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Abstract

This work explores a robust method for calculating the exponential of
a 2x2 matrix without resorting to diagonalization. This approach signi�-
cantly simpli�es complex matrix operations.

We �rst present our previously known and published result, which is
a single formula for calculating the nth power of any 2x2 matrix, whether
it is diagonalizable or not, whether it has two distinct eigenvalues or not,
and whether these eigenvalues are real or not.

Finally, as we did for the powers of a 2x2 matrix, we announce and
prove our new formula, which gives the exponential of any 2x2 matrix.
That is to say, a single formula for calculating the exponential of any 2x2
matrix, whether it is diagonalizable or not, whether it has two distinct
eigenvalues or not, and whether these eigenvalues are real or not.

Keywords: Power of a matrix; Exponential of a matrix; Eigenvalues.

1 Introduction:

In our two previous articles [1] and [2], which deal with 2x2 matrices, we obtained
a new formula for the nth powers of this type of matrix.
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This original formula was more general than those previously announced,

such as those by Kenneth S. Williams (see [3]) in 1992
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or even in the article [4]. This novelty was summarized in a single formula for
the nth power of any 2x2 matrix, whether diagonalizable or not, whether it has
two distinct eigenvalues or not, and whether these eigenvalues are real or not.
Furthermore, in the article [8], the authors seek to determine other combi-

natorial identities derived from the nth power of a 2x2 matrix. But the real
problem for mathematicians, and even computer scientists, is determining the
exponential of a matrix (see [5], [6], [7], [12]), as this problem frequently arises,
particularly in systems of di¤erential equations of the type X(t)0 = AX(t) (see
[9], [10], [11]).
Here, we present, for the �rst time, a single formula (for all uses) for the

exponential of any 2x2 matrix.
These results can be applied to �elds such as recurrence relations, di¤erential

equations, dynamical systems, and computer algorithms, where powers of small
matrices frequently appear.

2 The power of any (diagonalizable or non-diagonalizable)
matrix of order 2:

Theorem 1 Let A =
�
a b
c d

�
a 2X2 matrix, so 8n � 2 (n 2 IN)
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with �1 and �2 solutions of jA� �Ij = 0.

Proof. We will demonstrate our formula using recurrence.
(i) For n = 2, we will show that we actually have
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what does it mean8>><>>:
a2 + bc = a (�2 + �1)� �1�2
d2 + bc = �22 + �1�2 + �

2
1 � a (�2 + �1)

b (a+ d) = b (�2 + �1)
c (a+ d) = c (�2 + �1)
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�1 and �2 solutions of jA� �Ij = 0, so�
�1 + �2 = Tr (A) = a+ d
�1�2 = jAj = ad� bc

So
a (�2 + �1)� �1�2 = a (a+ d)� (ad� bc) = a2 + ad� ad+ bc = a2 + bc
�22+�1�2+�

2
1�a (�2 + �1) = (�1 + �2)

2��1�2�a (�2 + �1) = (a+ d)2�
(ad� bc)� a (a+ d) = d2 + bc
b (�2 + �1) = b (a+ d)
c (�2 + �1) = c (a+ d)
hence the result is true for n = 2.
(ii) Let�s suppose
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(iii) Let us show that
An+1 = An:A
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We have An+1 = An:A =
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because �1 + �2 = a+ d; �1�2 = ad� bc; a (�1 + �2)� �1�2 = a2 + cb
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because
x = [a (�1 + �2)� �1�2]
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hence the result.
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Proposition 3 If A and B commute so eA and eB commute and eAeB = eA+B.

AB = BA =) eAeB = eBeA = eA+B

Proof. Obvious.
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idem for �1, we have

eA =
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hence the result.

Remark 6 1) eA = e�1�e�2
�1��2 A+

�1e
�2��2e�1
�1��2 I.

2) If �1 = �+ i�, so �2 = �1 = �� i� 2 CnIR, e�2 = e�e�i� = (e�1) and
�2e
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�2��2e�1
�1��2 2 IR.

3.3 2nd case: If �1 = �2.
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Theorem 8 Let A =
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a 2X2 matrix such (a� d)2 = �4bc so the

solutions of jA� �Ij = 0 are �1 = �2 = � = a+d
2 and

eA = e
a+d
2

�
A+

�
1� a+ d

2

�
I

�
eA = e� [A+ (1� �) I]

Proof. If �1 = �2 = �, so 8n � 2 (n 2 IN)

An = �n�1
�
na� (n� 1)� nb

nc (n+ 1)�� na

�
An =

�
a+d
2

�n�1 (n+1)a�(n�1)d
2 nb

nc (n+1)d�(n�1)a
2

!
,

with � = a+d
2 and (a+ d)2 = 4 (ad� bc) ((a� d)2 = �4bc)

We have eA =
P
n�0

1
n!A

n =
P
n�1

1
n!A

n + I
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so, eA =
P
n�1

1
n!�

n�1
�
na� (n� 1)� nb

nc (n+ 1)�� na

�
+ I

eA =
P
n�1

1
n!

�
an�n�1 � (n� 1)�n bn�n�1

cn�n�1 (n+ 1)�n � an�n�1
�
+ I

=

0B@ ae� �
P
n�1

�
1

(n�1)!�
n � 1

n!�
n
�

be�

ce�
P
n�1

�
1

(n�1)!�
n + 1

n!�
n
�
� ae�

1CA+ I
eA =

�
ae� � (�e� � e� + 1) be�

ce� (�e� + e� � 1)� ae�
�
+ I

eA =

�
ae� � �e� + e� � 1 be�

ce� �e� + e� � 1� ae�
�
+ I

eA =

�
ae� � �e� + e� be�

ce� �e� + e� � ae�
�

eA = e�
�
a� �+ 1 b

c �+ 1� a

�
eA = e�

�
A+

�
��+ 1 0
0 �+ 1� a� d

��
eA = e�

�
A+

�
��+ 1 0
0 �+ 1� 2�

��
since � = a+d

2

eA = e�
�
A+

�
��+ 1 0
0 1� �

��
eA = e� [A+ (1� �) I]

eA = e
a+d
2

�
A+

�
1� a+ d

2

�
I

�

Remark 9
e(A��I) � (A� �I) = I

Theorem 10 (Generalization):

Let A =
�
a b
c d

�
a 2X2 matrix and �1 and �2 solutions of jA� �Ij = 0,

so

eA = e�2

24X
n�1

(�1 � �2)n�1

n!
(A� �2I) + I

35
Proof. 1st case: if �1 = �2 = �, so

e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
= e� [(A� �I) + I]
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such
P
n�1

(�1��2)n�1
n! = 1 + (�1 � �2)

P
n�2

(�1��2)n�2
n! = 1

=) e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
= e� [A+ (1� �) I] = eA

2d case: if �1 6= �2, so

e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
= e�2

h�
e�1��2�1
�1��2

�
(A� �2I) + I

i
since

P
n�1

(�1��2)n
n! = e�1��2 � 1

=) e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
= e�2

�
e�1��2�1
�1��2

�
(A� �2I) + e�2I

=) e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
=
�
e�1�e�2
�1��2

�
(A� �2I) + e�2I

=) e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
=
�
e�1�e�2
�1��2

�
A+
�
e�2 � �2 e

�1�e�2
�1��2

�
I

=) e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
=
�
e�1�e�2
�1��2

�
A+
�
(�1��2)e�2��2(e�1�e�2 )

�1��2

�
I

=) e�2

"P
n�1

(�1��2)n�1
n! (A� �2I) + I

#
=
�
e�1�e�2
�1��2

�
A+
�
�1e

�2��2e�1
�1��2

�
I =

eA

Proposition 11

eA = I =) (A = O or A2 = �4k2�2I )

Proof. Let � be an eigenvalue of A, so
9X 2 IR2 such X 6= (0; 0) and AX = �X
eAX = X =)

P
n�0

An

n! X = X

=)
P
n�0

�n

n! X = X

) e�X = X
=) e� = 1
such X 6= (0; 0)
1st case: If � 2 IR so e� = 1 =) � = 0
and the characteristic polynomial of A will have to be P (x) = x2�Tr (A)x
So �1 = 0 and �2 = Tr (A) 2 IR.
Applying the same calculation as before we will obtain
�2 = Tr (A) = 0
=) P (x) = x2

=)
A2 = O

since P (A) = O (Applying the Cayley�Hamilton theorem)
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=)
An = O, 8n 2 IN� � f1g

eA = I =)
P

n�0
An

n! = I
=) I +A = I
=)

A = O

2d case: If � 2 CnIR so � 2 CnIR is also an eigenvalue of A.
So e� = 1 =) � = 2ik�
� 2 CnIR =) k 6= 0
k 2 Z� (k 6= 0)=) A is diagonalisable and the characteristic polynomial of

it, is
P (x) = x2 � (�+ �)x+ ��
=) P (x) = x2 + 4k2�2

=) A2 = �4k2�2I

Conclusion 12 We conclude that the �nal formula we obtained for "The ex-
ponential of any (diagonalizable or non-diagonalizable) matrix of order 2"

eA = e�2

24X
n�1

(�1 � �2)n�1

n!
(A� �2I) + I

35
is as general as those given for the n-th Power of 2x2 Matrix: (see [1], [2])

An =

0BB@ a
n�1P
k=0

�k1�
n�1�k
2 �

n�2P
k=0

�k+11 �n�1�k2 b
n�1P
k=0

�k1�
n�1�k
2

c
n�1P
k=0

�k1�
n�1�k
2

nP
k=0

�k1�
n�k
2 � a

n�1P
k=0

�k1�
n�1�k
2

1CCA
and without discussing whether the eigenvalues are equal or not, thus, we were
able to combine all cases into a single "New" formula.
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