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Abstract

This work explores a robust method for calculating the exponential of
a 2x2 matrix without resorting to diagonalization. This approach signifi-
cantly simplifies complex matrix operations.

We first present our previously known and published result, which is
a single formula for calculating the nth power of any 2x2 matrix, whether
it is diagonalizable or not, whether it has two distinct eigenvalues or not,
and whether these eigenvalues are real or not.

Finally, as we did for the powers of a 2x2 matrix, we announce and
prove our new formula, which gives the exponential of any 2x2 matrix.
That is to say, a single formula for calculating the exponential of any 2x2
matrix, whether it is diagonalizable or not, whether it has two distinct
eigenvalues or not, and whether these eigenvalues are real or not.

Keywords: Power of a matrix; Exponential of a matrix; Eigenvalues.

1 Introduction:

In our two previous articles [1] and [2], which deal with 2x2 matrices, we obtained
a new formula for the nth powers of this type of matrix.

n—1 i 1—k n—2 1 -k n—1 5 -k
n—1— n—1— n—1—k
a . ajag — >y b ajay
A" = k=0 1 k=0 k=0 L
nz_: kon—1—k z": ko on—k ”z_: b on—1—k
c o oy o o a fa%a%
k=0 k=0 k=0

This original formula was more general than those previously announced,
such as those by Kenneth S. Williams (see [3]) in 1992

An_{ o (,1:%1>+/3n (z%*_ﬂ:f) if a # 3
" t(nA—(n—1)al) ifa=p
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or even in the article [4]. This novelty was summarized in a single formula for
the nth power of any 2x2 matrix, whether diagonalizable or not, whether it has
two distinct eigenvalues or not, and whether these eigenvalues are real or not.

Furthermore, in the article [8], the authors seek to determine other combi-
natorial identities derived from the nth power of a 2x2 matrix. But the real
problem for mathematicians, and even computer scientists, is determining the
exponential of a matrix (see [5], [6], [7], [12]), as this problem frequently arises,
particularly in systems of differential equations of the type X (t)’ = AX(t) (see
9], [10], [11]).

Here, we present, for the first time, a single formula (for all uses) for the
exponential of any 2x2 matrix.

These results can be applied to fields such as recurrence relations, differential
equations, dynamical systems, and computer algorithms, where powers of small
matrices frequently appear.

2 The power of any (diagonalizable or non-diagonalizable)
matrix of order 2:

b .
Theorem 1 Let A = ( CCL d ) a 2X2 matriz, so¥n >2 (n € IN)
n—1 ko & & n—1 &
o' afay ik - abtiag - by ooyl
A" = k=0 L
c Z a an 1—k zn: akanfk o anz_: Oék;anflfk
1 = 109 = 1%

with ay and s solutions of |A — al| = 0.

Proof. We will demonstrate our formula using recurrence.
(1) For n = 2, we will show that we actually have

2 a?+bc b(a+d)
o cla+d) d?+bc
2 ( azllc Oa’fa%_k—alag ) bzk Oa1a2 . >
Czk 0a1a2 2 k=0 alfag azkzo atay”

we must therefore show the following 4 equalities
a? + bc = azll€ o agh — a1a2

d® + be = Zizo bz —aY,_jatay™
blatd)=bY,_akay™”
cla+d)=cSi_gakal

what does it mean

a?+bc=a(ag+ar) —aras

d? +bc= a3+ ajaz +af —a(az + 1)
bla+d)=b(as+ ay)

cla+d)=clag+ a)
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ay and «y solutions of |A — al| =0, so

art+ay=Tr(A)=a+d
aran = |A| = ad — be

So

a(ay +ai) —ajas = a(a+d) — (ad — be) = a® + ad — ad + be = a® + be

2tojaz+ai—alaz+ar) = (g + )’ —araz—a(ay + ay) = (a+d)* —
(ad — bc) — a(a+d) = d? + be

b(ag +a1) =b(a+d)

clag+aq) =c(a+d)

hence the result is true for n = 2.

(7i) Let’s suppose

n—1 n—1

Zalanlk ZakJrlnlk bzalanlk
A" =
n n—1
cZalanlk S abay™* —aZalanlk
(i4i) Let us show that -
An+1 — An.A
n n
ay afay™" Z ay oyt b Z ajay”
AnJrl — k=0 k=0
n+1 ntl—k n b n—
CZala Z ala a ) ofoy
k=0

We have A”+1 A" A = . . .
n— — +1 n—l n—l
<a2k 00‘1 2 Zk 0%1 bZ k>A
—1— n—1—
CZk 0 a1a2

Zk oal% _G’Zk 0041042
AnJrl — ( Ty )
z t

x—aQZn_ l—k_a k 0 k+1 n 1— k+ bz g—l—k
y="ba),_ Oo/{a;’ Y. galfH 5T k+dek Oa’fag o
z=acy ,_ Oo/f D Oa’fagk cazkooz1 ap 1k
t=bed> Oa’fa; R ayr kel —da Oa’fag 1=k

z = (a? +cb)zk0a’fa§”1k Zkoo/f"'l"lk

_ n—1 kL n-1-k _ k1 ,n—1-k
y—b[(a—l—d) k=0 Q10 [ Oal Qi }
_ n—k
Z—CZk 0a1a2 ) - .
= (bc —da) > p_g afay " +d > afalh”

[a (a1 + a2) — anao] Yipg by F —a 38 ok ey

Tr =
y—b[<a1+a2>zk S akay TR = Y ab ey
z
t=

_ n—k
_CZk 0a1a2
k. n—1—k n—k
—oan Y - Oala +dY p_,akal
because a1 + s = a+d, aras = ad — bc a(a + ag) —ajag = a® +cb

n k,n—k k n—1—k n—k
Antl — ( a) p_o@iay "~ — i Zkk 0 010 o bZk ala2 i )
- n kE n+l1— n—
CZk 0a1a2 k=0 ¥1%2 _aZk 00‘1@2
3
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because
2
LD—[ (al +Oé2)—0é1ag]zk Oa’fa" 1- k_azz Oallerl n—1-k _

_a(ozl—i-az)zk 0 1ka2 —i- k—alazzk Oa’fag —GZZ ga’fH n—l-k
k n—1

k. n—1—k k= 1 k
= aa1 Zk 0a1a2 + aagzk 0a1a2 - O[l(lgzk 0041 5 —
az k+1 n 1—k

n—k

n
—aa1 —|—a2:,C Oa1a2 041042Zk 0041
k k k n—1—k
—aZk:()OﬁO‘Q _04104221@ 0041 2 ;

y:b{(a1+a2)2k70 O‘lan ok Zk oa]fﬂ 51 k]
k k 2 k1 k
_b[Zk 0041+1 ‘. +Zk 0a1a2 ZZ 00‘1+ 57t }

_ n—k
[ Z 1a2 ] = bZk:{)Ofl%
and
n—1 [ 1—k n k
tZ_ala?Zk oatay TP+ dYTE g afay”
k+1 k k
Zk 00‘1Jr 2 +(041+042_a>2k pafay " (as ar +az = a+d)
_ k:+1 n k k+1 n k k n+l1—k
= he 0041 _CLZkl okl TP 43T of + ko ATy
_ 7CLZI¢ Oalan k +Zn+ n+1 k
hence the result. =

nlk:

Remark 2 Let A = ( Z Z ) a 2X2 matriz and o and as solutions of

|A—al|=0.
1) Ifay =ay=q, so

a+d n—1 (n+1l)a—(n—1)d nb
A" = 2 ,Vn>2(nelIN
( 9 ) ( ne (n+1)d5(n—1)a = ( )

with o = 5 and (a + d)® =4(ad —be) ((a —d)* = —4bc)
And
A" =na"tA—(n—1)a"I

2)Ifa; #as soVn>2 (n€IN)

. 1 ((@—axal—(a—aa} b(af — af)
ar — az c(af —ag) (@ —a)ay —(a—a)of
A" —afl = M(A—agl) and A" — nIZM(A—OQI)
a1 — Q2 a1 — Q2
An = (O/ll — 05721) A — (X1 (g (Oé?_l — ag_l) I
o] — Qo Q] — Q2
n_ o1 na—(n—-1a nb
Proof. 1) A" =« ( e (n+1)a—na
And
AP — g1 na—(n—1)a nb
- ne nd+(n+1)a—n(a+d)
4
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n_ o1 na—(n—-1a nb

At =a ne nd+ (n+1)a — 2na
n_ o na—(Mm—-1)«a nb

At =a ne nd+ (1 —n)a

n_ n1( na mnb no1f —(n—1a 0
At =a <nc nd>+a ( 0 —-n-1a

A" =na" A - (n—1)a"I
2)

g1 a(af —af) —oaz (077" — a3 ™) b(af — af)
o — s c(af —of) (@t = a3™) —a(of —af)

3 The exponential of any diagonalizable or non-
diagonalizable matrix of order 2:

3.1 Introduction:

a b

Let A= < ¢ d

In linear algebra, the Cayley—Hamilton theorem states that any endomor-

phism of a finite-dimensional vector space over any commutative field vanishes

its own characteristic polynomial. In matrix terms, this means that if A is a

square matrix of order and if P (z) = |A — zI| is the characteristic polynomial
of A, s0 P(A) =0.

So,ifA:(CCL b)then

a 2X2 matrix and oy and s solutions of |A — al| = 0.

d
a—x b
P(x)=|A—zl| = . de 2 =(x—a)(x—d)—bc
P(z)=2>—(a+d)xz+ad—bc=2*>—-Tr(A)x+|A]
P(A)=0=
A2 —Tr(A)A+|A|I=0
<
A2 =Tr(A)A—det(A)I
—
A" = apA—b,I
We know that An
A_Zi
et =
>0 n!
And from A" = a, A — b, 1
e =rA+ sl
5
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Proposition 3 If A and B commute so e and e® commute and ete? = eA*B.
AB = BA = e?eP = eBef = AFB

Proof. Obvious. =

3.2 1st case : If a; # as.

We have seen: If ay # ag so Vn € IN\ {0,1}

U ((a—az)a?—(a—al)aé‘ b(af —ag) >

ap —a c(af —a3) (@ —asz)ay —(a—a)ay

Remark 4 If a; # as soVn € IN

L ((a—az)of —(a—a)op b(af — o)
o — c(ay —ay) (a—az)af —(a—oa1)af
Proof. A° =171 and
Al 1 (a—az)on — (a—a1)as b(an — az)
ar—an c(ag —ag) (a—ag)as — (a—a1)ay
Al = ¢ 2b 2
- ¢ aqg—a;—ax+aj
a1 — Q2
1 [ a b
A= ( c o1+as—a )
1_(a b\ _
At = ( ¢ d ) =Am
Theorem 5 Let A = ( CCL Z ) a 2z2 matriz and oy and as solutions of

|A—al| =0, so

e e ()
o1 — o c o) —a c oy —a

er — e

e = ————— (A—apl) +e2]
Q1 — Qa2
er —e™

e = ————— (A—oql) eI
Q1 — a2
a1 Q2 [e3) al
et —e o1e*? — age

et = A+ 1
a1 — Q2 Q1 — Q2

with ay # oo ((a — d)* # —4be).
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S pE L blat - a)

n>oa'a1—a2 c(al —af) (a —az)ay — (a—ai)af >

since a1 # ag

—
a1 X v
oy — e Z T

with

X=(a—az) ) 100 —(a—a1) Y 05

n>0 n>0
Y=b) 5ot —ap)
n>0
Z=cy 4o} —ay)
n>0
T=(a—az) Y yoy—(a—a1) 3 ot
n>0 n>0
A 1 (a —ag)e* — (a— ag) e*? b(e*t —e*2)
e = — . a; _ pan _ Qg _ a1
Qg — o c(e €?) (a—az)e (a—ai)e

Moreover
a1 = (a— ag)e* — (a — aq) e*2
a1 =(a—ag)e* —(a—ag)e* + (a — az)e*? — (a — aq) e*?
a1 = (a —a2) (€™ — ™)+ (a — a2 —a+ ay)e™
a1 = (a — a2) (€™ — €*?) + (a1 — az) ™
and

age = (a— ag)e*? — (a —ay)e™
ag =(a—ag)e* —(a—a1)e* 4+ (a—a1)e*? — (a — ag) e™
[

a2z = (@ — a2) — (a — )] €% + (a— a) (e — )
ase = —(a —aq) (€* —e®?) + (g — ag) €22
—
(a—az)(e“l —e™2)+ (a1 —as)e™? b(e“l —e™2)
A — -
e = ( c(e%‘ll —%‘2"‘2) —(a—al)(ealcileagf-i-(al—ag)eo‘Q )
a]—a a1 —Q2

-

A e®l—e%2 a—ag b
e - a1 —ag < c 7(1+O[1 > +ea2I

A _ e%l—e*2 a — Qa2 b [
e = a1 —as <C d—(a+d)+a1)+e I

A _ efl—e2 a—ay b o
e = Qa1—az <C d—(a1+a2)+a1)+e I

since 1 +as =a+d =
oy ag a—ay b

eA:el e 2 +e%2]
ar—az c d— as

Q1,02
A= "¢ [A— axl] +e*]
Q] — Q2
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idem for o, we have

eM — e™?

et =———[A—ayl]+ eI
Q] — Q2
. ] __ o2 Qg _ o1
since &—¢— = £ —=¢

Q] —Q2 Q22—

aq Qg a2 aq

et —e a1e®? — ase
et = A+
Q] — Q2 a1 — Q2

hence the result. m

@ o [e% al
Remark 6 1) ¢4 = £-=¢"2 4 4 aae®—ape’

a1 —Q2 a1 — Q2

2) If oy = a+ifl, soas =a; =a—if € C\IR, e = e = (e*1) and
aze®! = (ae22)

= a; —ay €ilR , e —e®* € {IR and 0 1e*® — ae® € iIR

— €™ ¢ IR gnd e2z02c™ ¢ [R.

a1 —Q a1 —o2

3.3 2nd case: If oy = .

Remark 7
Al=A
1_ . 1-1( @ b
Proof. A' =« c (1—|—1)a—a>
1 [ a b
A _(c 2aa>
Alz a b =A =
c d

Theorem 8 Let A = ( CCL Z > a 2X2 matriz such (a—d)2 = —4bc so the

solutions of |[A—al|=0arecn =y =a = L;d and

A = [A—l—(l—a;_d)I}

e = e[A+(1-a)]]

Proof. If o =as =a,s0Vn >2 (n € IN)
n _ ,n—1 na—(n_ 1)0[ nb
At =a < ne (n+1)a—na
(n+1)a—(n—1)d b
AP — atd n—1 T E— n 7
( 2 ) ne (n-‘rl)d;(n—l)a

with a = :2—” and (a+d)* = 4 (ad — be) ((a — d)* = —4bc)

We have et = 3 LA =% LA 4]
n>0 n>1
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A 1 a1 na—(n—1)a nb
80, € _n;’”a ( ne (n+1)a—na 1
n—1 n n—1

A 1 [ ana®t = (n—1)a bna

e = nz>:1 n! ( cna™ 1 (n+1)a™ —ana™! +1
ae® — g (7(7;1)!04" — %a") be®
= nzl . +1I
ce® > <(n71)!a” + ma”) ae®
n>1

a_ [ ae® —(ae* —e*+1) be®
“ = ( ce® (ae® 4+ €™ — 1) — ae® u

A _ [ ae® —ae* +e* -1 be®
€ _< ce® ae® +e* —1—ae® +1

A ( ae® — ae® +e” be® )
€ = « « « (e}

ce ae” 4+ e% —ae

A of a—a+1 b
e = ( c a+l—a

A ol —a+1 0
et =et 1A+ 0 a+l—a—d

Remark 9
eA=el) _(A—al)=1

Theorem 10 (Generalization):
a b

Let A= < ¢ d ) a 2X2 matriz and oy and ag solutions of |A — al| =0,

SO
A (01 — )"
et =e E = (A—al)+1

n!
n>1

Proof. 1st case: if a3 = as = a, so

™2 lz (on—aa)" 71 (A—aol)+1

n!
n>1

=e*[(A—al)+ 1]

PAGE NO: 264



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

such > 7((“_2,2)"71 =14 (a1 —a2) > 7(‘11_3,2)7sz =1
n>1 ' n>2 )

=" | ) 7((1172!2)”71 (A—ao)+1
n>1

2d case: if a1 # ag, so
e | 3 (=02 (4~ apl) + 1
n>1

o
since > (a1=ag)” n?z) =¥z _ ]
n>1

=e[A+(1—a)l]=¢eA

= e™2 [(%) (A—aol) + I}

n! a1 —ao

o (c1—a)™ 7! _ oo [ef1T21 @
e | Y (A—asl)+1| = e ( ) (A= asl) + el

1

=0 | Y lmze)™ (4 ,T) 4| = (M> (A — aol) +e*2]

n! o —o

= e | 3 (o1—a)" (A—ax)+1| =

n!

P

Q1 —o2

—s 02 | 30 (e (4 1) 4 1| = (ehimet) g ((emeat oottt )

n! a—a a]—«
1 102 10
—1
o (a1 —ag)™ _ _ [ e*l—e*2 a1e“2 —aqqel _
e Z>:1 e (A )+ 1| = g A+ e I=
n>
) L d
e’ n

Proposition 11
eN=T= (A=0 or A?> = —4k*7°I )

Proof. Let a be an eigenvalue of A, so
3X € IR? such X # (0,0) and AX = aX
AX=X= Y 4 X=X

n!

n>0
= > UX=X
n>0
e X=X
—e*=1

such X # (0,0)
Ist case: f a € IRsoe*=1=a =0
and the characteristic polynomial of A will have to be P (z) = 2% —Tr (A) x
Soa; =0and ag =Tr(A) € IR.
Applying the same calculation as before we will obtain
ag=Tr(A)=0
= P(z) =22
_—
A2 =0

since P (A) = O (Applying the Cayley—Hamilton theorem)

10
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=
A" =0, VnelIN*-{1}

eA=I=>Zn>O%:I
= JT+A=1
—
A=0

2d case: If @« € C\IR so @ € C\IR is also an eigenvalue of A.

Soe* =1= a=2knr

a€eC\IR=k#0

k € Z* (k # 0)= A is diagonalisable and the characteristic polynomial of
it, is

P(z)=2°>—(a+@)z +aa

= P (x) = 2% + 4k*x?

— A? = —4k%7%] m

Conclusion 12 We conclude that the final formula we obtained for "The ex-
ponential of any (diagonalizable or non-diagonalizable) matriz of order 2"

n—1
eA:eo‘Q ZM(A—OQI)—FI

n!
n>1

is as general as those given for the n-th Power of 2x2 Matriz: (see [1], [2])

n—1 n—2 n—1
k. . n—1—k k+1 n—1—k k . n—1—k
a . afay -2y b afay

n __ k=0 k=0 k=0
A" = n—1 i 1—k n i & n—1 & I—k
n—1— n— n—1—

¢ afay Yo atay U —a Yy ajay
k=0 k=0 k=0

and without discussing whether the eigenvalues are equal or not, thus, we were
able to combine all cases into a single "New" formula.
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