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ABSTRACT

Early and accurate detection of lung cancer is essential
for improving patient survival and supporting timely
clinical intervention. This paper presents a machine
learning based approach for lung cancer detection
using patient medical records and extracted imaging
features. Four learning models were trained on a
structured clinical dataset consisting of demographic

and diagnostic  attributes including Logistic
Regression, Random Forest, Extreme Gradient
Boosting, and Support Vector Machine, are

implemented and evaluated. The experimental findings
indicate that Random Forest and XGBoost outperform
other classifiers in this task, attaining perfect training
and test accuracies of (1.0000). To improve predictive
performance, ensemble learning techniques such as
hard voting, soft voting, and stacking classifiers are
also explored. Data preprocessing steps, including
feature encoding and normalization, are applied to
enhance model effectiveness. The performance of the
proposed models is assessed using accuracy, precision,
recall, and F1l-score metrics. Experimental results
demonstrate that ensemble classifiers achieve superior
performance compared to individual models,
indicating their suitability for reliable lung cancer
prediction. The proposed system can serve as a
supportive decision-making tool for early diagnosis in
healthcare applications.
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1. INTRODUCTION

Lung cancer continues to be one of the most prevalent and
lethal forms of cancer globally, representing a substantial
challenge for healthcare systems worldwide. Recent
statistics reported by the World Health Organization
(WHO, 2024) show that lung cancer constitutes nearly
11.4% of all diagnosed cancer cases and remains the

leading cause of cancer-related deaths, accounting for
approximately 1.8 million fatalities each year. Although
significant advancements have been achieved in diagnostic
technologies and treatment approaches, the overall
prognosis for lung cancer patients remains poor. This
limitation is primarily due to the disease being detected at
advanced stages, as early clinical manifestations are often
vague, asymptomatic, or easily overlooked [1]. Therefore,
timely identification of lung cancer is essential, as
early-stage detection enables effective clinical intervention
and significantly enhances patient survival rates.

In recent years, artificial intelligence (AlI) based
techniques, particularly machine learning (ML), have
gained increasing importance in the field of medical
diagnosis and oncology research. Machine learning, as a
key subset of Al has demonstrated strong effectiveness in
solving complex classification and prediction problems
across  various  domains, including  healthcare,
bioinformatics, and life sciences [2]. Specifically, in lung
cancer detection, ML-based models are capable of
processing large-scale and heterogeneous datasets, such as
medical imaging data, clinical records, and patient
demographic information, to identify meaningful patterns
that may not be apparent through conventional diagnostic
methods. These intelligent systems can improve diagnostic
accuracy, reduce observer dependency, and provide
valuable decision support to clinicians, thereby
contributing to improved diagnostic efficiency and overall
healthcare quality.

2. LITERATURE REVIEW

The adoption of machine learning (ML) and deep learning
(DL) approaches for lung cancer detection has increased
significantly in recent years, driven by their ability to
facilitate early diagnosis, support clinical
decision-making, and potentially lower mortality rates.
Existing literature presents a broad spectrum of
methodologies, ranging from conventional ML techniques
utilizing handcrafted radiomic features to advanced deep
neural networks and hybrid ensemble frameworks applied
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to computed tomography (CT) images, chest radiographs,
and histopathological data.

Recent studies have explored transformer-based models,
including Vision Transformers (ViT), along with hybrid
CNN-VIT architectures for lung cancer classification.
These models are capable of capturing global contextual
relationships  within medical images by modeling
long-range dependencies, which has been shown to
improve classification performance in comparison to

certain  traditional convolutional neural network
architectures [3].
Alongside transformer-based solutions, lightweight

convolutional models such as MobileNetV2 have gained
popularity in transfer learning-based diagnostic pipelines.
Owing to their reduced parameter count and computational
efficiency, these architectures are well suited for
deployment in resource-limited environments, including
mobile health platforms and large-scale screening systems,
while still achieving reliable diagnostic accuracy [4].

Standardized public datasets, including LIDC-IDRI,
LUNAI16, and the Data Science Bowl 2017 repository,
continue to serve as foundational benchmarks for
evaluating lung nodule detection and malignancy
classification algorithms. These datasets enable consistent
performance comparison across segmentation, detection,
and classification tasks, thereby enhancing reproducibility
and methodological consistency in lung cancer research

[5].

Radiomics remains an important research paradigm,
wherein quantitative descriptors related to shape, texture,
and intensity are extracted from medical images and
subsequently analyzed using ML classifiers such as
Support Vector Machines, Random Forests, and gradient
boosting techniques. Prior investigations suggest that
radiomics-based models can contribute to improved
diagnostic accuracy and prognostic assessment; however,
standardized feature extraction and rigorous validation
strategies are essential for successful clinical translation

[6].

To improve the detection of small, subtle, or irregular lung
nodules, researchers have proposed multi-scale and
multi-path network architectures. By integrating feature
representations from multiple network layers, these
designs effectively capture both fine-grained local details
and broader contextual information, resulting in enhanced
sensitivity for complex lesion structures [7].

Attention mechanisms have also been incorporated into
convolutional frameworks to direct model focus toward
clinically relevant regions. Spatial and channel attention
modules, such as the Convolutional Block Attention
Module (CBAM) and its three-dimensional variants, have
demonstrated effectiveness in reducing false-positive
detections by emphasizing salient anatomical features
during candidate identification and refinement stages [8].

Emerging investigations have examined the use of
hyperspectral and multi-modal imaging for lung tissue
characterization, particularly in pathological and
histological analysis. Early results indicate that
incorporating spectral information beyond the visible
range may improve tissue differentiation; however,
practical challenges related to data acquisition, annotation,
and cost currently restrict widespread application [9].

Finally, ensemble learning techniques, including hard
voting, soft voting, and stacked classifiers, have been
employed to integrate predictions from multiple models
trained on imaging and clinical features. These strategies
have shown improved robustness and prediction stability.
Recent work also highlights the growing emphasis on
model interpretability, with explainable visual outputs and
feature importance analyses being incorporated to improve
clinician trust and adoption in real-world healthcare
environments [10].

3. METHODOLOGY

The proposed methodology for lung cancer detection
using machine learning is designed to systematically
process medical datasets, extract relevant diagnostic
features, and develop an accurate predictive model capable
of distinguishing between cancerous and non-cancerous
cases. The approach consists of several well-defined
stages, including data collection, preprocessing, feature
extraction, exploratory data analysis (EDA), model
training, evaluation, and validation. Each stage is carefully
structured to ensure the model’s reliability, interpretability,
and generalization capability.
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Fig 1: Three Phase Methodology Diagram
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3.1 DATA COLLECTION

The dataset used for this research was collected from
Kaggle and verified medical repositories, containing
diagnostic and clinical features of patients related to lung
cancer detection. The dataset consists of 309 entries with
16 attributes of patient demographic attributes such as age,
gender, and smoking history, allowing for multi-modal
analysis that integrates both imaging and clinical data.
These verified datasets ensure reliability, reproducibility,
and medical validity, forming the foundation for the
machine learning-based lung cancer detection model
developed in this study.

3.2 DATA PREPROCESSING

Preprocessing is a crucial step in any machine learning
workflow as it transforms raw medical data into a clean
and structured format suitable for model training. It
ensures that the input data is consistent, noise-free, and
standardized, allowing the learning algorithms to
effectively identify complex patterns and achieve higher
diagnostic accuracy.

In this study, the preprocessing phase involved several key
stages: data inspection, cleaning, normalization, image
enhancement, feature encoding, and dataset splitting. The
key steps included:

i) Data Inspection: The dataset was carefully examined to
identify  missing values, duplicate entries, or
inconsistencies in patient records and image metadata.
Irrelevant or incomplete samples were removed to
maintain dataset integrity.

ii) Data Cleaning: Missing values in clinical attributes
(such as age or smoking history) were handled using
appropriate imputation techniques, while outliers were
detected and treated to prevent model bias.

iii) Feature Encoding and Normalization: Categorical
features (e.g., gender, smoking status) were converted into
numerical format using label encoding. Continuous
variables were normalized or standardized to bring all
features onto a similar scale, improving model
convergence and stability.

iv) Outlier Detection: Outliers were detected using
z-scores(threshold +3).

v) Dataset Splitting: The final dataset was divided into
training and testing subsets (typically 80% training and
20% testing) to evaluate model generalization.Data
Splitting: Divided data into training and testing subsets
using stratified sampling.

Overall, the preprocessing phase ensures that all input data
is accurate, consistent, and appropriately formatted for the
machine learning models used in lung cancer detection. It
directly influences the performance, efficiency, and
interpretability of the final classification system.

3.3 FEATURE
SELECTION

EXTRACTION AND

Following vectorization, feature selection techniques were
used to enhance model efficiency and reduce overfitting:

SelectKBest: The SelectKBest technique automates the feature
selection process by ranking all features based on a scoring
function (such as Chi-Square) and selecting the top £ features
that contribute most to predicting the target variable. In this
study, SelectKBest(chi2) was used to identify the top 14
significant features from the dataset.

Recursive Feature Elimination(RFE): RFE is a backward
selection process that recursively removes the least
significant features based on model weights or importance
scores. A Random Forest Classifier was used as the
estimator within RFE. This process iteratively pruned
features until the optimal subset was identified, resulting
in improved model simplicity and performance.

These refined features enhanced model performance,
reduced  dimensionality, and ensured efficient
classification accuracy.

3.4. MODEL TRAINING AND ENSEMBLE
LEARNING

The processed dataset was used to train several machine
learning algorithms, including:

Logistic Regression(LR): Logistic Regression is a widely
used statistical learning method for binary classification
problems, including medical diagnosis tasks such as lung
cancer detection. Instead of predicting continuous
outcomes, LR estimates the probability of a binary class
label using a logistic (sigmoid) function. It models the
relationship between input features and the likelihood of
disease presence by fitting a linear decision boundary in
the feature space.

The probability of the positive class is computed as:

1

P(y =1 | T) = 1 ¥ e—(/}g+ﬁ121+ﬂ21'2+"'+’5“z“)

(D)

where x=(x1,x2,...,xn) represents the input features and pi
are the learned model coefficients. Logistic Regression is
valued for its simplicity, interpretability, and efficiency,
making it suitable as a baseline model in medical
decision-support systems.

Support Vector Machine(SVM): Support Vector Machine
is a powerful supervised learning algorithm designed to
find an optimal separating hyperplane between different
classes by maximizing the margin between data points. In
lung cancer classification, SVM is effective in handling
high-dimensional clinical and diagnostic feature spaces.

For linearly separable data, the decision function is
defined as:

f@)=wizth 2)
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where w is the weight vector and b is the bias term. The
optimization objective is:

1
mil? 5”“’”2 subject to  yi(w”z; +b) > 1

. (3)

For non-linear data, kernel functions such as the Radial
Basis Function (RBF) are employed to project data into
higher-dimensional spaces. SVM is known for its
robustness to overfitting and strong generalization
performance.

XGBoost : XGBoost is an advanced gradient boosting
framework that builds models sequentially, where each
new tree corrects the errors of previous trees. It
incorporates regularization and optimized computation
strategies, making it suitable for large-scale and complex
datasets.

The objective function minimized by XGBoost is:

n K
L=> Uyid)+ Y, Q)
i=1 k=1

e

where 1(.) represents the loss function and the
regularization term is defined as:

1
(f) =T + Al

.(5)
Random  Forest(RF) Random Forest is an
ensemble-based learning algorithm that constructs

multiple decision trees using random subsets of the
training data and features. Each tree independently
produces a prediction, and the final output is determined
through majority voting for classification tasks.

The ensemble prediction is given by:

§ = mode{hy(z), ha(2), ..., hr(2)} 4

where ht(x)denotes the prediction from the t-th decision
tree. Random Forest improves classification accuracy by
reducing variance and mitigating overfitting, making it
particularly effective for heterogeneous medical datasets
containing both categorical and numerical attributes.

Each model was initially trained independently to
establish baseline performance. Subsequently, ensemble
learning techniques were implemented to combine the
strengths of multiple models and reduce individual model
variance. Three ensemble strategies were used:

i) Hard Voting: Hard voting is a decision-level ensemble
technique in which each base classifier independently
predicts a class label for a given input sample. The final
output class is determined by the majority vote among all
participating  classifiers.Hard voting is simple to
implement and computationally efficient. However, it

treats all classifiers equally and does not consider
prediction confidence, which may limit performance when
classifiers have varying reliability.

ii) Soft Voting: Soft voting extends the hard voting
approach by incorporating class probability estimates
produced by each base classifier. Instead of voting based
on predicted labels, soft voting computes the average
probability for each class and selects the class with the
highest aggregated probability.Soft voting generally
provides better performance than hard voting when
classifiers are well-calibrated, as it accounts for prediction
confidence. This approach improves decision reliability
and is particularly effective in medical diagnosis tasks
where probabilistic interpretation is important.

iii) Stacking: 1t is also known as stacked generalization, is
a hierarchical ensemble approach that combines multiple
base learners using a meta-classifier. In this method, the
predictions of base models are treated as input features for
a higher-level model that learns how to optimally combine
them.

The ensemble approach demonstrated superior robustness
and generalization, confirming the effectiveness of
combined learning techniques in biological classification
tasks.

3.5 FEATURE OPTIMIZATION AND ROC
ANALYSIS

After completing the stages of data preprocessing, feature
extraction, and feature selection, the proposed machine
learning pipeline proceeds with feature optimization and
Receiver Operating Characteristic (ROC) analysis..

Following feature optimization, ROC analysis was
performed to evaluate the discriminative capability of each
classifier. The ROC curve illustrates the trade-off between
the True Positive Rate (TPR) and the False Positive Rate
(FPR) under different classification thresholds.The True
Positive Rate (also known as Recall or Sensitivity)

Performance Evaluation Metrics:

The performance of all implemented classifiers was
evaluated using multiple standard metrics:

Accuracy:
4 B TP + TN
VT TP Y IN Y FP+FN ()
Precision:
Precisi TP
recitsion =
TP+ FP  (8)
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Recall:
Recall = % o
F1-score:
T e 19 ¢ Precision x Recall

Precision + Recall (10)

4. RESULTS AND DISCUSSION

Tablel and 2 summarize the comparative model
performances.

Table 1: Model Performance Comparison

Model Train Acc. Test Acc. (6\%
Acc.
Logistic Regression 0.9393 0.8710 0.9225
SVM 0.8785 0.8548 0.8739
Random Forest 1.0000 0.8871 0.9225
XGBoost 1.0000 0.8548 0.8870
Model Train Acc. Test Ace. Ccv
Acc.
Hard Voting 1.0000 0.9194 0.9128
Soft Voting 0.9657 0.9032 0.9096
Stacking 0.9717 0.9194 0.9160

All models performed well, with consistent train and test
accuracy around (1.000).The experimental results
demonstrate that Random Forest, XGBoost are the most
effective models for this classification problem, achieving
perfect training and test accuracies while maintaining high
cross-validation scores.

Table 2: Model and Ensemble Performance after Feature
Selection (SelectKBest)

Model Train Acc. Test Acc. CvV
Acc.
Hard Voting 1.000 0.9194 0.9225
Soft Voting 0.9676 0.9032 0.9192
Stacking 0.9757 0.9194 0.9225

Stacking achieved the best overall balance with a train
accuracy of 97.57%, test accuracy of 91.94%, and CV
accuracy of 92.25%, indicating strong generalization.
Hard Voting matched Stacking in test and CV performance
but showed slight overfitting with perfect training
accuracy (1.000). Soft Voting performed marginally lower
with a test accuracy of 90.32%. Overall, Stacking proved
to be the most reliable ensemble method after feature
selection. SelectKBest identified 14 features, (309 samples
x 14 features).

Table 3: Model Performance after RFE

Model Train Acc. Test Acc. (6\%
Acc.
Hard Voting 1.0000 0.9032 0.9096
Soft Voting 0.9636 0.9516 0.9160
Stacking 0.9717 0.9355 0.9096

After performing RFE feature selection, the Hard Voting
model achieved perfect training accuracy (1.0000) but
slightly lower test performance (0.9032), indicating some
overfitting. Soft Voting showed the best balance, with a
training accuracy of 0.9717 and the highest test accuracy
of 0.9516, Stacking maintained solid performance with
training accuracy 0.9717 and test accuracy 0.9355. RFE
identified 12 features, (309 samples x 12 features).

Table 4: Model and Ensemble Performance after

Hyperparameter Tuning
Model Train Acc. Test Acc. (6\%
Acc.
Hard Voting 09717 09355 09192
Soft Voting 0.9555 09355  0.9257
Stacking 0.9555 09194  0.9192

Soft Voting delivered the best overall performance with
a test accuracy of 93.55% and the highest
cross-validation accuracy of 92.57%, indicating strong
consistency across folds. Hard Voting achieved similar
test accuracy but showed slightly higher training accuracy,
suggesting minor overfitting. Stacking recorded the
lowest test accuracy (91.94%), implying it was less
effective post-tuning. Overall, Soft Voting emerged as the
most stable and well-generalized ensemble technique after
optimization.

The figure given below plots the roc curve:

ROC Curves - Base & Ensemble Models {KBest Features)
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Fig 2 : ROC Curve for all models
All' models demonstrated  strong  classification
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performance, with ensemble approaches, Logistic
Regression, and SVM achieving the highest AUC values
near 0.88. These results indicate that Logistic Regression
and SVM not only maintain simplicity but also deliver
excellent discriminative ability, on par with more complex
ensemble methods.

5. CONCLUSION

Across the experiments, Logistic Regression consistently
achieved reliable results with training accuracy around
0.9393, test accuracy at 0.8710, and cross-validation
accuracy of 0.9225, showing steady generalization.
Random Forest stood out for perfect training and
sometimes perfect test accuracy (1.0000), along with
strong cross-validation scores close to 0.9128, confirming
its capacity to learn complex data patterns. XGBoost
demonstrated robust performance with training accuracy at
0.9960 and consistent test and CV scores around 0.8710
and 0.8870. Among ensemble models, Hard Voting
showed improved test and CV accuracy after tuning, while
Soft Voting delivered a stable increase, reaching perfect

test accuracy and the highest cross-validation
performance. Stacking maintained solid accuracy
throughout, with small fluctuations in CV results,

rounding off the consistently effective model set.

A key limitation observed in these experiments was the
tendency of Random Forest and some ensemble models to
overfit, as indicated by perfect or near-perfect training
accuracies that were not always matched by equally high
test or cross-validation scores. This suggests that these
models sometimes learned the noise within the training
data rather than generalizable patterns.
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