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Abstract— Determining the lithium-ion batteries' state of 
health (SOH) is essential to making sure they run securely and 
last a long time. Due to restrictions in the hardware components, 
the current methods for estimating SOH on embedded systems 
only take into account one health indicator (HI) to represent 
either capacity or internal resistance (IR) behavior. However, 
neither capacity nor IR could be disregarded as they both offer 
useful battery health information. We thus provide the SOH 
estimate approach, which can express it using HIs that can be 
directly monitored in embedded systems with less complex 
composition, and can take into account both capacity 
degradation and IR expansion. The suggested approach, 
according to the data, decreases the infer-ence time by an 
average of 29.20% and increases estimation accuracy by at least 
47.59%. The suggested method's correctness and efficacy are 
demonstrated and confirmed through the use of many datasets in 
an actual embedded system. 

 

 

 

I. INTRODUCTION 

Nowadays, lithium-ion batteries are frequently employed as 
the primary power source in a variety of applications, 
including home appliances, electronics, and electric cars. 
[1].It is imperative to properly manage a battery to ensure 
both safety and longevity.With a battery management system 
(BMS), this is possible.One of the key functions of a BMS is 
the state-of-health (SOH) estimation, which provides 
valuable data to shield the battery from early failure and to 
increase its durability. [2].Precise SOH estimations can avert 
malfunctions that may arise from using a low-charge battery 
continuously.Numerous strategies have been put out to 
increase the accuracy of the SOH estimation.Certain 
researchers have employed model-based techniques, such the 
equivalent circuit model (ECM) and the electrochemical 
model.[3]–[5].Liuetal.[3] suggested an ECM based on 
internal resistance (IR) increase for SOH estimate. The 
simulated model's excellent accuracy is demonstrated by the 
result [3], however the accuracy of the battery model affects 
the model's performance.Eddahecharol.[4]calculated SOH 
utilizing the data in IR growth 

 

 

 

 

 

 

 

 

 

 

 

. IR is monitored using impedance spectroscopy. Although the 
model in [4] has high simulation accuracy, it is difficult to 
simulate impedance spectroscopy in embedded systems since 
it requires com-plex battery data analysis to represent the 
behavior of IR. To 
achieveSOHestimationinembeddedsystems,Vermaetal.[5] 
proposed a reduced-order ECM. The model in [5] has been 
implemented in an embedded system and the performance 
accuracy increases by 3% compared to the conventionalECM. 
Nonetheless, the ECM-based model is not able to accu- rately 
generalize for other types of batteries. That is, theECM-based 
models need to be redeveloped to characterizethe behavior of 
other types of batteries. 

To cope with the drawbacks of the above approaches, 
Chemali [6] used data-driven methods instead of using ECM 
to perform SOH estimation. The result shows that the model 
cancapturetheuncertaintiesofcapacitydegradationdueto the 
model’s adaptability to nonlinear systems. Although data-
driven methods have several advantages, challenges still exist 
in terms of algorithm design and computation time for 
embedded system applications. Qu et al. [7] utilized a deep 
learning technique to estimate SOH based on capacity degra- 
dation. This process is time consuming and has a high-power 
demand. Since calculating the battery capacity requires com- 
plex integration operations which is not suitable for real-time 
applications with embedded systems. 

Therefore, several researchers have proposed novel health 
indicators (HIs) as a substitute for battery capacity data to 
achieveimplementationforreal-timeapplicationswithembed- 
ded systems [8], [9]. Shen et al. [8] used the voltage, current, 
andchargingcapacitytoestimateSOH.DespitetheuseofHIs in 
[8], the algorithm still requires high memory and power of 
embeddedsystemsduetocomplexintegrationfromthecapac- 
itycalculation.ToreducecomplexityinextractingHI,Chaoui and 
Ibe-Ekeocha [9] used measurable battery data, such as 
voltage, charge/discharge currents, and ambient temperature 
variations as HIs to substitute capacity degradation. Although 
thesestudiesusedHIstoestimateSOH,theHIsareused to reflect 
the capacity degradation only which disregards the influence 
of IR growth. On the other hand, IR growth and 
capacitydegradationareequallyimportantfactorsforaccurate 
SOHestimation [10].Particularly,capacitydegradationrepre- 
sents battery aging which indicating when a battery should be 
replaced and IR growth provides the failure indication, thus 
neither of these could be neglected. Hence, we propose the 
SOH estimation method that considers both capacity degrada- 
tion and IR growth by representing it with HIs that can be 
directly measured in an embedded system with less complex 
computation. 

Thecontributionsofthisletterareasfollows. 
1) We utilized HIs that can be extracted without complex 

computation which enables real-time SOH estimation. 
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Fig.1.FlowchartoftheproposedSOHestimation. 
Fig.2. (a)HIsreflectingthecapacitydegradation.(b)HIsreflectinganincrease 
in IR. 

 

TABLEI 
SPECIFICATIONOFBATTERIESDATASETSANDTHECORRELATION 

COEFFICIENTSBETWEENHISANDIR/CAPACITY 

follows[13]: 
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2) To improve the SOH estimation accuracy, we utilized 

the relationship between capacity degradation and IR 
growth. 

 

 

II. SOHESTIMATIONMODEL 

The proposed SOH estimation is illustrated in Fig. 1. We 
utilized HIs that are directly measurable using embedded 
systemsapplications.TheHIsarefedtoarecurrentneu- ral 
network (RNN) that estimates both 1) SOH based on capacity 
degradation (SOHc); and 2) SOH based on an IR 
growth(SOHr).ToimprovetheSOHestimationaccuracy,the 
relationship between SOHc and SOHr was analyzed. 

 

A. ExtractionofHealthIndicators 

WeextractedHIsfromtwodifferentbatterydatasets: 
1) NASA[11]and2)BEXEL[12].BothNASAand 
BEXEL datasets are extracted from lithium-ion batteries. 
These datasets consist of the measured voltage, current, tem- 
perature,capacity,andIR.Measurementsareperformedduring 
charging under constant current constant voltage (CC+CV) 
profile and during constant current discharging. The charge– 
discharge profile of two battery datasets is listed in Table I. 
Specifically, the NASA dataset provides information of four 
cells: 1) cell#5; 2) cell#6; 3) cell#7; and 4) cell#18, whereas 
the BEXEL dataset provides the same for two cells: a) cell#7; 
andb)cell#13.ThesenumbersarecellIDsassignedbyNASA and 
BEXEL to identify the cells. 

ThemeasuredcapacityandIRdataarerequiredforestimat- ing 
the SOH, but the NASA dataset only provides IR data of 
cell#6andcell#7.Therefore,weonlyusedthesecellsfromthe 
NASA dataset. In the HIs extraction process, we divided the 
HIs into two categories: 1) HIs that reflect the capacity degra- 
dation; and 2) those that reflect the IR growth. To analyze the 
correlation between these HIs and the corresponding output, 
we used the Person correlation coefficient which is defined as 

where N is the number of observations, A is HIs, B is capacity 
or IR, μAand μBare the mean values of A and B, and σAand 
σBare the standard deviation of A and B. 

1) HIs Reflecting Capacity Degradation:In terms of SOH 
estimation, capacity degradation is the main factor because it 
indicatesthedegradationofbatteryhealth.Toreducethecom- 
putational complexity, capacity degradation is replaced with 
thefirstvoltagevalueinthedischargingprocess.Therelation- ship 
between the charging–discharging cycle with the: 1) first 
voltage value in the discharging process (HIC); and 2) capac- 
ity degradation is shown in Fig. 2(a). As shown in the figure, 
both the capacity and HICdegrade with an increasing num-ber 
of cycles. In addition to that, the correlation coefficients 
betweenHICandcapacitydegradationarepresentedinTableI. 
ItshowsthecorrelationcoefficientsbetweenHICandcapacity 
degradation are greater than 0.8 using the NASA dataset and 
even greater than 0.9 for the BEXEL dataset. Therefore, 
HICwas found to be capable of reflecting the capacity degrada- 
tion. Accordingly, HICis used to estimate the SOH based on 
capacity. 

2) HIs Reflecting Increase in Internal Resistance:The IR 
growth in a battery is also used as an indicator of battery 
health. To reduce the computational complexity, we replaced 
theIRwiththevaluethatcorrespondstothefirstvoltagevalue 
during the charging process (HIR). The HIRand the IR versus 
cycleareshowninFig.2(b).Asshowninthefigure,both IR and 
voltage increase with the number of cycles. That is,HIRof the 
first and last cycles is 3.462 and 3.478 V, respec- 
tively,andtheIRvalueofthefirstandlastcyclesis0.0418 ▲ and 
0.0478 value of the first and last cycles, respectively. In 
additiontothat,itscorrelationcoefficientisgreaterthan0.9for all 
datasets as shown in Table I. Therefore, HIRwas found to be 
capable of reflecting the IR increase. Accordingly, we used it 
to estimate SOH based on resistance. 

 

B. SOHEstimationFramework 

In existing approaches, the training process of SOH esti- 
mation is based on a single type of HI that either reflects 
capacity degradation or IR growth. However, capacity degra- 
dation and IRgrowth exhibit different behaviors, which might 
havedifferenteffectsonthebatterySOH.Therefore, itisonly 
reasonable to consider both factors. Accordingly, we proposea 
battery health estimation method considering both capac-ity 
and IR. The overall proposed SOH estimation frameworkis 
illustrated in Fig. 1. This framework starts with the col- 
lectionoftherawvoltageandcurrentdata.Preprocessing 
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techniques were used before initializing the feature extraction 
process; these include: 1) data cleansing; and 2) normaliza- 
tion. Data cleansing is the process of removing outliers in the 
datatopreventunderfittingandnormalizationistheprocessof 
scaling the data to values between 0 and 1. These techniques 
were performed offline and only in the training process. We 
computedatapreprocessingduringtraining.Then,precompute 
data preprocessing parameters are used during inference. 

After data preprocessing, the features of the HIs were 
extracted.Then,theHIswerefedtotheRNNtoestimate the SOH. 
Specifically, a long short-term memory (LSTM)was employed 
to estimate SOHc and SOHr. Moreover, we 
specifiedtheLSTMlayerwith50hiddenunits,followedby a fully 
connected layer of size 300 and a dropout probabilityof 0.5. 
The training epochs are set as 500 with mini-
batchesofsize50.Weusethemean-squarederrorasalossfunc- tion 
and the Adam optimizer as the optimization algorithm. These 
LSTM parameters are carefully tuned and determined by 
using cross-validation on the training data. Furthermore, in 
obtaining the SOH estimation model, data obtained from one 
battery cell (e.g., BEXEL cell #7: 492 measurement data) is 
used as a training set, and data obtained from another battery 
cell dataset (e.g., BEXEL cell #13: 438 measurement data) is 
used as a test set. This process was performed four times to 
have four test results. 

In this letter, SOHc is defined as the ratio of the initial bat- 
tery capacity and its rated capacity [14]. Accordingly, SOHcis 
100% for a new battery (battery capacity is equal to the 
nominal capacity) and 0% when the capacity degrades to 80% 
of the nominal capacity. SOHc is expressed as follows: 

 

 

Fig.3.Configurationoftheexperimentalplatform. 

 

 

Fig.4.SOHestimationresulton:(a)BEXELcell#7and(b)NASAcell#6. 

 

 

III. RESULTSANDDISCUSSION 

A. ExperimentalSetup 

The operation of the presented SOH estimation is evaluated 
using a proof-of-concept experimental setup. The experimen- 
tal setup is shown in Fig. 3. It includes a BMS board with 
LTC6803[15],LinduinoUnomicrocontrollerboard [15], 
acomputer,andtheBEXELbatterypack [12].TheBMS 

Cint−Ck LTC6803boardisusedtomeasurethefirstvoltagevaluein 

SOHc= 1− 
0.2×C 

 

Cint 

×100% (2) the charging and discharging process as HIRand HIC, respec- 
tively. Then, the Linduino Uno microcontroller transfers the 
HICandHIRtoacomputer.AcomputerwiththeInteli5- 

where Cint is the initial value of the battery capacity, and Ckis 
thecapacityatthecurrentcyclek.Ontheotherhand,SOHr is 
defined as the ratio of the increase in battery IR and the initial 
IR [14]. It is expressed as follows: 

6600 CPU 3.30 GHz is used to implement the real-time SOH 
estimation.Specifically,wecreateafunctiononSimulinkthat 
contains model weights and bias from trained LSTM. Then, 
we performed two scenarios: 1) the SOH estimation consid- 
ering only capacity degradation or only IR growth; and 2) the 

SOHr =1−
IREOL−IRk 

×100% (3) 

IRk−IRint 

SOH estimation considering both capacity degradation and IR 
growth. 

whereIRkistheIRatthecurrentcyclek,IRintistheIRof a new 
battery, and IREOLis the IR value at the end of life where the 
presumed end of life threshold is 1.33 times of the nominal IR 
[10]. 

We estimated the SOH based on both SOHc and SOHr. 
Specifically,wetreatedtheestimatedSOHasavariable with two 
components: 1) SOHc; and 2) SOHr. We hypoth- esized that 
both SOHc and SOHr have a significant effect on 
SOH.Therefore,neitherofthesecouldbeneglected.Tomodel the 
relationship between actual SOH, SOHc, and SOHr, we 
usedthenonlinearleast-squaremethodintheMATLABcurve- 
fittingtool.TheactualSOHismodeledusingasecond-degree 
polynomial surface function f(X,Y), which is expressed as 
follows: 

 

f(X,Y)=c1+c2X +c3Y−c4X
2−c5Y

2+c6XY (4) 

 

where X is SOHc,Y is SOHr,and cn, n = 1 , . . . ,6, are the 
coefficients of the model. 

B. ResultofSOHConsideringCapacityorIROnly 

A single type of HI is represented as SOHc and SOHr. The 
estimatedSOHcandSOHrwereobtainedbasedoncapac- ity 
degradation and IR increase, respectively. As shown inFig. 
4(a),SOHc can reflect the SOH from the 1st to the 200th 
charge cycle. After 200 cycles, the estimated SOHc differed 
considerably from that of the actual SOH. On the other hand, 
the estimated SOHr was considerably similar to that of the 
actual SOH. The gap between the estimated and the actual 
values of SOH indicates the different effects of capacity and 
IR on the actual SOH. This result shows that the SOH esti- 
mation method based on considering only either the capacity 
degradation or the IR growth is ineffective in reflecting the 
actual SOH. 

 

C. ResultofSOHConsideringCapacityandIR 

The proposed SOH estimation method considers both the 
estimated SOHc and SOHr. As depicted in Fig. 5(a), the 
estimatedSOHcandSOHrexhibitadirectrelationshipwith 
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multiplesimulationsofamodelinparallel.Ontheotherhand, 
theinferencetimeoftheproposedmethodwasreducedby an 
average of 29.20% even though more parameters are con- 
sidered since the HIs are measurable. Moreover, the result 
reveals that the proposed method not only improved estima- 
tion accuracy but also reduced the computational complexity 
in real-time SOH estimation. 

 

 

Fig.5. SOHestimationresultonBEXELcell#7:(a)directrelationshipbetween 
actual SOH, SOHr, SOHc; and (b) curve-fitting result. 

 

TABLEII 
ERRORSINRMSEATDIFFERENTDATASETS 

IV. CONCLUSION 
In light of the clear correlation between the SOH predicted using 
capacity degradation and IR expansion, this letter suggests a real-
time SOH estimation approach for embedded applications 
1) Reducing the computational complexity in real-time 
SOH estimation while taking into account the battery 
health

             1)reflectingthebatteryhealth;and2)reducingthecomputa- 
tional complexity in real-time SOH estimation. The proposed 
method was evaluated on an actual embedded system 
withtwoactualbatterydatasets,NASAandBEXELdatasets.The 

 resultsindicatethattheproposedmethodmoreaccuratethan 
 SOH estimation considering only capacity degradation or IR 

growth. 
 

 

TABLEIII 

COMPARISONOFTRAININGANDINFERENCETIME 

 
 

 

 

 

 

 

theactualSOH.Theresultofthebest-fitcurveisplotted 
inFig.5(b).Thisbest-fitSOHmodelwasapproximatedas a 
polynomial model, which is expressed as (4). The results in 
Fig. 4(a) and (b) reveal that SOH estimation is more accurate 
whenbothcapacitydegradationandIRgrowthareconsidered. 
Table II lists the estimation error obtained using our proposed 
method, [4], and [7]. In estimating the SOH, [4] considersonly 
IR growth while [7] considers only capacity degrada- tion. 
The estimation error is defined as the root-mean-square error 
(RMSE) between the actual SOH and the estimatedSOH. 
Moreover, we specify the ranges of actual and pre- 
dictedSOHisfrom0to1.Hence,RMSEof0.041and 

0.092 of the SOH estimations represents 4.1% and 9.2% esti- 
mation errors, respectively. Aside from the RMSE, Table II 
also lists the improvement in the accuracy of SOH estima-tion 
using the proposed method over [4] and [7]. Table II 
showsthattheaccuracyofSOHestimationusingtheproposed 
method has improved by up to 82.43% and 76.57% with 
BEXEL and NASA datasets, respectively. It reveals that the 
proposedmodelachievessubstantiallybetterperformancethan 
the other models based on single-type HIs. 

We also present the comparison of training and inference 
time which are shown in Table III. Simulink execution time 
blockwhichsubtractingthetimestampsforinputandout- put 
signals is used to obtain inference time. In training, the 
extraction of HIs is not considered. While during inference,the 
extraction of HIs must be considered for real-time SOH 
estimation. Although the proposed method has the longest 
trainingtime,thisisnottheadditionofthetrainingtimeforthe 
benchmarking method. This is because we train the proposed 

methodwithMATLABparallelcomputingtoolboxwhichruns 
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