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Abstract: 

The National Academy of Engineering and the Institute of Medicine recently advised using 
systems engineering methods to reform healthcare delivery. The systems engineering approach 
enhances healthcare quality by addressing its complexity and involving key stakeholders. It 
focuses on critical areas such as reducing harm, boosting productivity, improving patient 
experiences, and optimizing bed management. Additionally, it ensures smooth transitions of 
care between providers by identifying safety concerns early and engaging patients and 
stakeholders in the process. Strengthening healthcare systems relies on dedicated research and 
educational programs in health system engineering. In cancer research, systems engineering 
plays a vital role in enhancing healthcare by optimizing data to improve diagnostics, treatments, 
and prevention. Similarly, in bacterial detection, it integrates microbiology, engineering, 
automation, and computational modeling to enable rapid and accurate identification of bacteria. 
For wound healing, systems engineering employs advanced methods, such as engineered 
dressings, to accelerate recovery, reduce infections, and improve overall outcomes. Attracting 
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professionals with expertise in systems engineering is essential to addressing healthcare 
challenges and driving innovative solution 
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Introduction 

Healthcare, being a complex adaptive system (CAS), encounters many challenging issues that 
demand careful deliberation[1]. The National Academy of Engineering and the Institute of 
Medicine emphasized using systems engineering to enhance healthcare, highlighting the need 
for medical professionals and managers to understand its role in improving healthcare practices 
and environments[2]. This paper explores the applications of systems engineering in 
healthcare, including its role in cancer research, bacterial detection technologies, and smart 
dressing solutions for wound healing. It also examines computational and therapeutic 
optimization, healthcare delivery, pharmaceutical safety, healthcare system design, operations 
management, and patient safety through system-based approaches. 

Applications of Systems Engineering in Healthcare 

Systems engineering involves identifying the system, selecting performance measures, 
choosing the right modeling tools, analyzing the model's behavior, and making informed 
decisions for design and implementation. Medical product development teams often face 
challenges that slow progress, but many are turning to systems engineering to accelerate the 
process while ensuring products remain safe and effective. As design and process complexities 
in healthcare continue to rise, systems engineering helps developers manage these challenges, 
streamline workflows, and stay competitive in a rapidly evolving market. Additionally, models 
and simulations play a crucial role by predicting system changes, including both desired 
outcomes and potential issues, enabling better decision-making [3]. 

The Role of Systems Engineering in Cancer Research 

A system engineer in cancer research plays an important role in improving healthcare and data 
to advance cancer diagnostics, treatment, and prevention. System Engineering is already being 
used by researchers, professionals, and educators to understand the quality of care delivery, 
transitions of care and coordination, usability, and implementation of health information 
technology, as well as managing a variety of healthcare activities, such as infection control, 
surgical readmissions, primary care workflows, and decision support[4]. A study demonstrated 
how they utilized the systems engineering approach, specifically the (System engineer for 
initiative for patient safety) SEIPS framework, to analyze cytology testing processes in cancer 
clinics, identifying error-prone areas and improving patient safety through visual process 
mapping and understanding work system components[5]. Systems engineering principles can 
optimize healthcare decision-making for complex cancers, such as HPV-positive 
oropharyngeal cancer, by evaluating patient preferences and treatment options[6]. Sanat and 
Ashish recently reviewed several papers from 2012 to 2022, related to automated approaches 
to lung cancer diagnosis. The paper survey showed that deep learning and machine learning-
based models, which are subdomains of artificial intelligence-based models, provided an 
effective and efficient performance in diagnosing lung cancer with high accuracy in the 
minimum time frame[7]. Most malignancies lack approved screening methods, and those that 
do exist have a number of flaws that result in low patient compliance and unnecessary workups, 
which raises healthcare systems' expenses. Innovative, precise, and less invasive methods for 
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early cancer detection are therefore desperately needed. Multi-cancer early detection (MCED) 
tests have become a promising screening tool in recent years. They use artificial intelligence 
and molecular analysis of tumor-related markers found in bodily fluids to simultaneously detect 
multiple cancers and further distinguish the underlying cancer type [8]. Another study used AI- 
intelligence for prostate cancer detection through dual channel tissue feature engineering using 
various FOS features where they analyzed textural dissimilarities in prostate tissue images[9]. 

The systems engineering approach to anti-cancer drug development integrates various 
methodologies to optimize drug delivery and efficacy. This approach encompasses 
mathematical modeling, computer-aided drug design, and systems pharmacology, which 
collectively enhance the precision and effectiveness of cancer treatments. Automated control 
methods manage drug dosages, minimizing side effects and toxicity during chemotherapy[10]. 
A recent paper discussed smart drug delivery systems (SDDSs) that utilize a systems 
engineering approach to target tumor cells and immune cells, enhancing therapeutic efficacy 
by overcoming drug resistance and improving anti-cancer immunotherapy through various 
innovative strategies[11]. It has also played a crucial role in enhancing cancer detection through 
the integration of advanced technologies and methodologies. By employing machine learning, 
imaging techniques, and non-invasive devices, system engineering improves the accuracy and 
efficiency of cancer diagnosis, ultimately leading to better patient outcomes[12], [13], [14]. 
The integration of systems engineering principles in cancer treatment development faces 
several significant barriers that hinder effective implementation. These challenges stem from 
the complexity of cancer biology, technological limitations, and operational inefficiencies. The 
key barriers to the effective integration of systems engineering principles in cancer treatment 
development include financial, technological, operational, regulatory, and workforce 
challenges, which hinder the implementation of precision oncology at scale and disrupt unified 
clinical decision pathways essential for evidence-based care[15], [16]. The systems 
engineering approach in designing drug delivery systems. highlights the integration of the drug 
(warhead), targeting moiety (guidance system), and delivery vehicle (rocket) as crucial for 
effective therapy. It will help by ensuring the cohesive integration of various components 
involved in drug delivery, such as the drug, targeting mechanisms, and delivery vehicles. This 
holistic perspective allows for the optimization of each element to work synergistically, 
improving drug accumulation and penetration in tumors. Ultimately, it enhances the overall 
efficacy of cancer treatments while minimizing side effects[17]. 

System Engineering Approaches in Bacterial Detection Technologies  

There is a need for highly specific, rapid, and sensitive identification and detection of a variety 
of harmful microorganisms to provide effective therapy for vulnerable populations. Application 
of Systems Engineering for bacterial detection is an interdisciplinary approach that integrates 
microbiology, engineering, automation, and computational modelling to detect specific 
bacteria in a highly rapid and sensitive manner. It involves designing and optimizing different 
technologies, tools, and workflows to accurately identify and quantify different bacteria in 
various settings[18]. 

Biosensors: These are cost-effective, instantaneous means of detecting disease-causing bacteria 
for quick diagnosis and treatment [18]. Biosensors can be categorized by the type of bioreceptor 
or the method of signal transduction. Affinity-based sensors are often preferred because they 
are more selective and specific [19].There are different types of biosensors, for example, Paper-
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based sensors: A key characteristic of paper-based sensors is their ability to transport liquid 
automatically through capillary action, eliminating the need for external pumps.[20] This type 
of sensor involves sampling, treatment, detection, and signal output. The detection can be direct 
or indirect. 

Nanotechnology-based sensors can identify low levels of bacteria and can be made to be highly 
selective to a specific target. They can also offer real-time monitoring and remote data 
collection [21]. A branch of nanotechnology-based sensors includes Nanomechanical sensors, 
which is a subfamily of micro-electromechanical systems (MEMS) that can convert biological 
processes into measurable mechanical motion. They are fast, highly sensitive, and have a high 
throughput capability [22]. 

Smartphone apps: Smartphones, featuring user-friendly operating systems, internal storage, 
and high-resolution cameras, are becoming globally widespread and serve as ready-to-use 
platforms for developing instrument-free point-of-care (POC) systems[23].  Bacterial 
concentration can be detected using this smartphone platform.  

Integrated catheter systems: To tackle Urinary tract infection, Integrated catheter system 
facilitates the reduction of biofilms through a bioelectric effect by applying a low-intensity 
electric field. This field enhances the vulnerability of biofilm bacteria to antimicrobials, which 
leads to a decrease in the necessary antibiotic dosage[24].  

Digital imaging:  A recent study talks about dipstick-format digital biosensor (digital dipstick) 
which detects bacteria directly from liquid samples using a simple process: dip, culture, and 
count, minimizing the number of steps required[25]. 

Laser scattering technology: The Rapid Bacterial Identification System (RBIS) operates on the 
principle that light scattering changes when a laser beam passes through bacterial cells. By 
analyzing these variations with a laser and using an algorithm to classify data, the system 
allows real-time identification of various pathogens, eliminating the need for biochemical 
processing[26].  

Though there have been multiple studies conducted on the topic, some of the challenges of 
using systems engineering for bacterial detection include ensuring high sensitivity and 
specificity of pathogenic bacteria in complex sample matrices, minimizing false positives or 
negatives, and overcoming the limitations of existing detection methods. Additionally, there 
are difficulties in integrating different detection technologies into seamless, user-friendly 
platforms, achieving real-time results, and scaling systems for widespread use in diverse 
environments such as clinical or field settings. Ensuring cost-effectiveness and reducing 
detection time without compromising accuracy is also a significant challenge. 

System Engineering Solutions for Smart Dressing in Wound Healing  

Conventional or early wound care techniques include gauze and cotton, in this technique, we 
cannot see real-time monitoring, such as maintaining a moist environment, gas/vapour 
exchange, pH sensing, etc., influencing therapeutic outcomes towards excessive or overly 
cautious strategies [27], [28]. To overcome this problem, research has been done to develop 
smart dressing[29]. Smart dresses are designed not simply to promote wound healing but also 
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to monitor the wound condition and to take preventive measures for the proper treatment of the 
wound, which will promote the wound healing process. Smart sensors like temperature sensing, 
moisture sensing and different biochemical markers sensing within the wound dressing will 
give healthcare professionals a deep insight and gather valuable information about the 
progression of the wound[30], [31]. In recent times, AI-integrated health wearables have been 
introduced to monitor real-time health conditions and suggest reasonable suggestions for 
patients[32]. AI can assist health professionals in predicting outcomes and managing wounds 
more effectively [33]. This type of technology can also used for novel domains like testing a 
novel medicine. By using this smart dressing, we can see in real-time all the biochemical 
activities and other factors that take place within the wound site or if the novel medicine is 
doing any unwanted activities in the wound site.  

Potential Biomarkers for Monitoring Wound States: 

Customarily, wounds are managed by applying bandages, which will minimise the risk of any 
pathogen or any microorganisms that lead to any kind of inflammation. The bandages are to be 
removed from time to time, which can interrupt the healing process. That’s why we need a 
dressing equipped with sensors that will monitor the real-time conditions of the wound. This 
will reduce the intensity of changing the dressing and also will reduce the risk of disrupting the 
newly formed tissues or the wound bed, which will overall reduce the time taken for the wound 
to heal, improve the patient’s comfort and also reduce the overall healthcare cost[34],[35].  

Factors which are associated with the wound status pH, Temperature and Oxygen: 

Monitoring pH is important for assessing wound condition, as it helps determine the wound's 
stage—whether it's in hemostasis, inflammation, proliferation, or maturation. Acute wounds 
typically have a pH of 4.0 to 6.0, while chronic wounds are more alkaline, with a pH around 
10.0, which can encourage pathogen growth. Therefore, tracking pH is essential for evaluating 
the wound's healing stage and detecting potential infections [36] ,[37].  

Temperature is a key biological indicator that affects enzymatic reactions in the body and helps 
detect wound infections. Normally, a wound's temperature matches the body temperature 
(31.1°C–36.5°C), but a rise of more than 2.2°C suggests an infection, often accompanied by 
swelling and redness. After treatment with antibiotics, the temperature typically decreases by 
0.8–1.1°C. Thus, monitoring the wound's temperature is crucial for identifying infections and 
evaluating the effectiveness of treatment[38],[39],[40].  

Oxygen is essential for wound healing, supporting collagen synthesis, bacterial defense, and 
cell growth. Inadequate oxygen can create a hypoxic environment at the wound site, hindering 
healing. Oxygen levels also influence the production of reactive oxygen species (ROS), which 
are important for tissue remodeling, immune defense, and cell signaling. However, excessive 
ROS can cause oxidative stress, damaging cells and delaying healing. Therefore, monitoring 
oxygen levels during the healing process is critical to ensure proper recovery[41],[42]. 
Temperature, pH and oxygen levels can be monitored through a microchip, which detects real-
time changes and helps doctors provide appropriate care. AI can also offer patients a simple 
summary of the wound's condition and early signs of infection via wireless connection, 
advising them to visit a doctor if needed. This approach reduces doctor visits and healthcare 
costs[43].  
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Materials for smart wound healing dressing: 

The use of smart wound healing dressing, including shape memory and reactive oxygen species 
responsive materials. Self-adjusting treatments have been included in the intricate wound-
healing process using smart materials[44], [45]. A type of smart material known as shape 
memory polymers (SMPs) has the ability to retain its momentarily programmed shape and 
revert to its initial configuration in response to particular environmental inputs. Versatile SMP 
kinds that react to light, heat, pH, or moisture have been used to create wound monitoring 
dressings and intelligent controlled medication delivery. The most widely used SMPs for 
creating these intelligent wound dressings are polyurethane, polyester, poly-hydroxyproline, 
polysilamine, poly(N-isopropyl acrylamide) (PNIPAAm), and polythiophene hydrogels[46]. 

For wound healing applications, a copolymerised new zwitterionic shape memory polymer 
made of diol acrylate monomer (dihydroxypropyl methacrylate, or DHMA) and sulfobetaine 
methacrylate (SBMA)[47]. Boric acid was added to the polymeric complex in this research as 
a crosslinker. This hydrogel dressing's shape memory behaviour was produced via the 
electrostatic interactions of PSBMA chains with dynamically bound boron esters, which are 
activated by either absorbing moisture or temperature. The anti-electrolyte effect of salt content 
on the mechanical, shape memory, and self-healing capabilities of this hydrogel dressing was 
next investigated by incorporating sodium chloride into the produced zwitterionic polymer to 
investigate its shape memory properties. When salt was added to the hydrogel, the glass 
transition temperature dropped from 70 °C to room temperature[48]. As, PSBMA is 
hydrophobic, it can recover its shape by absorbing moisture from the wound. Thus, we can use 
SMP for a potential wound dressing[47], [48], [49]. 

Smart dressing for monitoring the skin wound status: 

Chronic wounds which is hard to heal and very much susceptible to infections the current 
wound management of chronic wounds mostly acts as a coverage around the wound and poorly 
delivers the therapeutic agents to the wound, which makes it way longer to heal, and there is 
also a risk of infection[50]. We need a smart wound dressing that will monitor essential data of 
the wound’s condition by sensing the stimulus around the wound environment[51]. Many types 
of wound dressing which is sensitive to the common bacterial illness indicators that are 
expressed, including pH, temperature, secreted enzymes and toxins, which will fit into 
hydrogel or electrospun nanofiber meshes. We can also incorporate these stimuli-responsive 
dressings with drug-delivery devices for efficient wound care and regulated drug release[52]. 
New methods for real-time wound condition monitoring without dressing replacement are 
made possible by the dressing's integration of sensors and actuator technology. Numerous 
wound parameters, including pH, temperature, moisture content, and oxygen concentration that 
were previously impossible to monitor with the previous dressing are now measurable because 
of the flexible microsensors integrated into the dressing[53], [54]. The smart bandages can be 
analysed both automatically or in a semi-automated style, which will affect the wound healing 
process[54]. 

 Computational 

Model transformations are an important process for system design, facilitating the refinement 
and evolution of behavior throughout its lifecycle[55]. The method is not particularly complex, 
as it begins with refinement in terms of modeling and design, followed by transforming the 
design tasks into computational tasks. The transformation process also involves generating a 
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mathematical model that captures the underlying properties and relationships within the 
system, which can be analyzed and simulated[56]. Finally, the results of these transformations 
are fed back into the system model, providing continuous refinement and ensuring that the 
design remains aligned with the intended functionality and performance [57].Through this 
iterative process, model transformations help bridge the gap between abstract design concepts 
and practical implementation [58]. Few Free and Open Source Software (FOSS) are available 
which includes –OpenSCAD: Allows the scripted generation of CAD models. cadQuery: Uses 
Python to generate CAD models. PicoGK: An open-source framework for Computational 
Engineering. 

Building on the foundational process of model transformations, it is important to recognize 
how they also support the integration of various design perspectives and technologies 
throughout the development lifecycle. As systems grow in complexity, they often involve 
multiple stakeholders with different goals, such as software engineers, system architects, and 
domain experts [59]. Model transformations facilitate communication across these disciplines 
by providing a common framework for translating between high-level specifications and low-
level implementation details. This not only enhances collaboration but also reduces the 
potential for errors that can arise when translating between disparate models or systems[60].  

Nowadays, The Cancer Genome Atlas (TCGA), TARGET, the cancer Cell Line Encyclopedia 
as well as experimental data resulting from methods such as mass spectroscopy and genomics 
provide detailed information on patients' genotypes and phenotypes[61].The comprehension of 
biological information flow, including how genotypes translate into functional phenotypes, is 
one of the primary problems in biology. Although conducting biological experiments has been 
challenging, resulting in a lack of data, advances in experimental high-throughput 
measurements have made biology a data-rich field, necessitating the use of analytical tools to 
make biological data easier to analyze and interpret[62]. 

Therapeutic Optimization, Health care delivery and pharmaceutical safety 

Therapeutic optimization in radiation therapy helps target cancerous regions with precise doses 
while minimizing damage to surrounding healthy tissue using advanced computerized beam 
modulation. Systems engineering has great potential to improve healthcare delivery, but its 
acceptance faces significant challenges. We are optimistic about healthcare engineering's 
future, but its success depends on more organizations recognizing its value and driving 
necessary changes[63],[64],[65],[66]. Address practical issues in applying a systems 
engineering approach and identify tools to implement its key elements[67]. 

Engineering techniques are used in developing medical devices and healthcare processes, while 
system safety focuses on identifying and controlling hazards through modeling and analysis. 
This approach demonstrates how to apply new safety engineering modeling and analysis to 
healthcare systems, using pharmaceutical safety as an example, with potential for other 
complex healthcare systems[68]. The goal is to apply methods and tools from fields outside 
traditional medical and biological disciplines to improve healthcare delivery processes. Key 
fields in health systems engineering include industrial engineering, systems engineering, 
human factors, operations research, biostatistics, informatics, social sciences, organizational 
psychology, health services research, and epidemiology. Healthcare informatics focuses on 
providing software tools and an information system to enhance healthcare delivery[69]. 
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System approaches in Healthcare, System healthcare design, healthcare operations 
management and Patient safety 

Use of system approach in healthcare will likely grow, but more work is needed to show its 
effectiveness, particularly in measuring its impact on patient and service outcomes. It offers 
capabilities like automation, security, transparency, and fault tolerance, improving applications 
such as healthcare by replacing traditional systems with a more advanced, distributed 
approach[70], [71]. 

Systems engineering plays a vital role in improving healthcare by making it more efficient, 
adaptable, and patient-focused through structured development. It focuses on coordinating 
departments, staff, and technology to streamline processes like patient admissions, diagnostics, 
and treatment planning, while integrating diagnostic tools and monitoring systems to drive 
medical innovations. Technologies such as digital health tools, virtual reality, and mobile apps 
can enhance coordination, but further research is needed to advance patient care and 
communication. Accurate data management systems ensure the safe and efficient transfer of 
confidential healthcare data, while user-friendly technologies enable quick data transfer, 
ensuring high-quality patient care that meets the needs of both patients and organizations[72], 
[73]. 

Healthcare operations management focuses on coordinating processes to deliver services 
efficiently, such as managing costs while ensuring quality care. Recent research highlights six 
key areas: service quality, operations strategy, information technology, service scheduling, 
service performance, and other factors. Future research should explore these themes further to 
improve healthcare operations[74]. 

Healthcare quality and safety are essential for delivering effective and safe care to patients, 
with patient safety being the foundation of high-quality healthcare. The main approach to 
improving healthcare quality and safety has significantly influenced how policy, research, and 
practice aim to enhance the organization and delivery of patient care[75]. 

Conclusion: 

By offering an organized, multidisciplinary method of resolving difficult problems, systems 
engineering is transforming healthcare and medicine. It makes it possible to optimize 
procedures, manage resources, and make decisions in therapeutic settings by combining 
cutting-edge technologies, data analytics, and human-centered design. Through computer 
modeling and precise delivery systems, it speeds up innovation in medication research while 
improving accuracy and efficiency in diagnostics. Though there has been a lot done, more focus 
should be given to misguided diagnoses or patient-specific diagnoses and make a better model 
to compare reports.  As the discipline develops, its all-encompassing approaches will keep 
pushing for breakthroughs in early disease detection, personalized medicine, and creative 
treatments, ultimately influencing the direction of healthcare. Improving healthcare systems 
requires focused research, education in health systems engineering, and attracting experts to 
tackle challenges. Collaboration and technology are key to improving healthcare efficiency and 
access 
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