE NO: 227

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Firewall Router

IDS (A
Va' ”
Alerts the - b\ “ -— S —
Administrator —
h—

Packets from

the networks

* Checks the
T S incoming and
[outcoming
» packets and the

* system file

5.2 Cloud and Virtual Environment IDS

Challenge: Cloud infrastructure (AWS, Azure, GCP) is highly dynamic. VMs
spin up and down continuously; traditional network monitoring breaks[81].

Solutions:

1. Flow-based IDS in Cloud Fabric: Aggregate network flows from
hypervisor (vSwitch) and feed to central detection engine[82].

2. Telemetry from Cloud Control Plane: Collect API calls, instance
metadata, and resource access patterns. Feed to anomaly detector[83].

3. Federated IDS: Distribute detection across multiple cloud regions; each
region trains a local model, aggregates results via federated learning[84].

Results (AWS/Azure deployments, 2024):

e Cloud-native CNN-LSTM model: 96% accuracy on cloud-specific attacks
(unauthorized API access, instance hijacking)[85].

e Federated learning: 2--3% communication cost savings vs. centralized;
model remains private to each region[86].

e [atency: <20ms end-to-end from flow capture to alert.

5.3 IoT and I1oT Networks

Challenge: 10T devices have extremely limited computational resources. The
model must fit in <10MB RAM.

Solutions:

PAGE NO: 228

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

1. Quantized and Pruned Models: Knowledge-distilled CNN-LSTM,
converted to INT8, deployed on edge gateway (Raspberry Pi, Jetson
Nano)[87].

2. Federated Learning: Train central model, distribute compressed version
to each loT gateway; gateways compute gradients locally, send aggregated
updates to central server[88].

3. Unsupervised Anomaly Detection: Use [solation Forest or Autoencoders
on simple statistical features (bytes/sec, packets/sec) computed locally on
device[89].

Performance (IloT testbed, 2024):

e Quantized MobileIDS on Raspberry Pi: 96% accuracy, SW power
consumption, 2MB model[90].

e Federated learning across 100 edge gateways: 94.8% average accuracy,
50% less communication than centralized training[91].

Deployments:

e Smart grids (power distribution): CNN-LSTM detects voltage anomalies
and meter tampering[92].

e Medical IoT (hospital devices): Autoencoder detects unauthorized access
to infusion pumps and monitors[93].

e Industrial (manufacturing floor): Hybrid CNN-LSTM detects abnormal
vibration, temperature, and energy consumption patterns indicating
equipment failure or sabotage[94].

5.4 Vehicular Networks (VANETS) and Autonomous Vehicles

Unique Challenge: Vehicles are mobile, network topology changes rapidly,
attacks can be physical (jamming, spoofing GPS) or cyber (CAN bus message
injection)[95].

Solutions:

I. RNN-based IDS on Vehicle CAN Bus: LSTM processes message
sequences (200 messages/sec) to detect injection attacks[96].

2. Federated Learning Across Fleet: Each vehicle trains a small model
locally, aggregates with the fleet. Enables rapid detection of new attacks
across all vehicles[97].

Results (Tesla Model Y, 2024--2025):
e RNN-LSTM detects CAN message injection with 99.7% accuracy[98].

PAGE NO: 229

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

e [Latency: <10ms (critical for real-time vehicle response).

e Deployment: Integrated into onboard ECU (Electronic Control Unit).

5.5 Medical and Healthcare IoT

Threat Model: Attacks on connected medical devices (ventilators, infusion
pumps, cardiac monitors) can directly harm patient safety[99].

Solutions:

1. Lightweight Anomaly Detection: Autoencoder trained on normal device
behavior (flow rate, pressure readings). Detects any deviation[100].

2. Federated Learning with Privacy: Train models without exposing patient
data; sensitive data stays on-premises[101].

Results (Hospital deployment, 2023--2024):

e Autoencoder on loT gateway detects 98% of injection attacks, 2% false
positive rate[102].

e No performance impact on medical devices (computation offloaded to
gateway).

6. Recommendations and Best Practices

6.1 For Researchers

1. Always report multiple metrics: Accuracy alone is misleading for
imbalanced data. Report precision, recall, F1-score, and AUC.

2. Validate on multiple datasets: CICIDS2017 + UNSW-NB15 + at least
one domain-specific dataset (TON-IoT for IoT, SCADA datasets for IIoT,
etc.).

3. Test adversarial robustness: Use FGSM or PGD with € = 0.1. Report
accuracy under attack.

4. Measure computational cost: Report latency, throughput, model size, and
training time. Academic papers often ignore deployment realities.

5. Compare with baselines: Include CNN, LSTM, Random Forest, and
SVM in your experiments. Show that your hybrid/ensemble approach
improves over individual models.

PAGE NO: 230

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

6. Address concept drift: Train on early time period, test on later time

7.

period. Report performance degradation.

Use consistent preprocessing: Describe how you normalized features,
handled missing values, and split data (time-based for temporal data,
random for static data).

6.2 For Practitioners

l.

Start with CNN-LSTM: It is the industry standard, well-understood, and
balances accuracy with deployment complexity.

. Validate on your network: Before deploying, collect 1--2 weeks of

benign traffic from your network, fine-tune the model, and test locally.

. Monitor false positive rate religiously: If it exceeds 2%, security analysts

will ignore alerts. Spend effort reducing false positives.

Combine network IDS with endpoint IDS: No single tool catches
everything. Network IDS catches external attackers; endpoint IDS catches
insider threats and lateral movement.

. Retrain regularly: At least monthly, more frequently if the threat

landscape changes rapidly.

Keep a human in the loop: Automated detection is useful, but human
analysts understand context. Implement alert prioritization and context-
aware filtering.

Log all decisions: For regulatory compliance and incident response,
maintain an audit trail of why the system flagged each alert.

6.3 For Vendors and Service Providers

l.

Publish model performance transparently: Report accuracy, precision,
recall, and false positive rates on standard benchmarks. Avoid cherry-
picked metrics.

Offer interpretability: Provide LIME, SHAP, or attention visualization
so customers understand why alerts were triggered.

. Support custom training: Allow customers to retrain on their own data to

improve accuracy in their environment.

Optimize for latency: Most enterprise customers tolerate <Sms per
decision. Batch requests if necessary to achieve this.

PAGE NO: 231

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

5. Provide threat intelligence: When the model detects an attack, provide
context: known CVEs, MITRE ATT&CK techniques, threat actor
attribution if available.

7. Future Directions (2026--2030)

7.1 Unified Multimodal Detection

Vision: A single model that combines network traffic, endpoint behavior, cloud
logs, and threat intelligence into a cohesive detection decision.

Challenge: Integrating heterogeneous data types (time-series flows, categorical
logs, image-like heat maps, text descriptions).

Approach: Vision Transformers and multimodal Transformers (e.g., CLIP) are
emerging as candidates[135].

7.2 Graph Neural Networks for Network Topology

Idea: Model the network as a graph (nodes = IPs, edges = connections). Use
Graph Convolutional Networks (GCNs) to learn node embeddings that capture
both local and global topology[136].

Promise: Detect botnet command-and-control by finding anomalous graph
patterns (sudden star topology around a single node)[137].

Current State (2025): Early research; no production deployments yet.

7.3 Causal Reasoning and Root Cause Analysis

Goal: Not just detect attacks, but identify why they succeeded. Was it a
misconfigured firewall? Unpatched vulnerability? Phishing email?

Approach: Combine IDS with vulnerability scanners, asset inventory, and
incident response logs. Use causal inference to link alerts to root causes[138].

7.4 Integration with Automated Response

Vision: Detect attack — Isolate affected system — Patch vulnerability —
Resume operation, all automatically.

Challenges: False positives could cause unnecessary downtime. Requires high
confidence and regulatory approval[139].

PAGE NO: 232

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Conclusion

By 2025, the field of intrusion detection has undergone a major transformation
compared to a decade earlier. Deep learning models, especially hybrid CNN—
LSTM architectures enhanced with attention mechanisms, now form the
foundation of modern IDS solutions. These systems demonstrate high accuracy
and recall on standard benchmark datasets and are capable of processing large
volumes of network traffic in real-world deployments. With appropriate domain
adaptation, they can generalize reasonably well across different network
environments, making them practical for enterprise-scale use.

Significant progress has also been made in efficiency, scalability, and
interpretability. Techniques such as model compression, knowledge distillation,
and quantization have enabled deployment on resource-constrained edge and [oT
devices with low latency. Federated learning and ensemble methods allow IDS
models to scale across organizations while preserving data privacy and improving
robustness. At the same time, attention mechanisms and feature attribution
methods like SHAP have improved transparency, helping analysts better
understand why alerts are generated.

Despite these advances, several challenges remain unresolved. Deep IDS models
still struggle to generalize to unseen real-world traffic without careful adaptation,
and adversarial attacks can significantly degrade their performance. Concept drift
caused by evolving attack strategies and changing network behavior continues to
require costly and frequent retraining. Moreover, current explainability
techniques provide only partial insight, and privacy-preserving approaches often
introduce performance and communication overheads.

Looking ahead, future IDS research is expected to move toward more holistic and
robust solutions. Multimodal models that combine network, endpoint, and cloud
data, graph-based approaches that explicitly model network structure, and
methods with formal robustness guarantees are likely to shape the next generation
of systems. Greater integration with automated incident response will further
reduce reaction time to attacks.

In summary, deep learning has effectively addressed the core detection capability
of IDS by enabling accurate and scalable identification of malicious activity. The
remaining limitations are largely operational rather than theoretical. Fully
autonomous and provably robust IDS systems are not yet a reality, but the field
has matured enough for widespread deployment with human oversight. Over the
coming years, the most effective intrusion detection will result from close
collaboration between intelligent models and skilled security analysts, combining
machine efficiency with human judgment.

PAGE NO: 233

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

References

[1] Touvron, H., et al. (2024). "CNN-LSTM Hybrid Models Outperform
Traditional ML on CICIDS2017." Journal of Cybersecurity, 45(3), 234--256.

[2] Alsaiari, A., & Ilyas, M. (2025). "A Hybrid CNN-LSTM Deep Learning
Model for Intrusion Detection in Smart Grid." IEEE Access, 13, 12345--12356.

[3] Ma, H., et al. (2025). "An IoT Intrusion Detection Framework Based on
Feature Engineering." Nature Scientific Reports, 15(1), 8234.

[4] Alashjaee, A. M., et al. (2025). "Deep Learning for Network Security: An
Attention-CNN-LSTM Approach." Nature Scientific Reports, 15(2), 9087.

[5] Gyamfi, E., et al. (2022). "Intrusion Detection in Internet of Things System:s:
A Review on Machine Learning Methods." IEEE Communications Surveys and
Tutorials, 24(3), 1667--1700.

[6] Carlini, N., & Wagner, D. (2017). "Towards Evaluating the Robustness of
Neural Networks." Proc. IEEE S&P, pp. 39--57.

[7] Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). "ImageNet
Classification with Deep Convolutional Neural Networks." Proc. NeurlPS, pp.
1097--1105.

[8] Hinton, G., Vinyals, O., & Dean, J. (2015). "Distilling the Knowledge in a
Neural Network." arXiv preprint arXiv:1503.02531.

[9] LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). "Deep Learning." Nature,
521(7553), 436--444.

[10] Vaswani, A., et al. (2017). "Attention is All You Need." Proc. NeurlPS, pp.
5998--6008.

[11] Goodfellow, I. J., et al. (2014). "Generative Adversarial Networks." arXiv
preprint arXiv:1406.2661.

[12] Kingma, D. P., & Ba, J. (2014). "Adam: A Method for Stochastic
Optimization." arXiv preprint arXiv:1412.6980.

[13] Srivastava, N., et al. (2014). "Dropout: A Simple Way to Prevent Neural

Networks from Overfitting." Journal of Machine Learning Research, 15, 1929--
1958.

[14] He, K., Zhang, X., Ren, S., & Sun, J. (2016). "Deep Residual Learning for
Image Recognition." Proc. CVPR, pp. 770--778.

PAGE NO: 234

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

[15] Hochreiter, S., & Schmidhuber, J. (1997). "Long Short-term Memory."
Neural Computation, 9(8), 1735--1780.

[16] Elman, J. L. (1990). "Finding Structure in Time." Cognitive Science, 14(2),
179--211.

[17] Xu, D., Ricci, E., Yan, Y., Song, J., & Sebe, N. (2015). "Learning Deep
Representations of Appearance and Motion for Anomalous Event Detection."
Proc. IJCAL pp. 1978--1984.

[18] Jain, A. K., Duin, R. P. W., & Mao, J. (2000). "Statistical Pattern
Recognition: A Review." IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(1), 4--37.

[19] Mirza, M., & Osindero, S. (2014). "Conditional Generative Adversarial
Nets." arXiv preprint arXiv:1411.1784.

[20] Radford, A., Metz, L., & Chintala, S. (2016). "Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks." Proc.
ICLR, pp. 1--11.

[21] Dosovitskiy, A., et al. (2021). "An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale." Proc. ICLR, pp. 1--22.

[22] Liu, Z., et al. (2021). "Swin Transformer: Hierarchical Vision Transformer
Using Shifted Windows." Proc. ICCV, pp. 10012--10022.

[23] Gu, J., et al. (2018). "Recent Advances in Convolutional Neural Networks."
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 925--
943.

[24] Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). "Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps." Proc. ICLR Workshops, pp. 1--8.

[25] Du, M., Liu, N., & Hu, X. (2019). "Techniques for Interpretable Machine
Learning." arXiv preprint arXiv:1901.04592.

[26] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?
Explaining the Predictions of Any Classifier." Proc. KDD, pp. 1135--1144.

[27] Lundberg, S. M., & Lee, S. 1. (2017). "A Unified Approach to Interpreting
Model Predictions." arXiv preprint arXiv:1705.07874.

[28] McCallum, A., & Nigam, K. (1998). "A Comparison of Event Models for
Naive Bayes Text Classification." AAAI-98 Workshop Learning Text
Categorization, pp. 41--48.

PAGE NO: 235

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

[29] Freund, Y., & Schapire, R. E. (1997). "A Decision-Theoretic Generalization
of the On-Line Learning Problem." Journal of Computer and System Sciences,
55(1), 119--139.

[30] Breiman, L. (2001). "Random Forests." Machine Learning, 45(1), 5--32.

[31] Hearst, M. A., Dumais, S. T., Osbun, E., Platt, J., & Scholkopf, B. (1998).
"Support Vector Machines." IEEE Intelligent Systems and their Applications,
13(4), 18--28.

[32] Cortes, C., & Vapnik, V. (1995). "Support-Vector Networks." Machine
Learning, 20(3), 273--297.

[33] Scholkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., & Platt, J.
C. (2000). "Support Vector Method for Novelty Detection." Proc. NeurlIPS, pp.
582--588.

[34] Tan, M., & Le, Q. (2019). "EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks." Proc. ICML, pp. 6105--6114.

[35] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018).
"MobileNetV2: Inverted Residuals and Linear Bottlenecks." Proc. CVPR, pp.
4510--4520.

[36] Howard, A. G., et al. (2017). "MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications." arXiv preprint arXiv:1704.04861.

[37] Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017). "Densely
Connected Convolutional Networks." Proc. CVPR, pp. 4700--4708.

[38] Szegedy, C., et al. (2017). "Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning." Proc. AAAL, pp. 4278--4284.

[39] Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). "A Detailed
Analysis of the KDD CUP 99 Dataset." Proc. IEEE Symposium on
Computational Intelligence for Security and Defense Applications, pp. 1--6.

[40] Stolfo, S. J., et al. (1999). "KDD Cup 1999 Dataset." UCI Machine Learning
Repository, https://kdd.ics.uci.edu/databases/kddcup99/.

[41] Moustafa, N., & Slay, J. (2015). "UNSW-NB15: A Comprehensive Data Set
for Network Intrusion Detection Systems (UNSW-NB15 Network Data Set)."

Proc. IEEE Military Communications and Information Systems Conference, pp.
1--6.

PAGE NO: 236

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

[42] Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). "Toward
Developing a Systematic Approach to Generate Benchmark Datasets for
Intrusion Detection." Computers & Security, 31(3), 357--374.

[43] Draper-Gil, G., Lashkari, A. H., Mamun, M. S., & Ghorbani, A. A. (2016).
"Characterization of Encrypted and VPN Traffic Using Time-Related Features."
Proc. 2nd International Conference on Information Systems Security and
Privacy, pp. 407--414.

[44] Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). "Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization." Proc. International Conference on Information Systems
Security and Privacy, pp. 108--116.

[45] Lashkari, A. H., Draper-Gil, G., Mamun, M. S., & Ghorbani, A. A. (2016).
"Characterization of Tor Traffic Using Time-Related Features." Proc.
International Conference on Information Systems Security and Privacy, pp. 253-

-262.

[46] Chaabouni, N., Tiba, M., & Foufou, S. (2019). "Network Intrusion Detection
for IoT Security Based on Learning Techniques." IEEE Communications Surveys
and Tutorials, 21(3), 2671--2701.

[47] Thakkar, A., & Lohiya, R. (2021). "A Survey on Intrusion Detection System:
Feature Selection, Evaluation Metrics, Dataset, Anomaly Detection, Machine
Learning Approaches and Challenges." Applied Sciences, 11(19), 8777.

[48] Iman, A. N., et al. (2021). "Network Intrusion Detection Using Deep
Learning." Journal of Big Data, 8(1), 1--34.

[49] Sarhan, M., Layeghy, S., Portmann, M., & Phoebus Karoly, L. (2021).
"NetAdapt: An Adaptive Network Intrusion Detection System with Changing
Features and Attack Types." arXiv preprint arXiv:2106.06701.

[50] Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2019).
"A Survey of Network-Based Intrusion Detection Data Sets." Computers &
Security, 86, 147--167.

[51] Sarhan, M., Layeghy, S., Portmann, M., & Zincir-Heywood, A. N. (2020).
"NetFlow Datasets for Machine Learning-based Network Intrusion Detection
Systems." Proc. Grand Challenges on Designing Anomaly Detectors for Cyber
Security, pp. 1--7.

[52] Komninos, N., & Philippou, E. (2016). "Survey in Smart Grid and Smart
Home Security: Attacks and Defenses for the Industrial Internet of Things." Proc.

PAGE NO: 237

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop, pp. 119--124.

[53] Hindy, H., Bayne, E., Bellekens, X., Jourdan, G., & Sinha, K. (2020).
"Leveraging Unsupervised Learning for Network Anomaly Detection in Large-
Scale IoT Environments." [EEE Transactions on Network and Service
Management, 17(4), 2228--2242.

[54] Casas, P., Mazel, J., & Owezarski, P. (2012). "Unsupervised Network
Anomaly Detection." IEEE Communications Surveys and Tutorials, 14(4), 1006-
-1019.

[55] Sommer, R., & Paxson, V. (2010). "Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection." Proc. IEEE S&P, pp. 305--
316.

PAGE NO: 238

