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Abstract—Facial age progression has emerged as a critical
domain in computer vision, finding applications across various
fields including forensics and entertainment. This survey
thoroughly investigates the methodologies utilized in age
progression, encompassing both traditional and deep learning
approaches. Beginning with an examination of traditional
approaches, we delineate their strengths and limitations.
Subsequently, focusing on deep learning methodologies,
particularly generative adversarial networks (GANs), which
have significantly enhanced the accuracy and realism of age
progression. Additionally, addressing challenges associated
with age progression, including dataset biases, privacy
concerns, and ethical considerations, emphasizing the
imperative to mitigate these challenges for the responsible
deployment of age progression technologies. Finally, providing
an outlook on future directions, discussing emerging trends
such as novel data augmentation techniques, improved
interpretability of deep learning models, and considerations for
the societal implications of widespread age progression
applications.

Keywords—Age Progression, Image to Image Translation,
Generative Adversarial Networks

I. INTRODUCTION
Facial age progression, the process of synthetically

rendering an individual's face at different ages, has emerged
as a crucial area of research in computer vision and pattern
recognition, with far-reaching implications across various
domains. This technology holds significant potential in
fields such as forensics, biometrics, and human-computer
interaction, where the ability to accurately predict an
individual's facial appearance at different ages can prove
invaluable.

Facial age progression technology offers a plethora of
real-world applications and relevance across diverse fields
due to its capability to synthetically depict how an
individual's face may change over time. In law enforcement,
this technology serves as a crucial tool for identifying
missing persons or suspects, as well as aiding in their
recovery. By generating age-progressed images, law
enforcement agencies can provide updated representations
of individuals' potential appearances at different ages,
thereby enhancing the chances of locating and rescuing
missing persons or apprehending suspects who may have
altered their appearance over time. Furthermore, in forensic
investigations, facial age progression plays a pivotal role in
reconstructing facial features of suspects or victims based

on limited information, such as aged photographs or witness
descriptions. This aids investigators in generating leads and
narrowing down potential suspects, contributing valuable
insights to criminal cases.

Beyond law enforcement and forensics, facial age
progression technology finds applications in biometrics and
human-computer interaction. In biometrics, accurately
predicting an individual's facial appearance at different ages
enhances the effectiveness of facial recognition systems for
identification and authentication purposes. By accounting
for age-related changes in facial features, such as wrinkles,
sagging skin, and changes in facial structure, biometric
systems can maintain accuracy over time, ensuring reliable
identification across various age groups. Additionally, in
human-computer interaction, facial age progression
facilitates the development of age-aware technologies that
adapt to users' changing needs and preferences as they age.
This enables the creation of more personalized and intuitive
user interfaces in applications ranging from digital assistants
to virtual reality environments, enhancing user experience
and engagement.

Moreover, facial age progression technology holds
significant relevance in healthcare and aging research. By
accurately predicting facial aging trajectories, clinicians and
researchers can gain insights into the effects of aging on an
individual's health and well-being. This includes assessing
age-related changes in facial morphology associated with
certain medical conditions, monitoring disease progression,
and developing personalized interventions for age-related
health concerns. Additionally, facial age progression aids in
raising awareness about the importance of healthy aging and
preventive care by visually demonstrating the potential
effects of lifestyle choices, such as sun exposure, smoking,
and skincare routines, on facial aging.

Facial age progression is a challenging task due to the
complex and highly individualized nature of facial aging.
The process involves modeling intricate transformations in
facial features, textures, and shapes that occur as individuals
age. These changes are influenced by various factors,
including genetics, environmental conditions, and lifestyle
choices, making it difficult to capture the nuances of aging
accurately.

Researchers have explored various methods to tackle
facial age progression, each with its unique strengths and
limitations. The success of these methods heavily relies on

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 5 2024

PAGE NO: 164

kushi
Textbox

kushi
Textbox

kushi
Textbox

kushi
Textbox

kushi
Textbox



the availability of high-quality and diverse datasets. Several
publicly available datasets have been widely used in facial
age progression research. However, these datasets often
suffer from limitations, including biases in terms of age,
ethnicity, and demographic representation, posing
significant challenges for researchers in terms of data
collection and curation.

The rest of the research paper is structured as follows:
Section II provides an in-depth examination of the
state-of-the-art methodologies used in facial age
progression. It explores both feature-based techniques and
deep generative models, delving into their complexities.
Section III conducts a critical evaluation of the existing
datasets employed for training and validation, highlighting
their strengths, limitations, and potential biases.
Additionally, ethical considerations surrounding facial age
progression datasets are examined, emphasizing the
necessity of responsible deployment and the mitigation of
risks related to privacy and bias. Section IV centers on the
diverse evaluation methods available to assess the accuracy
of the algorithms discussed in the paper. Section V
concludes the whole paper while Section VI mentions the
current challenges faced in face age progression and
potential for future work.

II. METHODS AND APPROACHES

In the realm of facial age progression, two prominent
methodologies emerge: the traditional feature-based
approach and the deep learning approach, often powered by
Generative Adversarial Networks (GANs). These
methodologies embody distinct strategies for predicting how
a person's face evolves over time, each offering unique
advantages and applications. The feature-based method
entails the manual extraction and analysis of specific facial
features, such as wrinkles and contours, to estimate aging
effects based on statistical models and expert insights. In
contrast, the deep learning approach harnesses the power of
neural networks, particularly GANs, to autonomously
generate realistic aged facial images by learning from large
datasets. Fig. 1 illustrates examples of age-progressed
images generated using cGAN.

Fig. 1. Face Age Progression

A. Features Based approach
Features based approaches rely on established methods

that have been foundational in understanding how a person's
face changes with time. These methods often involve the
manual or semi-automated analysis of specific facial
features, such as wrinkles, skin texture, and facial contours,
that are known to undergo alterations with age.
Feature-based methods, for instance, extract key landmarks
and descriptors from facial images to quantify aging-related
changes statistically. They may employ techniques like

linear regression or principal component analysis to model
the relationship between these features and age labels,
providing insights into the aging process. Additionally,
template-based methods utilize age-labeled facial images as
references for generating aged versions of new faces. By
aligning facial features between templates and target
images, these methods deform the facial structure to reflect
typical aging patterns observed in the templates.

I. Kemelmacher-Shlizerman [1] introduced an
innovative, fully automated method for facial age
progression, specifically focusing on the challenge of aging
young children. This methodology presents a
comprehensive approach to automatically progressing facial
images across different age ranges. It initiates with the
assembly of a substantial dataset covering ages ranging
from infancy to adulthood, sourced from diverse online
platforms. Leveraging this dataset, the approach involves
the creation of aligned and relightable average images for
each age group, facilitating the incorporation of realistic
shading effects. To generate relightable average images,
techniques such as singular value decomposition (SVD)
applied to flow-aligned images and the computation of
rank-4 approximations are employed. Optical flow
methodologies are then utilized to estimate the flow
between different age clusters, enabling the computation of
age transformations. Additionally, the methodology
incorporates algorithms for adjusting aspect ratios and
varying skin tones. Because the algorithm's performance
heavily depends on the quality and diversity of the training
dataset, without sufficient representation across
demographics, ethnicities, and facial features the algorithm
may struggle to accurately capture age progression for
different groups.

X. Shu [2] introduces a novel approach consisting of
offline training and online synthesis phases. Short-term
aging pairs are collected from various databases to create
aging dictionaries covering diverse aging characteristics. A
personality-aware coupled dictionary learning model is
developed, considering individualized details like
birthmarks and scars. Principal Component Analysis (PCA)
reduces data dimensionality. In the online synthesis phase,
aging faces are rendered iteratively in successive age
groups. Sparse coefficients and personalized layers are
updated iteratively for optimal aging results, reflecting a
short-term coupled learning approach due to limited
long-term aging data. The process involves iterative updates
until convergence, aiming for consistency with the training
phase and producing personalized and natural-looking aging
faces through data-driven learning and iterative optimization
techniques.

X. Shu [3] presents notable improvements over prior
work by addressing the practical challenge of obtaining
long-term aging sequences. It achieves this by utilizing
dense short-term aging pairs, enhancing the method's
applicability for real-world scenarios. The introduction of a
bi-level dictionary learning approach, incorporating
personalized layers, enhances the capture of
individual-specific aging characteristics, resulting in more
realistic and personalized aging faces. Furthermore,
optimizations in the age progression synthesis process
reduce computational complexity, leading to faster
convergence and requiring fewer iterations for generating
aging faces. Collectively, these enhancements enhance the
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accuracy, realism, and efficiency of the age progression
method, making it suitable for various applications in facial
aging analysis and synthesis.

The approach presented by Shintaro [4] is for altering
facial age in videos while accounting for changes in facial
expressions. The methodology primarily focuses on
synthesizing aging facial videos while considering the
temporal dynamics of wrinkles induced by facial
expressions. Initially, the process involves aligning facial
expressions between the target video and a database of
videos exhibiting similar expressions. This alignment is
facilitated using local binary patterns (LBPs) as descriptors
for facial expressions, complemented by dynamic time
warping (DTW) to ensure temporal coherence.
Subsequently, each frame of the database undergoes
deformation to match the shape of the corresponding frame
in the target video, employing radial basis functions (RBF)
interpolation. Additionally, the methodology encompasses
the synthesis of an aged video by blending textures from
chosen individuals in the database, taking into account
attributes like color and wrinkles. The preservation of
wrinkles emerges as a critical aspect, entailing the
identification of optimal facial regions and the blending of
expressions and neutral faces to uphold natural wrinkle
depth.

Riaz [5] outlines their methodology for constructing and
simulating gender-specific 3D aging models. Initially, they
convert 2D images from various datasets into 3D
frontal-face models, which serve as the basis for creating
aging spaces for both shape and texture. The construction of
the 3D aging models involves mapping 2D images to 3D
face models using facial landmarks and active shape
modeling techniques. Principal Component Analysis (PCA)
is separately applied to male and female 3D faces with
available age labels to construct shape and texture models.
Interpolation methods are utilized to address missing data in
the aging patterns. Aging simulation entails fitting input
images to the shape aging space and generating
corresponding texture patterns. Subsequently, color and
flare correction techniques are applied to ensure consistency
between the simulated images and the original background.
Finally, the age-simulated images are composited onto the
original backgrounds using landmark points and an
edge-smoothing algorithm to achieve realistic integration.

Elmahmudi [6] proposes an approach that relies on
ethnicity-based face templates constructed from age, gender,
color, and texture characteristics extracted from faces of
principal ethnic groups. The system consists of two main
components: firstly, a mathematical method for constructing
ethnicity-specific aging templates using average faces; and
secondly, the application of these templates to target faces
for age generation, incorporating control parameters for
color and texture. Additionally, a framework for verifying
the accuracy of generated faces through similarity
comparison using Convolutional Neural Networks (CNNs)
is proposed. Data collection involved multiple phases,
including the gathering of images from diverse sources and
their normalization to a reference frame. The methodology
encompasses techniques for facial landmark detection,
template generation, wrinkle mapping, and labeling. Age
progression or regression is achieved through image
morphing and cross-dissolving, with parameters controlling
shape and color fidelity.

While traditional approaches have offered valuable
insights into facial aging dynamics, they often rely on
simplifications and may struggle to capture the full
complexity of age-related changes. As a result,
contemporary methods, particularly those based on machine
learning and deep learning, have emerged to address these
limitations and enhance the accuracy and realism of facial
age progression models.

B. Generative Adversarial Networks
In contrast to feature-based approaches, GANs [7] have

emerged as a powerful alternative in the realm of face age
progression. GANs leverage the concept of adversarial
training, where two neural networks, namely the generator
and the discriminator, are pitted against each other in a
competitive manner. In the context of face age progression,
the generator network is tasked with synthesizing realistic
images of faces at different ages, while the discriminator
network aims to distinguish between real and generated
images. In simpler terms, they engage in a min max game.
Explained further using equation (1).

𝑚𝑖𝑛 𝐺 𝑚𝑎𝑥 𝐷 𝑉 𝐷, 𝐺( )  =  𝐸
𝑥~𝑃𝑑𝑎𝑡𝑎 𝑥( )

𝑙𝑜𝑔 𝐷 𝑥( )[ ] +  

(1)𝐸
𝑧~𝑃𝑧 𝑧( )

𝑙𝑜𝑔 1 −  𝐷 𝐺 𝑧( )( )( )[ ]

The Generator takes random noise samples from a𝐺 𝑧
prior distribution and transforms them into data𝑝𝑧 𝑧( )
samples , where θg represents the parameters of𝐺 𝑧;  θ𝑔( )
the generator. Essentially, maps the noise space to𝐺 𝑧;  θ𝑔( )
the data space, generating synthetic data that ideally mimics
the distribution of real data.

The Discriminator evaluates data samples and𝐷 𝑥
assigns a probability representing the likelihood𝐷 𝑥;  θ𝑑( )
that the sample came from the real data distribution rather
than from the generator's distribution. It's represented as a
function , where denotes the parameters of the𝐷 𝑥;  θ𝑑( ) θ𝑑
discriminator.

In the training process, the discriminator is trained to
maximize the probability of correctly labeling both real data
samples and generated samples. This is captured by the term

in the equation, where represents the𝑙𝑜𝑔 𝐷 𝑥( )[ ] 𝐷 𝑥( )
probability assigned by the discriminator to real data
samples. The goal is for to approach 1 for real data.𝐷 𝑥( )

Simultaneously, the generator is trained to minimize the
discriminator's ability to correctly classify its generated
samples as fake. This is achieved by minimizing the log
probability of the discriminator outputting 1 when given
generated data. This objective is represented by the term

, where represents the generated𝑙𝑜𝑔 1 −  𝐷 𝐺 𝑧( )( )( )[ ] 𝐺 𝑧( )
data and represents the probability assigned by the𝐷 𝐺 𝑧( )( )
discriminator to generated samples. The generator aims to
make approach 0, indicating that the discriminator𝐷 𝐺 𝑧( )( )
is unable to distinguish between real and generated data
effectively. This adversarial process drives both networks to
improve iteratively until an equilibrium is reached, ideally
resulting in the generator producing high-quality synthetic
data samples.

The Conditional Adversarial Autoencoder (CAAE)
network, introduced in Paper [8], Unlike traditional GANs
which often suffer from instability and produce noisy
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outputs, integrates an encoder, generator, and discriminators
to effectively learn a manifold of facial features. This
manifold facilitates smooth transitions in age while
preserving unique individual characteristics. By converting
input facial images into feature vectors using the encoder,
and then combining them with age labels for guidance
during generation by the generator, the CAAE ensures
accurate and personalized image synthesis. Furthermore, the
objective function of the CAAE balances several factors,
including reconstruction accuracy, distribution regularity,
and image realism, to optimize the quality of the generated
images. What distinguishes the CAAE from other
generative models, such as Variational Autoencoders
(VAEs) [9] and Adversarial Autoencoders (AAEs) [10], is
its innovative use of discriminators on both the encoder and
generator. This unique approach sets the CAAE apart,
making it a promising upgrade over traditional GANs.

G. Antipov [11] introduces two significant contributions:
Age-cGAN, an iteration of GANs tailored to craft
impeccable synthetic images categorized by age, and an
innovative method for optimizing latent vectors to uphold
the distinct identity of the original person during facial
reconstruction. The proposed approach to facial aging
unfolds in a methodical two-step process: initially
approximating the latent vector, followed by optimization.
The intricacies of Age-cGAN are detail\\ed, showcasing its
adept use of conditional data to generate images falling
within predefined age brackets. Additionally, the technique
for approximating facial reconstruction places a strong
emphasis on preserving identity, effectively mitigating
issues like blurriness and irrelevant details.

X. Tang [12] introduces Identity-Preserved Conditional
Generative Adversarial Networks (IPCGANs) for facial
aging. It proposes a method to divide facial images into age
groups and generate lifelike faces within specific age ranges
while maintaining the original identity. IPCGANs consist of
three essential components: CGANs for realistic face
synthesis, an Identity-Preserved module to retain identity
features, and an age classifier to ensure the generated faces
match the desired age group. The CGANs module employs
Conditional Least Squares Generative Adversarial Networks
(LSGANs) to produce high-quality images, while the
Identity-Preserved module utilizes perceptual loss to
safeguard identity characteristics. Additionally, an age
classification module is incorporated to enforce age
coherence in the generated faces. The combined objective
function integrates adversarial loss, identity preservation
loss, and age classification loss. The network architecture
comprises a generator, discriminator, and age classification
network, each customized for its specific role. The generator
employs residual blocks and integrates age conditions
before the initial convolution layer, while the discriminator's
architecture draws inspiration from invertible conditional
GANs, incorporating condition injection after the first
convolution layer. Lastly, the age classification network,
based on AlexNet [13], is enhanced with fully connected
layers and dropout to prevent overfitting.

H. Yang [14] combines GANs, age-specific feature
extraction, and identity preservation techniques. The
framework involves a generator network, encoder-decoder
architecture, and discriminator network. Identity
preservation is addressed by measuring the input-output
distance in a feature space sensitive to identity changes. The

loss function comprises adversarial loss, pixel-wise loss for
color aberration, and identity loss, with weighting factors
regulating their contributions.

Y. Liu [15] introduces a framework based on GANs to
tackle the challenge of learning age-specific transformations
in unpaired face image datasets. This framework consists of
a generator network and a discriminator based on wavelet
analysis. The generator is designed to incorporate both
low-level image details and high-level semantic facial
attributes, aiming to stabilize the translation process
between young and aged faces. To capture age-related
textures effectively, the model utilizes wavelet packet
transform, enabling multi-scale texture analysis while
keeping computational demands low. The training process
involves minimizing adversarial loss, pixel loss to maintain
image-level consistency, and identity loss to preserve
personalized facial features.

The S2GAN framework introduced by Z. He [16] is a
novel approach to face aging by incorporating personalized
aging factors and age-specific transformations. It comprises
three main components: establishing personalized aging
bases using a deep encoder, transforming these bases into
age representations for different age groups, and decoding
these representations to generate aged faces. Unlike
traditional GANs, S2GAN optimizes the model with three
objectives: age group classification loss, L1 reconstruction
loss for identity preservation, and adversarial loss for
fidelity. The age-specific transforms, shared across
individuals but distinct for different ages, enable continuous
aging interpolations, providing more natural and practical
results compared to methods with discrete age groups.
Furthermore, S2GAN offers lower computational cost and
storage requirements by utilizing a single model for all
target ages and sharing the personalized basis across ages,
making it more efficient and scalable for face aging tasks.

The approach by M. Sheng [17] aims to improve the
precision of face aging through the utilization of a
conditional GAN under the supervision of Ranking-CNN. It
categorizes facial images into five distinct age groups and
employs a combination of a generator, discriminator,
pretrained Alexnet network [13], and Ranking-CNN within
its framework. Diverging from conventional GANs, this
technique integrates a perceptual loss mechanism to uphold
identity preservation and integrates Ranking-CNN to
enforce more rigorous age constraints on the generator.
Additionally, it adopts conditional Least Squares GAN
(LSGAN) [18] for adversarial loss implementation to ensure
consistent and high-quality image synthesis.

Shi [18] introduces The CAN-GAN framework. At its
core lies the Conditional Attention Normalization (CAN)
which is integrated into both the generator and discriminator
units. Unlike conventional approaches, CAN utilizes age
disparities instead of age labels for normalization, thereby
adeptly capturing age-related facial characteristics while
diminishing irrelevant ones. Furthermore, the model
integrates the Conditional Age Attribute Classifier (CAAC)
to assess the significance of individual facial attributes in
age determination, thereby enhancing accuracy. The model's
objective function merges adversarial loss, reconstruction
loss, and age classification loss to effectively train the
CAN-GAN model.
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Sharma [19] introduces an integrated approach
Leveraging techniques such as CycleGAN for age
progression and Enhanced Super-Resolution GAN
(ESRGAN) for image enhancement. The method aims to
transform input face images into aged versions while
preserving original features and improving image quality.
By incorporating advancements like age-conditional GANs,
progressive GANs, and cGANs, the model ensures better
resolution and guidance in data generation. Although
requiring substantial computational resources for training,
This integration of face age progression and
super-resolution techniques offers a promising solution to
generating high-quality aged face images.

The progressive face aging framework proposed by
Zhizhong [20] diverges from traditional GANs by
concentrating specifically on capturing the aging dynamics
of facial images. While conventional GANs typically
generate images from random noise, this framework
redefines the aging process through a progressive neural
network structure composed of multiple sub-networks.
These sub-networks specialize in learning the aging effects
between neighboring age groups, facilitating controlled and
lifelike age transitions. Through the integration of residual
skip connections and binary gates, the framework
effectively preserves facial identity and mitigates overfitting
issues during the aging process. Moreover, by training the
model end-to-end, it addresses cumulative error concerns,

TABLE I
Summary of Age Progression Algorithms and Methods

Paper Title ML Model Dataset Parameters Results Comments
Personalized Age Progression
with Aging Dictionary - 2015
[2]

PCA CACD,
MORPH,
FGNET

Comparison to
ground truth

Out of 12,300 visual comparisons done by 50 people
45.35% preferred this model, 36.45 preferred the
prior works, while 18.20% found them comparable.

One of the earliest
methodologies provided
for age progression

Personalized Age Progression
with Bi-Level Aging
Dictionary Learning - 2018 [3]

PCA CACD,
MORPH

Comparison to
ground truth

Out of 13,050 visual comparisons done by 50 people
36.5% preferred BDL-PAP, 34.8% preferred
CDL-PAP, 26.7% preferred prior works and 2.0%
were not satisfied.

BDL-PAP is more time
efficient than CDL-PAP.

A framework for facial age
progression and regression
using exemplar face templates -
2021 [6]

CNN, GAN FEI, MORPH
II

CNN Face
recognition

Similarity value of higher than 70% on the FEI
dataset.

Ethnicity-based age
progression method
validated by CNN

Age Progression/Regression by
Conditional Adversarial
Autoencoder - 2017 [8]

CAAE MORPH,
CACD

Comparison to
ground truth

Out of 1508 votes from 47 people 52.77% preferred
CAAE, 28.99% preferred prior works and 18.24%
thought they were equal.

Introduced Conditional
Adversarial Autoencoder
(CAAE) and integrated
encoder in GAN

Face aging with conditional
generative adversarial networks
- 2017 [11]

CGAN AGE-eGAN Identity-Preservi
ng Face
Reconstruction
and Aging

After Face reconstruction, The software ‘OpenFace’
gave these scores After Initial Reconstruction 53.2%,
Pixelwise Optimization 59.8%, Identity-Preserving
Optimization 82.9%.

GAN iteration for
generating high-quality
synthetic images

Face Aging with
Identity-Preserved Conditional
Generative Adversarial
Networks - 2018 [12]

IPCGAN CACD Face Verification After conducting face verification testing,
CAAE scored 91.53%, acGAN scored 85.83%,
IPCGAN scored 96.90%.

Integrated CGANs with
an Identity-Preserved
module and an age
classifier

Attribute-Aware Face Aging
With Wavelet-Based
Generative Adversarial
Networks - 2019 [15]

GAN MORPH,
CACD

Face Verification On the MORPH dataset, the face verification score
for CAAE was 11.77%, GLCA-GAN was 95.39%,
PAG-GAN was 97.33%, Proposed model 99.42%.

Utilized wavelet analysis
in the discriminator to
stabilize translation

S2GAN: Share Aging Factors
Across Ages and Share Aging
Trends Among Individuals -
2019 [16]

S2GAN MORPH,
CACD

Aging Accuracy On the MORPH dataset, Aging accuracy score for
CAAE was 47.38%, IPCGAN was 64.42%,
Proposed S2GAN was 93.0%.

Optimized with
classification,
reconstruction, and
adversarial losses

Face Aging with Conditional
Generative Adversarial
Network Guided by
Ranking-CNN - 2020 [17]

Ranking-C
NN, GAN

CACD Aging Accuracy On the CACD dataset, Aging accuracy score for
CAAE was 27.01%, IPCGAN was 47.98%,
Proposed model was 52.08%.

Implemented Conditional
GAN supervised by
Ranking-CNN

CAN-GAN:
Conditioned-attention
normalized GAN for face age
synthesis - 2020 [18]

CAN-GAN,
CAAC

CACD,
MORPH,
FGNET

Face Verification On the MORPH dataset, the face verification score
for GLCA-GAN 95.39%, Yang et al. 97.00%,
WaveletGLCA-GAN 99.80%, CAN-GAN 99.99%

Used CAN for age-based
normalization and CAAC
to improve age
determination accuracy

An Improved Technique for
Face Age Progression and
Enhanced Super-Resolution
with Generative Adversarial
Networks - 2020 [19]

Cycle-GAN
, ESRGAN

IMDB-WIKI,
CACD,
UTKFace,
FGNET,
CELEB-A

Age Estimation On the IMDB-WIKI dataset, FACE++ software
estimates the average age of the synthesized images
as 30.2 for the age group 19 - 35. average age of
36.5 for age group 35 - 60 and average age of 61.7
for age group 60 and above

Combined CycleGAN for
age progression and
ESRGAN for image
enhancement

PFA-GAN: Progressive Face
Aging With Generative
Adversarial Network - 2021
[20]

PFA-GAN MORPH,
CACD

Face Verification On the MORPH dataset, FACE++ is used for Face
Verification PFA-GAN 99.70%, CAAE 44.02%,
IPCGAN 99.21%, WGLC-CAN 99.27%.

Introduced multiple
sub-networks to capture
aging dynamics, preserve
facial identity, and
mitigate overfitting

Face aging using global and
pyramid generative adversarial
networks - 2021 [23]

GAN UTKFace,
CACD

Age
Classification

The age classification accuracy for GFA-GAN is
27.45%, for PFA-GAN it is 39.72%, for CAAE it is
17.64%, and for IPCGANs it is 17.88%.

Introduced weight
sharing in GFA-GAN and
pyramid weight sharing
in PFA-GAN
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ensuring robust age progression across various age groups
and conditions, a distinct feature from the separate training
paradigm of traditional GANs.

H. Tang [21] proposes Attention-Guided Generation
Scheme I and Scheme II. In Scheme I, attention-guided
generators G and F are employed to learn mappings between
image domains X and Y. Here, attention masks are
generated to selectively adjust foreground content while
preserving background elements. However, Scheme I
encounters challenges with complex tasks due to its reliance
on a single attention and content mask generation process.
To overcome these limitations, Scheme II introduces distinct
sub-networks for generating attention and content masks,
enabling more adaptable learning and translation of both
foreground and background content. Moreover,
attention-guided discriminators are proposed to emphasize
discriminative content and enhance translation quality. Both
schemes incorporate cycle-consistency loss [22] and
supplementary regularization methods to effectively
optimize the translation process.

The methodology proposed by Pantraki [23] treats age
progression as an unsupervised task of translating images
across different age groups, employing the UNIT network
[24] for this purpose. Each age group is represented through
three key components: an encoder, a decoder/generator, and
a discriminator. In GFA-GAN, weight sharing is introduced
using a combination of encoders and generators, capturing
both localized and global features. PFA-GAN builds upon
this approach by introducing a pyramid weight sharing
mechanism to emulate the gradual aging process.
Throughout the training process, the framework aims to
minimize various losses such as cycle consistency and total
variation, ensuring faithful translations between diverse age
groups.

Table I presents a comprehensive summary of the
algorithms employed in facial age progression research,
along with the datasets utilized to train and evaluate these
algorithms. Each algorithm is meticulously analyzed in
terms of its year of publication, the specific dataset
employed, and any noteworthy features or contributions.

III. DATASET

Collecting a comprehensive dataset relevant to facial
aging is a challenging task, necessitating careful
consideration of various factors. One of the critical criteria
in the data collection process is ensuring diversity in age
representation among subjects. This ensures that the dataset
covers a broad spectrum of aging patterns, facilitating the
development of robust facial aging models. However, while
sequential images of the same individual at different ages
are often preferred, certain methodologies in facial aging
research can effectively discern aging patterns without this
requirement.

The success of Generative Adversarial Networks (GANs)
in producing realistic facial aging progression hinges on the
diversity and quality of the training dataset, crucial for
capturing the nuanced complexities of aging with accuracy.
The various datasets commonly used in research related to
facial age progression and related fields vary in terms of
size, subject type, labeling criteria, and distribution of
images across age groups. Several datasets focus on
celebrity faces, such as CACD [26], IMDB-WIKI [27], and

CelebA [28], with large numbers of images spanning
different age categories. Other datasets, like FFHQ [30],
UTKFace [8], VGG Face 2 [34], Morph [29], AgeDB [35]
are collected from general populations, encompassing a
range of ages and genders. The labeling criteria
predominantly include age and gender, although some
datasets also include additional attributes such as race.
While most datasets exhibit non-monotone distributions
across age groups, indicating a varied representation of
ages, some datasets, like FGNET [31] and Olivetti [33],
feature monotone distributions primarily focused on specific
age ranges. Additionally, there are datasets like
WebFace260M [32], WebFace42M [32], DigiFace1M [36],
MegaFace1M [37] that provide extensive collections of
facial images without specific labels, catering to various
research needs.

Ethical concerns surrounding facial aging datasets,
especially those containing images of children, are
paramount. While these datasets offer valuable insights,
they raise significant privacy and consent issues. Mitigating
these concerns is essential to ensure responsible research
practices, often prompting the exploration of alternative
methods like generating synthetic images. One notable
paper addressing this challenge is ChildGAN [25]. It
introduces a novel method for generating synthetic images
of children that closely resemble real faces while avoiding
the need to use actual images of minors.

The methodology proposed in the aforementioned paper
comprises three main phases: firstly, gathering synthetic
data for initializing training datasets; secondly, separately
training ChildGAN models tailored for boys and girls using
StyleGAN2; and finally, employing techniques for editing
the latent space to modify facial attributes. Synthetic data
from diverse origins undergoes a rigorous filtering process
and is categorized into two distinct classes. ChildGAN,
constructed upon StyleGAN2, undergoes training via
transfer learning to generate high-fidelity facial images of
children. The manipulation of facial attributes, such as
expressions and lighting conditions, is facilitated through
latent space editing. This approach seamlessly combines
sophisticated deep learning techniques with meticulous data
curation to create lifelike synthetic facial images of children.

IV. CONCLUSION

In conclusion, facial age progression research represents
a dynamic and evolving field at the intersection of computer
vision, machine learning, and ethics. The methodologies
discussed, ranging from traditional feature-based
approaches to advanced deep learning techniques utilizing
Generative Adversarial Networks (GANs), underscore the
complexity and diversity of strategies employed to predict
facial aging accurately. While each approach offers distinct
advantages and contributions, the success of these methods
critically hinges on the quality and diversity of datasets
utilized for training and evaluation. Ethical considerations
surrounding data collection, particularly concerning the
inclusion of images of children, necessitate careful
navigation to ensure privacy protection and mitigate
potential harms. Moreover, the comprehensive overview of
publicly available datasets provided herein underscores the
foundational importance of diverse and well-annotated data
repositories in advancing facial age progression research.
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Moving forward, continued interdisciplinary collaboration
and ethical awareness will be paramount in harnessing the
full potential of facial age progression technologies for
societal benefit while addressing associated ethical
concerns.

V. CHALLENGES AND FUTURE WORK

Challenges and future directions in the domain of facial
age progression (FAP) encompass several critical aspects
that researchers are actively addressing. One significant
challenge lies in achieving a balance between visual fidelity,
aging accuracy, and identity preservation in synthesized
images. While advancements have been made in improving
these aspects individually, achieving optimal results across
all dimensions simultaneously remains a complex task.
Future research efforts can be focused on developing novel
algorithms and techniques that strike a harmonious balance
between these competing objectives.

Another challenge in facial age progression is the
availability and quality of training data. Current datasets
often suffer from biases, such as underrepresentation of
certain age groups or ethnicities, which can impact the
performance and generalization capabilities of facial age
progression models. Addressing these biases and curating
more diverse and comprehensive datasets will be crucial for
improving the robustness and reliability of facial age
progression systems.

Ethical considerations also pose significant challenges in
the development and deployment of facial age progression
technology. Concerns related to privacy, consent, and
potential misuse of synthesized images underscore the need
for robust ethical frameworks and guidelines. Future
research will need to explore ethical implications in greater
depth and develop mechanisms to ensure responsible use of
facial age progression technology.

Furthermore, scalability and computational efficiency are
ongoing challenges in facial age progression, particularly as
the demand for real-time or large-scale age progression
applications grows. Optimizing algorithms for faster
inference and reducing computational resource requirements
will be essential for practical deployment in various
domains, including law enforcement, entertainment, and
healthcare.

Looking ahead, future work in facial age progression will
likely focus on exploring new avenues such as generative
models with improved interpretability, incorporating domain
knowledge from related fields like psychology and
gerontology, and leveraging emerging technologies such as
augmented reality (AR) and virtual reality (VR) for more
immersive and interactive age progression experiences. By
addressing these challenges and pursuing innovative
research directions, the field of facial age progression holds
tremendous potential for transformative advancements with
far-reaching societal impacts.
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