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ABSTRACT. A (v, g(G), µ)-design over regular graph G = (V,E) of degree d is an ordered pair D =

(V,B), where |V | = v and B is the set of geodetic sets in G called blocks such that if i, j ∈ V , i 6= j

and if i and j are not adjacent in G then there are exactly µ blocks containing i and j. In this paper, we

obtain some partially balanced incomplete block (PBIB)-designs with association schemes arising from

geodetic sets in circulant graphs with different jump sizes.

1. INTRODUCTION

A balanced incomplete block design (BIBD) is a set of v vertices arranged in b blocks of k vertices

each in such a way that each vertex occurs in exactly r blocks and every pair of unordered vertices

occurs in λ blocks. The combinatorial configuration so obtained is called a (v, b, r, k, λ)-design. Al-

though BIBDs have many optimal properties, they do not fit well into most experimental situations as

their repetition number is too large. To overcome this, a group of binary, equireplicate designs were

introduced through, Partially balanced incomplete block designs (PBIBDs).

Walikar et al.[24] introduced a design called (v, βo, µ)-design over a regular graph G. This de-

sign was somewhat similar to the (v, k, λ, µ)-design over a regular graph G introduced by Ionin and

Shrikhande [15]. Ionin and Shrikhande [15] dealt the designs when the repetition was r = 2λ − µ,

whereas Walikar et al.[24] considered the designs with r =
(v − d− 1)µ

βo
. Huilgol et al. [22] intro-

duced a design called (geodetic) (v, g(G), µ)-design arising from the geodetic sets of a graph, derived

the governing results of a geodetic-design, if it exists, and then obtained such PBIB-designs for differ-

ent products of graphs, viz., the cartesian product, the direct product, the lexicographic product, the

corona product. The (v, g(G), µ)-designs have r =
b · g(G)

v
. In most cases, a geodetic set is usually

independent, a comparative inevitable study of (v, g(G), µ) and (v, βo, µ)-designs was considered in

[22].

Beauty comes out of symmetry as well as asymmetry. Investigation of symmetries or asymmetries of
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structures yield powerful results in Mathematics. Circulant graphs form a class of highly symmetric

graphical structures. Formally, an undirected graph acted on by a cyclic group of symmetries which

takes any vertex to any other vertex is called a circulant graph. The properties, structures of these

graphs have been investigated by many authors [4], [2], etc. The fact that these graphs have their

adjacency matrices as circulant matrices, makes them to find many applications in far reaching fields

where automorphisms and symmetries find applications. The circulant matrices were introduced by

Catalan [8] way back in 1846. In 1994, the algebraic structures, properties and applications of circu-

lant matrices have been summarized in the book “Circulant Matrices” by Davis [13] as well in [8],

[14].

Inspired by all the above, in this paper we consider PBIB-designs arising in circulant graphs. Hence,

these designs give layered structures based on the most fundamental parameters that is, geodetic sets.

In themselves these two parameters have been studied in depth for graphs. But designs from these

parameters are untouched. Although, other paraemeters like, minimum edge independent sets [10],

minimum split dominating sets [16] are considered.

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout this paper, G = (V,E) stands for a finite, undirected graph with neither loops nor

multiple edges. The number of vertices is n and that of edges is m. The terms not defined here are

used in the sense of Buckley and Harary [6].

Let x and y be vertices of a connected graph G. A shortest x, y-path is also called a x, y-geodesic.

The distance between two vertices x and y is defined as the length of a x, y-geodesic in G and is

denoted by dG(x, y) or d(x, y), in short if the graph G is clear from context. For a vertex x in G,

its eccentricity, ecc(x) is defined as the distance to a farthest vertex from x in G. For a vertex x,

a vertex y is an eccentric vertex if, d(x, y) = ecc(x). In a graph G, the diameter of G, denoted as

diam(G), is the maximum eccentricity in G and the radius of G, denoted as rad(G), is the minimum

eccentricity in G. A graph G is called a self-centered graph if diam(G) = rad(G). If each vertex

of a graph G has exactly one eccentric vertex, then G is called a unique eccentric vertex graph.

For a vertex x in a connected graph G, let di(x) be the number of vertices at distance i from x. The

distance degree sequence of a vertex x is dds(x) = (d0(x), d1(x), . . . , decc(x)(x)). The distance degree

sequence DDS(G) of a graph G consists of the collection of sequences dds(x) of all its vertices, listed

in numerical order. The distance degree regular (DDR) graph is a graph in which all vertices have

the same distance degree sequence.
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Next we list some definitions and results related to circulant graphs and geodeticity.

Given a set S ⊆ V (G), its geodetic closure I[S] is the set of all vertices lying on some shortest path

joining two vertices of S that is,

I[S] = {v ∈ V (G)|v ∈ I(x, y), x, y ∈ S} =
⋃

x,y∈S

I(x, y).

A set S ⊆ V (G) is called a geodetic set in G if I[S] = V (G); that is, every vertex in G lies on

some geodesic between two vertices from S. The geodetic number g(G) of a graphG is the minimum

cardinality of a geodetic set in G.

Following are two simple (of course, not trivial) results on geodetic number.

Theorem 2.1. [6] Let G be a connected graph. Then g(G) = n if and only if G = Kn.

Theorem 2.2. [6] For a connected graph G, g(G) = 2 if and only if there exist two vertices u and v

with d(u, v) = diam(G) and every vertex of G lies on a geodesic between vertices u and v.

Definition 2.1. For a given positive integer p, let n1, n2, . . . , nk be a sequence of integers where

0 < n1 < n2 < . . . < nk <
(p+ 1)

2
.

Then the Circulant graph Cp(n1, n2, . . . , nk) is the graph on p vertices v1, v2, . . . , vp with a vertex vi
adjacent to each vertex vi±nj

(modp). The values of ni, are called jump sizes.

Next we list some definitions related to designs.

Definition 2.2. [23] Given a set {1, 2, . . . , v} a relation satisfying the following conditions is said to

be an association scheme with m classes.

(1) Any two symbols α and β are ith associates for some i, with 1 ≤ i ≤ m and this relation of

being ith associates is symmetric.

(2) The number of ith associates of each symbol is ni .

(3) If α and β are two symbols which are ith associates, then the number of symbols which are jth

associates of α and kth associates of β is pijk and is independent of the pair of ith associates

α and β.

Definition 2.3. [23] Consider a set of symbols V = {1, 2, . . . , v} and an association scheme with m

classes on V . A Partially balanced incomplete block design (PBIBD) is a collection of b subsets of V

called blocks, each of them containing k symbols (k < v), such that every symbol occurs in r blocks
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and two symbols α and β which are ith associates occur together in λi blocks, the numbers λi being

independent of the choice of the pair α and β.

The numbers v, b, r, k, λi (1, 2, . . . ,m) are called the parameters of first kind and the numbers n′is

and pijk are called the parameters of second kind.

3. (v, g(G), µ)-DESIGNS OVER CIRCULANT GRAPHS

The general set up of designs arising from a particular graph parameter along with all the associates

is an interesting one as seen in the previous section. Considering sets of vertices corresponding to dif-

ferent graph invariants serves the purpose and finds many applications. Particularly, in this section,

we determine designs having blocks as the vertices belonging to geodetic sets in circulant graphs and

the association schemes referring to the vertices at different distances. Hence, the graphs for which

these designs exist are highly regular in nature to keep their repetition number fixed.

The (v, g(G), µ)-designs were defined by Huilgol et al. [22] and construct PBIB-designs with differ-

ent association schemes corresponding to the circulant graphs with different jump sizes. Formally,

we first recollect the definition of (v, g(G), µ)-design as follows:

Definition 3.1. [22] A (v, g(G), µ)-design, called a geodetic design (in short) over a regular, self-

centered graph G = (V,E) of degree d, is an ordered pair D = (V,B), where V = V (G) and B, the

set of all geodetic sets in G, called blocks, containing the vertices belonging to the minimum geodetic

sets, of size g(G) and every pair of non-adjacent vertices appearing in exactly µ blocks.

The next result of Huilgol et al. [22] gives a sufficient condition for the existence of a (v, g(G), µ)-

design. We state it here for the purpose of motivation of the present paper.

Proposition 3.1. [22] Let G be a regular graph of degree d and let D = (V,B) be a geodetic

(v, g(G), µ)-design over G. Then there exists an integer r, called the repetition number. Furthermore

the following three conditions hold:

g(G)(v + b)µ = v(r + g(G)) (3.1)

vr = bg(G) (3.2)

r ≥ µ. (3.3)
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Remark 1. Proposition 3.1 is a fundamental one. Its three conditions work as governing results

for (v, g(G), µ)-designs. Thus the above result is a crucial one in proving our main results. In the

following sections, we consider circulant graphs and construct (v, g(G), µ)-designs with different

association schemes.

Theorem 3.1. [20] The collection of all geodetic sets in a regular, self-centered, unique eccentric

vertex graph forms a PBIB-design.

Theorem 3.2. [20] The collection of all geodetic sets in a complete k-partite graph Kn,n,...,n, for

n ≥ 2, k ≥ 2 forms a PBIB-design with parameters given as follows:

• v = 2k, b = k, g(K2,2,...,2) = 2, r = 1, λ1 = 0, λ2 = 1, when n = 2;

• v = 3k, b = k, g(K3,3,...,3) = 3, r = 1, λ1 = 0, λ2 = 1, when n = 3;

• v = 4k, b = 36

(
k

2

)
+ k, g(K4,4,...,4) = 4, r = 18k− 17, λ1 = 10, λ2 = 6k− 5, when n = 4;

• v = nk, b =

(
k

2

)
n2(n− 1)2

4
, g(Kn,n,...,n) = 4, r =

(k − 1)n(n− 1)2

2
, λ1 = (n − 1)2,

λ2 = (k − 1)

(
n

2

)
, when n ≥ 5, k ≥ 2.

Lemma 3.1. The collection of all geodetic sets inCn

(
1, 2, . . . ,

⌊
n

2

⌋)
, n ≥ 3 vertices form (v, g(G), µ)-

design with 1-association scheme with parameters v = n, b = 1, g(G) = n, r = 1 and µ = 0. The

parameter of second kind is given by n1 = n− 1.

Proof. Clearly, Cn

(
1, 2, . . . ,

⌊
n

2

⌋)
∼= Kn, n ≥ 3. And we know that g(Kn) = n. So there exists a

single geodetic set forming a PBIB-design with parameters as in the statement. Also, the parameters

of second kind are given by n1 = n− 1 and P1 = [p111] = [n− 2]. �

Remark 2. If the jump size of circulant graphs is one, then it is a cycle Cn for n ≥ 3 vertices. That

is, Cn(1) ∼= Cn; n ≥ 3.

Lemma 3.2. The collection of all geodetic sets in C2n, n ≥ 2 forms a (v, g(G), µ)-design with n-

association schemes with the parameters v = 2n, b = n, g(G) = 2, r = 1 and µ = 1. The parameters

of second kind are given by

ni =

{
1, if i = n,

2, if 1 ≤ i ≤ n− 1.
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Proof. Since C2n is a self-centered, unique eccentric graph of diameter n, parameters of first kind

follow from Theorem 3.1.

Since C2n is a distance degree regular (DDR) graph with distance degree sequence (dds) of each

vertex being (1, 2, 2, . . . , 2, 1). The parameters of second kind are given by Theorem 7.1[9]. �

Remark 3. The collection of all geodetic sets in circulant graph C2n+1, n ≥ 2 does not form a

(v, g(G), µ)-design, as the repetition number r is not unique.

Lemma 3.3. The collection of all geodetic sets in C2n(1, 2, . . . , n − 1) forms a (v, g(G), µ)-design

with 2-association schemes and parameters are given by, v = 2n, b = n, g(G) = 2, r = 1, µ = 1.

The parameters of second kind are given by n1 = 2(n− 1), n2 = 1.

Proof. We know that C2n(1, 2, . . . , n− 1) ∼= K2,2,...,2, proof follows from Theorem 3.2.

It is easy to see that the parameters of second kind are entries of distance degree sequence (dds) of

each vertex, as G is a DDR graph with dds of each vertex being (1, 2(n − 1), 1). The parameters of

second kind are given by n1 = 2(n− 1), n2 = 1. And,

P 1 =

(
p111 p112

p121 p122

)
=

(
2(n− 2) 1

1 0

)

P 2 =

(
p211 p212

p221 p222

)
=

(
2(n− 1) 0

0 0

)
.

�

Theorem 3.3. The collection of all geodetic sets in C2n(2, n) for n ≥ 5 odd, forms a (v, g(G), µ)-

design with
⌈
n

2

⌉
-association schemes and parameters are given by v = 2n, b = 2n, g(G) = 3, r = 3

and µ = 2. The parameters of second kind are given by

ni =


2, if i =

⌈
n

2

⌉
;

3, if i = 1;

4, if 2 ≤ i ≤
⌈
n

2

⌉
− 1.

Proof. We know that the circulant C2n(2, n) ∼= K2 × Cn, whenever n is odd. This graph is also

known as prism. Let G = K2 × Cn for n ≥ 5 and label its vertices as v1, v2, . . . , v2n. This graph is

obtained by taking two copies of Cn and joining corresponding vertices by prism edges. Now choose

a vertex from first copy of Cn, say v1 whose eccentric vertices, say, vq, vq+1 lie in the second copy
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of Cn. Hence, d(v1, vq) = diam(G) = n + 1 = d(v1, vq+1). Now S = {v1, vq, vq+1} is a minimum

geodetic set, implying that g(G) = 3. Since v1 is an arbitrarily chosen vertex from one copy of Cn,

we get, n geodetic sets from first copy and similarly, n from the second copy, making the number of

blocks equal to 2n. Then, by using the relation vr = bg(G) we get r = 3 and using the first equality

in Condition (i) of Proposition 3.1, we get µ = 2.

Thus, we have a PBIB-design with parameters v = 2n, b = 2n, g(G) = 3, r = 3 and µ = 2.

It is easy to see that the parameters of second kind are the distance degree sequence (dds) of each

vertex, as prism is a DDR graph. Hence the parameters of second kind are given by

ni =


2, if i =

⌈
n

2

⌉
;

3, if i = 1;

4, if 2 ≤ i ≤
⌈
n

2

⌉
− 1

The parameters of second kind can be represented as the following matrix

P k =



pk11 pk12 . . . pk1dn
2
e

pk21 pk22 . . . pk2dn
2
e

...
...

...
...

...
...

pkdn
2
e1 pkdn

2
e2 . . . pkdn

2
edn

2
e


Now we give all the entries of above matrix by considering different values of k.

Case 1. If k = 1, then

p1ij = 1 for i = j =

⌈
n

2

⌉
, i = j =

⌈
n

2

⌉
− 1 and i =

⌈
n

2

⌉
− 1, j = i+ 1; j =

⌈
n

2

⌉
− 1, i = j + 1;

p1ij = 2 for 1 ≤ i ≤
⌈
n

2

⌉
− 2, j = i+ 1 and 1 ≤ j ≤

⌈
n

2

⌉
− 2, i = j + 1.

Case 2. If k = 2, then

pkij = 1 for 1 ≤ i ≤
⌈
n

2

⌉
− 2, j = i+ 2 and 1 ≤ i ≤

⌈
n

2

⌉
− 1, j = i+ 1;

pkij = 1 for 1 ≤ j ≤
⌈
n

2

⌉
− 2, i = j + 2 and 1 ≤ j ≤

⌈
n

2

⌉
− 1, i = j + 1 ;

pkij = 2 for 1 ≤ i = j ≤
⌈
n

2

⌉
− 1.

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 3 2024

Page No: 226



8 MEDHA ITAGI HUILGOL AND VIDYA M D

Case 3. If 3 ≤ k ≤
⌈
n

2

⌉
− 2, then

pkij = 1 for i+ j = k, i+ j = n− k, i+ j = n− k + 1 and i+ j = n− k + 2;

pkij = 2 for 1 ≤ i ≤
⌈
n

2

⌉
, j = i+ k and 1 ≤ j ≤

⌈
n

2

⌉
, i = j + k.

Case 4. If k =

⌈
n

2

⌉
− 1, then

pkij = 1 for i+ j = k, i+ j = k + 1, i+ j = k + 2 and i+ j = k + 3.

Case 5. If k = ndn
2
e, then

pkij = 1 for i = 1, j = i+

⌈
n

2

⌉
− 1 and j = 1, i = j +

⌈
n

2

⌉
− 1;

pkij = 2 for 1 ≤ i ≤
⌊
k

2

⌋
, j = k − i and 1 ≤ j ≤

⌊
k

2

⌋
, i = k − j and the anti-diagonal entries are

dds of Cn−1 and the remaining entries are zero.

�

Theorem 3.4. The collection of all geodetic sets in Cn

(
1, 2, . . . ,

n− 2

2

)
for n ≥ 4 even, form

(v, g(G), µ)-design with 2-association schemes and parameters v = n, b =
n

2
, g(G) = 2, r = 1 and

µ = 1. The parameters of second kind are given by n1 = 2(n− 1) and n2 = 1.

Proof. Let G = Cn

(
1, 2, . . . ,

n− 2

2

)
where n is even. Since G is a self-centered, unique eccentric

vertex graph of diameter 2 and regularity (n − 2), parameters of first kind are as in the statement

followed by Theorem3.1.

Since G is a distance degree regular (DDR) graph with distance degree sequence (dds) of each vertex

being (1, 2(n−1), 1), we get, the parameters of second kind as entries of the distance degree sequence

itself. Hence the parameters of second kind are given by n1 = 2(n− 1), n2 = 1 with

P 1 =

(
p111 p112

p121 p122

)
=

(
n− 4 1

1 0

)

P 2 =

(
p211 p212

p221 p222

)
=

(
n− 2 0

0 0

)
. �

Remark 4. The collection of all geodetic sets in Cn

(
1, 2, . . . ,

n− 2

2

)
for odd n, does not form

(v, g(G), µ)-design as the repetition number r is not unique.
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Theorem 3.5. The collection of all geodetic sets in Cn

(
1, 2, . . . ,

⌈
n− 2

2

⌉)
for odd n, forms a

(v, g(G), µ)-design.

Proof. For odd n, Cn

(
1, 2, . . . ,

⌈
n− 2

2

⌉)
∼= Kn. Hence the result follows from Lemma 3.1. �

Remark 5. The collection of all geodetic sets in C2n+1(1, n), where n ≥ 3 and odd, does not form

(v, g(G), µ)-design, as the value of µ is not unique. But, for n = 2, C2n+1(1, 2) ∼= K5, hence, we get

a design followed by Lemma 3.1.

Next we consider circulants having only odd jump sizes. These are particularly different from

the above, as they are isomorphic to complete bipartite graphs. That is, Cn

(
1, 3, . . . ,

⌊
n

2

⌋)
=

C2n(1, 3, . . . , n) ∼= Kn,n, n ≥ 6. We give a result on geodetic number of a complete bipartite graph,

that helps in getting the next result.

Theorem 3.6. [11] For the complete bipartite graph G = Km,n, g(Km,n) = min{m,n, 4}.

Theorem 3.7. The collection of all geodetic sets in C2n(1, 3, . . . , n) for n ≥ 3 forms a (v, g(G), µ)-

design with 2-association schemes and parameters are given as follows:

• v = 6, b = 2, g(K3,3) = 3, r = 1, µ = 1, when n = 3;

• v = 8, b = 38, g(K4,4) = 4, r = 19, µ = 7, when n = 4;

• v = 2n, b =
n2(n− 1)2

4
, g(Kn,n) = 4, r =

n(n− 1)2

2
, µ =

(
n

2

)
, when n ≥ 5.

Proof. We haveC2n(1, 3, . . . , n) ∼= Kn,n, for n ≥ 3, the first parameter set follows from Theorem 3.2.

Since complete bipartite graph Kn,n is a distance degree regular (DDR) graph with distance degree

sequence (dds) of each vertex being (1, n, n − 1), the parameters of the second kind are given by

P 1 =

(
p111 p112

p121 p122

)
=

(
0 n− 1

n− 1 0

)

P 2 =

(
p211 p212

p221 p222

)
=

(
n 0

0 n− 2

)
. �

4. CONCLUSION

In this paper we have determined geodetic designs for circulant graphs with different jump sizes.

Also non-existence of these two types of designs are addressed.
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