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Abstract   

This paper deals with the stability of nonlinear uncertain discrete-time systems with variable time-lags. The system 
under assumption involves norm-bounded parameter uncertainties, quantization/overflow nonlinearities and variable 
time-lags. A Lyapunov function based delay-dependent sufficient stability condition is derived by using a more 
relaxed finite-sum inequality. As a special case, a stability condition for constant delay is also derived in this paper. 
Finally, numerical examples are given to show the efficacy of the proposed conditions.  
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1. Introduction 

While implementing the category of discrete-time 
systems via specific binary hardware, there is a chance 
of occurrence of nonlinearities for example quantization 
and/or overflow in the designed system. Due to such 
nonlinear effects, the unpredictability in the system 
occurs in the form of limit cycles or unwanted 
oscillations that may tend the system to be unstable. So, 
it is a key issue to find the range of system parameters 
under which the designed system is not affected by 
limit cycles. During the past, several studies available 
on the composite effects of quantization and overflow 
[1-6] for discrete realizable systems. 

Another source of instability in the designed system is 
parameter uncertainty which arises due to several 
reasons like finite resolution of measuring equipment, 
variation in system parameters, modeling error or some 
ignored factor. The effects of parameter uncertainties 
are studied extensively in existing literature [3-18].  

Besides nonlinearities and parameter uncertainties, 
another source of instability in discrete-time systems is 
time-lag. Time-lag occurs due to finite computational 
time or transportation lag required for the transmission 
of information among the various parts of the system. 
The generated time-lag in processing of information 
may be constant or varying with time. Available 
stability conditions in literature are classified into two 
different categories in which one is delay-independent 
[3, 10] and other is delay-dependent [4, 5, 6, 8, 13, 15, 
17-32]. Usually, delay-dependent conditions bring less 

conservative results because these conditions utilize the 
information of the size of the lag whereas delay- 
independent conditions have not included the 
information of the size of the lag. For expecting less 
conservative results, selection of appropriate Lyapunov 
function and application of tighter bounding techniques 
in the sum and cross terms of the forward difference of 
the Lyapunov function are the key steps. Various 
tighter bounding techniques from the existing literature 
are free-weighting matrix method [20, 33], Jensen 
inequality [21], Reciprocal convex method [6, 24], 
Wirtinger-based inequality [6, 17, 34] and Abel lemma-
based inequality [35].  

Practical engineering systems such as network control 
systems [14], discrete-time Markovian jump systems 
[22], discrete-time neural networks [2], Sensor 
networks [36] etc. are frequently suffered by the 
presence of above discussed instability factors. The 
problem of stability investigation of a category of 
discrete-time systems exerting quantization and/or 
overflow nonlinearities, parameter uncertainties and 
variable time-lags is more interesting and realistic in 
nature. Many results [3-6, 10, 17] have previously 
reported for the global asymptotic stability of these 
systems, yet there is a scope to achieve improved 
results over the previous results.  

The key objective of the paper is to derive less 
conservative delay-dependent conditions for the global 
asymptotic stability of a category of uncertain discrete-
time systems employing quantization and/or overflow 
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nonlinearities and variable time-lags. The main 
contributions of this work are as follows: 

1. A new global asymptotic stability criterion for 
uncertain discrete-time systems having quantization 
and/or overflow nonlinearities and variable time-lag 
is derived. The criterion utilizes a more relaxed 
technique [26, 28] which may reduce the 
conservatism and simplify the system 
analysis/synthesis process. As a special case of our 
main result, a stability condition for the category of 
uncertain discrete-time systems with constant time-
lag and quantization/overflow nonlinearities is 
established. 

2. The proposed conditions are in the setting of linear 
matrix inequalities (LMIs), and hence, one can 
easily test the conditions by using well-known LMI 
solvers [37, 39]. 

3. A comparison of the proposed results with the 
existing results [4-6] is given.  

The remaining paper is outlined as follows. In Section 
2, the system description and some useful lemmas are 
provided while in Section 3, the main results of the 
paper are derived. In Section 4, two numerical 
examples to demonstrate the effectiveness of the main 
results are given. Section 5 provides the conclusion of 
the paper and in Section 6, the future scope of the 
presented work is highlighted. 

Notations: 0  is the null matrix or null vector; I  is the 

identity matrix; α× βR is the set of α× β  real matrices; 
αR is the set of 1α ×  real vectors; M T  denotes the 

transpose of matrix M ; M 0 ( )M < 0  means that M  
is positive (negative) definite symmetric matrix; 
maximum and minimum eigen values of a matrix M  
are max ( )λ M  and min ( )λ M , respectively; diag (z1, z2,…, 

zg)  is a diagonal matrix with diagonal entries z1, z2,…, 
zg; the symmetric entries of a symmetric matrix  is 
inferred  by *. 

2 System Description 

The system under inspection is as   

 ( 1) ( ( )) ( ( ))u u uO Q λχ γ γ+ = =  

             1 1 2 2( ( ))  ( ( ))  ( ( )) ,
T

n nλ u λ u λ u   
             

(1a)                                    

( ) ( ) ( ) ( ) ( ( ))u u u d u      d dA A A A  
 

        1 2( )  ( )  ( ) ,
T

nu u u                              (1b)

2( ) ( ), [ ,0]u u u h                                (1c) 

where ( ) nu    is the state vector; dA A , n n  are the 

known constant matrices; The unknown matrices 

, n n  dA A   denoting parametric uncertainties in the 

state matrices; Q ( )  and O ( )  signify quantization and 

overflow nonlinearities, respectively; ( )λ denotes 

composite nonlinear effects including both quantization 
and overflow. Here, ( )Q  being either roundoff or 

magnitude truncation and ( )λ  is confined to the sector 

[ko, kq], that is, 
2 2(0) 0,  ( ) ( ( )) ( ) ( ), =1,2, ,i o i i i i q iλ k u λ u u k u i n        

           (2a) 
where 

for magnitude truncation

for roundoff

1,   ,

2,  ,qk


 
  

for saturation or zeroing

for triangular

for 2's complement

0,       , 

1
,   ,

3
1,     ,

ok


 

             

(2b) 

and ( )d u  is the variable time-lag that satisfy   

1 21 ( )h d u h                    (3)                                                                               

where h1 and h2 are the lower and upper admissible 
time-lag limits, respectively. , n n  dA A  are 

considered as 
  0 0 0,A H F E                                                              (4a)                                                                                                                         

1 1 1 dA H FE                                                               (4b)                                                                           

where in piH  , iq niE   (i = 0, 1) are constant 

matrices (known) and i ip qiF  (i = 0, 1) is a matrix 

(unknown) which fulfills  

,   0,1.T i i iF F I                 (4c)
 

Lemma 1 [26, 28] For a matrix T R R 0 , any 
matrices L1 and L2 of appropriate dimensions, integers 

1a  and 2a  satisfying 1a < 2a  such that (5) holds 

1

2

1
1 1 1

2 1
2 2 2

    
( ) ( ) ( )

      

Tu a
T

s u a

s s a a
 

 

     
        

     


k Ω k
η Rη

k Ω k

0

0
 

                                

1 1 1

2 2 2

    
2

       

T
     

      
     

k L k

k L k

0

0
              

(5) 

where  

  ( ) ( 1) ( ),s s s     
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   1 1 2( ) ( ),u a u ak  
 

1

2

2 1 2
2 1

2 ( )
( ) ( )  ,

1

u a

i u a

i
u a u a

a a



 

    
 k
 

 

1
1 1 1

TΩ LR L  and  1
2 2 2(3 ) .TΩ L R L  

Lemma 2 [16, 37, 38] Let ,  ,   and Σ F M  be real 

matrices of appropriate sizes with M  fulfilling M =
T ,M  then 

TT T+ + M ΣF F Σ  0                 (6) 

for all T F F I , if and only if there exists a scalar  >0 

satisfying 

1 .+ T T   M ΣΣ   0                 (7) 

Remark 1 In [26], Lemma 1 has been used for stability 
analysis of discrete-time systems having variable time-
lag but not having quantization/overflow nonlinearities 
and parameter uncertainties. 

Now, we are presenting the stability conditions of the 
paper. 

3 Main Result 

Theorem 1. For known integers h1 and h2, the system 
(1)-(4) is globally asymptotically stable (GAS) if there 

exist matrices 

1 2 3 4

5 6 7 4 4

8 9

10

      

          
,

        

         

T n n

 
       
 
    

P P P P

P P P
P P

P P

P

0 

( 1,2,3) ,T n n
i i i   M M0 <  ( 1,2)T

i i i  N N0 <

 ,n n  any matrices  ( 1,2,3,...,6) ,n n
i i  L  TG G0 < =

= diag(g1, g2 ,…, gn) and two positive scalars 0ε , 1ε
 

such that LMIs (8a) and (8b) hold simultaneously: 

1( ( ) ) ,d u h  0                (8a) 

 2( ( ) )d u h  0                (8b) 

where 
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2 2
11 5 1 2 2 1 1 1 12 2

1 1 1 2 2 12 3       ( ) ( 1) ,

T

T T

h h

h h

       

     

Q P P P P M N N

L L L L M
              (10)  

12 3 6 1 1 1 2 2( ),T Th     Q P P L L L L                           (11) 

15 1 5 2 1 2 2( 1)( ) 2 ( ),Th h    Q P P L L                   (12)                                                                                          

16 1 6 3( ( ) 1)( ),d u h   Q P P                                    (13)                                                          

17 2 7 4( ( ) 1)( ),h d u   Q P P                        (14)                                                                               
2 2

18 1 1 12 2( ) ,T
qh h k   Q N N A G                  (15)                                                                                                  

115 2 ,T
q ok k  Q A G                               (16)                                                                                                          

22 5 8 2 1 1 1 2 1 2

12 3 4 3 4

( )

        ( ),

T T

T T

h

h

       

   

Q P P M M L L L L

L L L L
(17) 

23 9 12 3 3 4 4( ),T Th     6Q P P L L L L              (18)                                                                                           

25 5 6 1 1 2 2( )( 1) 2 ( ),T Th h     Q P P L L             (19)                                                                                           

26 1 8 6 12 4 4( ( ) 1)( ) 2 ( ),Td u h h     Q P P L L             (20)                                                                                          

27 9 7 2( )( ( ) 1),h d u   Q P P              (21)                                                                                                                                      

211 12 1( ) ,h d u h Q        (22)                                                                                                                                   

312 12 2 ( ),h h d u Q       (23)                                                                                                                                 

315 2 ,T
q ok k   dQ A G               (24)                                                                                                                                  

33 8 10 3  Q P P M  

         12 3 4 5 6 3 4 5 6( ),T T T Th       L L L L L L L L (25)                                                               

34 9 12 5 5 6 6( ),T Th    Q P L L L L (26)                                                                                          

35 1 7 6( 1)( ),T Th  Q P P (27)                                                                                              

36 1 9 8 12 4 4( ( ) 1)( ) 2 ( ),T T Td u h h     Q P P L L (28)                                                                                           

37 2 10 9 12 6 6( ( ) 1)( ) 2 ( ),Th d u h     Q P P L L             (29)                                                                                           

44 10 2 12 5 5 6 6( ),T Th     Q P M L L L L (30)                                                                                                    

46 9 1( ( ) 1),T d u h   Q P               (31)                                                                                                                                 

47 10 2 12 6 6( ( ) 1) 2 ( ),Th d u h     Q P L L                   (32) 

66 12 4 44 ( ),Th  Q L L
              

(33)
 

68 3 1( ( ) 1),T d u h  Q P
              

(34) 

77 12 6 64 ( ),Th  Q L L               (35)                                                                                                                                      

78 4 2( ( ) 1),T h d u  Q P               (36)                                                                                                                                   

12 2 1,h h h 
               

(37)
2 2

88 1 1 1 12 2 0[( / 2 ) 2] .qh h k k    Q P N N G             (38)   

       
Proof. Consider a quadratic Lyapunov function  

1

1 2

11

1 2( ( )) ( ) ( ) ( ) ( ) ( ) ( )
u hu

T T T

s u h s u h

V u u u s s s s
 

   

   P M M      

 
1

2 1

1 1 1

3 1 1( ) ( ) ( ) ( )
h u u

T T

h s u h s u

s s h s s
   

   

     

    M N   

 
1

2

1 1

12 2( ) ( )
 

  

  

   N
h u

T

h s u

h s s 
             

(39)
 

where
 

1

1 2

1 - ( )-1-1

- ( ) -

( ) [ ( )   ( )    ( )   ( )]
u h u d uu

T T T T T

s u h s u d u s u h

u u s s s
 

   

        (40)                                                      

and 
( ) ( 1) ( ) = ( ( )) ( )u u u u u   λ     .                   (41)       

Application of (39) to (1) yields 
( ( )) ( ( 1)) ( ( ))V u V u V u     

  
   ( 1) ( 1) ( ) ( )T Tu u u uP P   

 

   1( ) ( )T u u M  1 1 2 1( )( ) ( )T u h u h   M M 
 

   2 2 2( ) ( )T u h u h  M   

   3 12 3( ) ( ) ( ) ( )T Tu u h u u M M   
 

    

1

2

3( ) ( )
u h

T

s u h

s s


 

  M 
 

    
2 2

1 1 12 2( )[ ] ( )T u h h u N N 
 

    1

1

1 1( ) ( )
u

T

s u h

h s s


 

  N 
 

    

1

2

1

12 2( ) ( ).
u h

T

s u h

h s s
 

 

  N 
             

(42) 

Now, (42) can be further rearranged as                                                                              

1( ( )) ( ) ( ( )) ( ) ( ) ( )T TV u u d u u u u   M       

      1 1 2 1( )( ) ( )T u h u h   M M   

                    2 2 2 3( ) ( ) ( ) ( )T Tu h u h u u   M M     

     

1

2

12 3 3( ) ( ) ( ) ( )
u h

T T

s u h

h u u s s


 

  M M   

 

     
2 2

1 1 12 2( )[ ] ( )T u h h u N N 

 

    

1

1 2

11

1 1 12 2( ) ( ) ( ) ( )
u hu

T T

s u h s u h

h s s h s s
 

   

  N N   

     

                                                       
(43)                         

where 

 




    

11

1 2

( )

1
( )

1
( ) ( ) ( ( ))  ( )  

T

u
T

s u h

T T T T

u

s
h

u u h u d u u h 



   
 

     

1

2

( )

( )1 2

1 1
( ) ( ) ( ( ))

( ) 1 ( ) 1
,

u h u d u
T T T

s u d u s u h

s s u
d u h h d u

 

      





  λ          (44) 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 4 2024

Page No: 153



 

5 1 2 2 3 6 7 4 5 2 1

5 8 6 9 7 5 6 1

8 10 9 7 6 1

10 7 1

( ( ))

( )( 1)

( )( 1)

( )( 1)

( )( 1)

T

T

T T

T

d u

h

h

h

h



        
      
     


    
    
     


    
     

P P P P P P P P P P

P P P P P P P

P P P P P

P P



0

0

 

16 17

8 6 1 27 2

9 8 1 10 9 2 3

46 10 2 4

1 2

68

78

1

( )( ( ) 1)

( )( ( ) 1) ( )( ( ) 1)

( ( ) 1)
.

( 1)

T

T T T

T

T

d u h

d u h h d u

h d u

h


    
      


    



 
  

Q Q

P P Q P

P P P P P

Q P P

P

Q

Q

P

0

0 0

0 0

0

 

           (45)  

Note that 

1

2

3 3( ) ( ) ( ( )) ( ( )).
u h

T T

s u h

s s u d u u d u


 

     M M       (46)                                                                 

Next, applying Lemma 1 to deal the 9th and 10th terms 
in the right side of (43), we have 

1

1

1 1( ) ( )
u

T

s u h

h s s


 

  N 

 
1 T

1 1 1 1 12
1 1 T

2 22 1 2

   

               (3 )

T

h




    
     

     

k LN L k

k kL N L

 0

0
 

   

1 1 1
1

2 2 2

   
2

       

T

h
     

      
     

k L k

k L k

 0

0

1 T
1 1 1 1 12

1 1 T
2 22 1 2

    

               (3 )

T

h




    
     

     

k LN L k

k kL N L

0

0
 

    
    

     
     

T
1 1 1 1

1
2 22 2

+   

            

T

T
h

k L L k

k kL L

  0

0
             (47) 

and 

1

2

1

2( ) ( )
u h

T

s u h

s s
 

 

  N 

 

           

1

2

1 ( ) 1

2 2
( )

( ) ( ) ( ) ( )
u h u d u

T T

s u d u s u h

s s s s
   

   

   N N     

1 T
3 3 2 3 3

1 1 T
4 44 2 4

    
( ( ) )

               (3 )

T

d u h




    
      

     

k L N L k

k kL N L

0

0
 

    

T
3 3 3 3

4 44 4

+     

           

T

T

    
     

     

k L L k

k kL L

0

0
 

    

1 T
5 5 2 5 5

2 1 T
6 66 2 6

    
( ( ))

               (3 )

T

h d u




    
      

     

k L N L k

k kL N L

0

0

 

    

T
5 5 5 5

6 66 6

+     

            

T

T

    
     

     

k L L k

k kL L

0

0
             

(48)  

where 

1 1( ) ( ),u u h  k  
            

(49a) 

 

   


1

2 1
1

2 ( )
( ) ( ) ,

1

u

i u h

i
u u h

h
k

             (49b) 

3 1( ) ( ( )),u h u d u   k                                         (49c) 
1

4 1
( ) 1

2 ( )
( ) ( ( )) ,

( ) 1

u h

i u d u

i
u h u d u

d u h



 

    
 k
 

      
(49d) 

5 2( ( )) ( ),u d u u h   k                                         (49e) 

and 

2

( )

6 2
2

2 ( )
( ( )) ( ) .

( ) 1

u d u

i u h

i
u d u u h

h d u



 

    
 k
          (49f) 

Employing (43)-(49), we have 

( ( )) ( ) ( ( )) ( ) 2 ,TV u u d u u   Π     (50)                                      

  
where 

1

[ ( ) ( ( ))][ ( ( )) ( )]
n

i q i i i i i o i
i

g k u λ u λ u k u    


    

    
= [ ( ) ( ( ))] [ ( ( ) ( )],T

q ok u u u k u λ G λ   
                 

(51)

  

11 1 1
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1
11 12 2 5 2 5( ( ))( ),Th h d u  Z L N L            (53a)

 
1

12 12 2 6 2 6( ( ))( (3 ) ),Th h d u  Z L N L            (53b) 

and   A A A , d d d A A A .                         (54) 

In view of (2), (51) is non-negative. From (50) and 

(51), it follows that ( ( )) 0V u   if ( ( ))d u Π 0 for 

1 2( ) [ , ]d u h h . Therefore, ( ( ))d u Π 0 is a sufficient 

condition for the stability of the system (1)-(4).
 

By exploiting the concept of Schur’s complement, 
( ( ))d u Π 0  is equivalent to  
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After some mathematical rearrangements and applying 

Schur’s complement, (55) can be rewritten as
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Next, with the help of (4a), the inequality (56) can be 
represented as  

0 0 0 0 0 0 0( ( ))  <T T Td u  Π H F E E F H 0             (57)
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By Lemma 2, (57) is expressed as                                                 
1

0 0 0 0 0 0 0( ( ))  <T Td u   Π H H E E 0                               (61) 

where 0 0  .  Now, with the help of Schur’s 

complement, (61) is written as
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Following the steps similar to (57) to (62), one can 

easily show that (62) is equivalent to .( ( ))d u 0

Observe that, with respect to d(u), ( ( ))d u  is an affine 

function and by the feature of an affine function, 
( ( ))d u  0 holds when (8a) and (8b) satisfy 

simultaneously. Now, the proof of Theorem 1 is 
completed.  

Next, for the case of constant delay i.e., 1 2h h h  , the 

variable time-lagged system (1) becomes   
 

 u u( 1) ( ( ))  O Q 
 

(( ) ( ) ( ) ( )).u u h     d dA A A A               (63)
 

Pertaining to the system (63) with (2) and (4), we will 
achieve the following result. 
 
Corollary 1. The system (63), (2), (4) is GAS if there 

exist matrices T 1 2

3

,
 

   
  

P P
P P

P
0 < ,T Q Q0  

,T R R0  a matrix (diagonal) ,T G G0  any 

matrices 1 2,  L L with suitable dimensions and two 

positive scalars 0ε , 1ε  such that (64) holds. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 4 2024

Page No: 157



 

11 0 0 0 12 13

22 1 1 1 23

2 24 ( )

T

T

T

S

h




 


 
    


  
   
   
   
   


  

S E E S

S E E S

L L

 

 
2

1 2

2 1 2

2 2

44

( 1) 2

3

T
q

T T
q

T

k h h h

k h h

h h


 

 

 
  
  
  
  

d

A G R L L

P A G L L

P L

S

R

R

0

0 0

0

 

0 1

0 1

0

1

2 2

2

2

/ 2

q o q o

q o

q o d

o q q

q k k k k

k k

k k

k k k

k




   

 


  


 




 
 
   

T

T

A G

A G

G GH GH

G

I

I

GH GH

0 0

0 0

0 0 0

00 0 0

0 0 0

0

   

(64) 

 
where 

2
11 3 1 2 2 1 1 2 2( ) ( ),T T Th h h         S R P P P P Q L L L L  

        (65a) 

22 3 2 2 2 2( ) ( ),T Th h     S P Q L L L L                      (65b) 

12 1 1 2 2( ) ( ),T TS h h   L L L L                                    (65c) 

13 3 2 2 2( 1) ( 1) 2 ( ),Th h h     S P P L L                     (65d) 

23 5 2 2( 1) 2 ( ),Th h    S P L L                                  (65e) 

2
44 1 (( / 2 ) 2) .o qh k k   S P R G

                              
(65f) 

 
Proof. By considering the Lyapunov function  

u
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V u u u s s
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s u h

u u s


   
           

(66b)
 

and following the steps used in the proof of Theorem 1, 
one can easily be arrived at Corollary 1. The details of 
the derivation of Corollary 1 are, therefore, omitted. 
This finishes the proof of Corollary 1.    
 
Remark 2 It may be mentioned that a delay-dependent 
criterion for the stability of the system (1)-(4) with no 
parameter uncertainties and nonlinearities (i.e. 
   dA A 0  and ( ( )) ( )u uλ γ γ= ) is reported by Wu 

et al. [26, Theorem 1]. A close observation reveals that 
the approach presented in this paper may be considered 
as an extension of the criterion given in [26, Theorem 
1] for systems with variable time-lag to a model that 
includes, in addition, parameter uncertainties and 
quantization/overflow nonlinearities. 

Remark 3 Note that the conditions (8) and (64) are 
dependent in terms of ok  and qk . Hence, the presented 

approach may also be useful to determine the values of 

ok  and qk (i.e., to find different combinations of 

quantization and overflow) that is required to assure the 
stability of the considered system. 

Remark 4 By choosing the free matrices 1
2 1( )a a



R

L   

and 2
2 1

3

( )a a



R

L  considered in Lemma 1, the 

inequality (5) yields 
1

2

1
1 1

2 1
2 2

      
( ) ( ) ( )

      3

Tu a
T

s u a

a a s s
 

 

    
        

    


k kR
R

k R k

0

0
 

 
(67) 

which is identical to the Wirtinger-based inequality. 
Note that the inequality (5) of Lemma 1 is more relaxed 
than that of (67). In view of the above and from Remark 
6 of [6], it may be concluded that by employing Lemma 
1, one may achieve less conservative results than 
employing Wirtinger-based inequality [6, 34] and 
Jensen inequality [5] 

Remark 5 In the derivation of Theorem 1, six n n  
matrices Li (i = 1, 2, ..., 6) are introduced for obtaining 
less conservative results. However, One can reduce the 
number of decision variables by selecting the matrices 
Li (i = 1, 2, ..., 6) as diagonal matrices. 

Remark 6 The conditions proposed in this paper are 
LMI-based and can be easily tractable using LMI solver 
of MATLAB [37] along with YALMIP [39]. 

 
4 Numerical Examples 

The applicability of the proposed conditions is shown 
by the following numerical examples. 
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Example 1. Choose the system (1) - (4) with 
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A
             

(68a) 

0 1

0

0.1

 
   

 
H H ,  0 0.01   0 ,E  1 0   0.01E

        
(68b) 

and the nonlinearities belongs to the sector 
 [ , ] 0   1 ,o qk k  which comprises zeroing, saturation, 

magnitude truncation, a combination of zeroing and 
magnitude truncation, a combination of saturation and 
magnitude truncation, and so on. In [4-6], this example 
has been considered. Table 1 shows the upper lag limit 
(h2) for several given lower lag limits (h1). In Table 1, 
while showing the upper lag limit h2 using Theorem 1 
[5], it is assumed that the lower lag limit h1 is divided 
into m number of partitions such that 1h m  where 

integer  is partition size. From Table 1, it is also clear 
that the Theorem 1 provides less conservative results 
than the previous results [4-6]. 
 

Table 1.Upper lag limit h2 for different lower lag limit 
h1 for the system taken in Example 1. 
 
Methods/h1 2 6 8 12 

Theorem 1 [4] 8 8 10 13 

Theorem 1 [5] 8
( 2, =1)m   

9 
( 3, =2)m 

 

10 
( 4,  =2)m 

 

13 
( 6, =2)m   

Theorem 1 [6] 9 10 11 14 

Theorem 1  9 11 12 15 

 
 

 
Fig. 1. State trajectories of the system considered in 

Example 1. 
 

The state trajectories of the chosen system are depicted 
in Figure 1 where F0 = F1 = 1, 2 ( ) 9d u   and initial 
condition is selected randomly. Moreover, in Figure 1,

( )u 0 as u   implying the global asymptotic 
stability of the considered system.  

Example 2. Choose the system (63) together with  
0.8 0 0.1 0,0 0.91 0.1 0.1d            

A A
          

(69a) 

0 1

0

0.1

 
   

 
H H ,  0 0.01   0 ,E  1 0   0.01E

      
(69b)

 

and  [ , ] 0  1o qk k  . Using Corollary 1, it is verified that 

the system under consideration is GAS over the delay h 
= 18. 

 

 
Fig. 2. State trajectories of the system considered in 

Example 2. 
 

In Figure 2, the state trajectories of the present system 
are depicted where initial condition is assumed 
arbitrarily and F0 = F1 = 1. Further, in Figure 2, 

( )u 0  as u    which implies the global 

asymptotic stability of the present system. 

5 Conclusion  

This paper establishes delay-dependent LMI-based 
stability conditions for the discrete-time uncertain 
systems having combination of quantization and 
overflow nonlinearities and variable time-lags. The 
approach given in this paper, relative to previous 
approaches, helps in reducing conservativeness which 
in turn provides a larger stability region. Numerical 
examples are also given for proving the efficacy of the 
proposed conditions.  
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6 Future Scope  

The approach presented in this paper can be extended to 
derive stability criteria for a category of discrete-time 
systems involving external disturbances, in addition to 
nonlinearities and variable time-lags which require 
further investigation. The possible utilization of the 
present idea for studying the stability analysis of 
uncertain two-dimensional systems with nonlinearities 
and variable time-lags appears to be more practical and 
challenging problem for future work. 
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