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Abstract—With the growing demand for secure and low- 

power communication in IoT, automotive, and industrial ap- 
plications, this work presents an APB-compliant, configurable 
transceiver module supporting runtime encryption, parity, and 
error detection. The proposed design enables seamless switching 
between transmission and reception modes through APB-mapped 
configuration registers. In TX mode, the module autonomously 
generates structured packets with optional encryption and parity; 
in RX mode, it validates and processes incoming data, storing 
decrypted outputs in dual FIFO queues. 

The design includes a unified error reporting mechanism via 
an error pin and register. Verification was conducted using a 
modular SystemVerilog testbench with transaction-level model- 
ing. Corner-case scenarios such as malformed packets, queue 
overflows, and parity mismatches were thoroughly tested. The 
testbench ensured pass/fail accuracy via a centralized scoreboard. 
The design achieved over 98% functional coverage and over 95% 
code coverage, confirming robust implementation and verifica- 
tion. 

Index Terms—APB protocol, Encrypted communication, Ver- 
ilog HDL, SystemVerilog verification, TX/RX transceiver, FIFO 
queues, Error detection 

I. INTRODUCTION 

The demand for configurable, secure, and efficient data com- 

munication architectures is steadily increasing with the rise of 

complex SoCs and embedded systems. In applications such as 

networked sensors, low-power IoT nodes, and secure proces- 

sors, the ability to dynamically switch between encrypted and 

plain data transmission, while ensuring packet integrity and 

efficient control, is a critical design requirement. This paper 

presents the design and verification of an APB-configurable 

transceiver supporting dual-mode operation: Transmit (TX) 

and Receive (RX). 

Implemented in Verilog HDL, the design supports config- 

urable packet formats including parity-enabled, encrypted, and 

combined modes. Data integrity is validated through strict 

SOP/EOP handling, parity checking, and optional decryption. 
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The system features two FIFO queues to separately manage 

normal and encrypted packets, with automatic error tracking 

via an integrated Error Register and a self-clearing configura- 

tion mechanism to ensure reliability. 

To ensure functional correctness, a modular System Verilog- 

based testbench was developed. The verification strategy in- 

cludes stimulus generation, monitoring, scoreboard checks, 

and coverage analysis, simulating corner cases like queue 

overflows, invalid packets, and mid-transaction mode switch- 

ing. The design’s self-contained, scalable nature and robust 

verification make it well-suited for integration in configurable 

IP blocks for SoC applications. The growing complexity of 

System-on-Chip (SoC) designs, especially in IoT and auto- 

motive domains, has increased interest in secure, configurable 

communication modules. The AMBA Advanced Peripheral 

Bus (APB), part of the ARM AMBA specification, remains 

vital for connecting low-bandwidth peripherals due to its 

simplicity and low power usage [1]. 

II. LITERATURE SURVEY 

Several studies have explored APB-based implementations. 

Kumar et al. [2] proposed a FIFO architecture over APB, 

ensuring reliable pointer control and buffer integrity for real- 

time systems. Sharma et al. [3] designed an APB interface 

for SRAM, focusing on power efficiency and timing—key in 

IoT and automotive SoCs. The APB protocol is widely used 

in microcontroller subsystems for managing communication 

between core IPs and peripherals with minimal overhead [4]. 

Mehta et al. confirmed its suitability for UART and timer 

peripherals, citing stable timing under low-power, constrained 

clock conditions. Verilog-based transceiver implementations 

using APB have also been explored. Ramesh et al. [5] pre- 

sented an optimized APB bridge for SoCs, focusing on logic 

reuse and reduced area. Their work demonstrated efficient 

APB-compliant slave design using Verilog HDL for peripheral 

communication. 
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Patel and Shah [6] used coverage-driven verification for an 

APB slave, achieving over 95% code and functional coverage. 

Their suite included tests for SOP/EOP errors, parity faults, 

and read/write contention—relevant to configurable transceiver 

modules. Al-Jabri et al. [7] implemented a receiver-transmitter 

system with dual FIFOs for encrypted and non-encrypted data. 

This architecture supports parallel access and prevents packet 

contamination, which is essential in safety-critical systems. 

Raju et al. [8] proposed a two-level FIFO design for NoC 

routers to improve throughput and reduce area. This approach 

aligns with your use of separate encrypted and non-encrypted 

FIFOs, selectively accessed based on register configuration. 

Shastry et al. [9] emphasized integrating self-clearing error 

flags for robust RTL design. Your implementation follows 

this by raising error signals immediately and clearing them 

after a recovery window—helpful in avoiding latched faults, 

especially in RX mode. 

The evolution and significance of the Advanced Periph- 

eral Bus (APB) in system-on-chip (SoC) design has been 

extensively explored in the academic and industrial research 

community. The APB, as part of ARM’s AMBA protocol 

suite, was introduced to provide a lightweight, low-power 

communication interface primarily for peripherals. Its inher- 

ent simplicity, single-master design, and non-pipelined nature 

have made it the preferred choice for register-level access 

in embedded systems. The literature on AMBA APB spans 

multiple dimensions—protocol specification, IP integration, 

formal verification, comparison with other AMBA protocols, 

and use in emerging domains like IoT and NoC-based designs 

[10]–[12]. Researchers have focused on formalizing the APB 

specification for rigorous functional verification. Tools such 

as SystemVerilog Assertions (SVA), UVM (Universal Veri- 

fication Methodology), and property specification languages 

are frequently employed to develop reusable test environments 

for APB peripherals [13]–[15]. Formal methods further en- 

sure protocol compliance, timing correctness, and interface 

robustness. For instance, Kapoor [16] demonstrated the use 

of JasperGold for APB interface verification, achieving 100% 

property coverage and eliminating common simulation blind 

spots. 

A comparison of various AMBA protocols in terms of 

latency, throughput, and silicon cost has consistently em- 

phasized APB’s efficiency for control signaling [17], [18]. 

Compared to AHB and AXI, which are suited for high- 

throughput data transfer, APB offers a deterministic and low- 

switching-overhead solution suitable for low-power designs 

[19], [20]. In SoCs that include multiple clock domains, 

researchers have proposed hybrid interconnects where APB 

bridges synchronize with higher-bandwidth fabrics like AXI 

or AHB, ensuring consistency across domain boundaries [21], 

[22]. FIFO-based designs interfacing with APB are widely re- 

ported in communication-intensive applications. Synchronous 

and asynchronous FIFO modules are essential in buffering 

and flow control. Design verification of FIFO logic, especially 

when used with APB slaves, is critical for reliable data 

exchange [23], [24]. Advanced designs incorporate parity 

checks, encryption logic, and SOP/EOP framing into APB- 

compatible transceivers to support error detection and secure 

data streaming [25], [26]. 

In the context of IoT and embedded systems, the APB 

protocol finds extensive use. APB-based IP blocks such as 

timers, UARTs, GPIOs, and SPI controllers dominate the SoC 

periphery [27]–[29]. ARM Cortex-M cores rely on an inter- 

nal bus matrix with APB bridges to manage low-bandwidth 

transactions efficiently. Integration strategies for such IPs 

are well-documented, with methodologies guiding register- 

mapping, interrupt handling, and low-latency APB decoding 

[30], [31]. A range of studies explore APB verification through 

simulation testbenches built using UVM. For example, Bhatt 

[32] designed a UVM environment to test an APB-based 

register interface, achieving high functional and code coverage. 

Assertion-based testbenches have also been developed to cap- 

ture corner-case behaviors and protocol violations [33], [34], 

while co-verification approaches utilize TLM and RTL blocks 

interfacing via APB wrappers to facilitate cycle-accurate mod- 

eling and early hardware/software integration [35], [36]. 

 

III. SYSTEM DESIGN 

The APB-Configurable Encrypted Communication Module 

comprises modular transmit and receive datapaths governed 

via a finite-state control system. It is built around an APB 

interface, configuration registers, and dual FIFO queues to 

support encrypted and plain data transmission in embedded 

applications.The block diagram of the DUT is illustrated in 

Figure 1. 

 

 
Fig. 1. Block Diagram Of DUT 

 

 

A. Block-Level Overview 

The core blocks include: 

• APB Interface Unit: Handles register read/write opera- 

tions and responds to valid transactions. 

• TX/RX Controllers: Mode-specific FSMs that generate 

or parse structured packet frames. 
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• Encryption/Parity Logic: Optional XOR-based encryp- 

tion and parity computation integrated seamlessly in the 

TX and RX paths. 

• FIFO Queues: Two independent buffers manage en- 

crypted (QUEUE_E) and non-encrypted (QUEUE_NE) 

packets, supporting concurrent access. 

• Error Detection System: Real-time logging of protocol 

violations (e.g., parity mismatch, queue underflow) via 

dedicated error flags. 

B. Register Interface Summary 

The module provides the following APB-mapped registers: 

• TX_CONFIGURE and RX_CONFIGURE: Trigger packet 

transmission/reception with user-defined format and se- 

curity settings. 

• ERROR_REGISTER: Reflects active error conditions 

such as SOP/EOP errors, parity failures, or queue misuse. 

• DATA_REGISTER: Controls access to stored packets 

with support for flush and pop actions. 

All control operations are gated by a global mode signal 

and an asynchronous reset, ensuring robust behavior across 

transitions. 

IV. METHODOLOGY 

A. Design and Implementation of the Transmitter Module 

The transmitter (TX) module serves as the data originator 

in the communication flow. It is designed to operate in a fully 

autonomous mode post-configuration and is tailored to meet 

diverse application requirements via flexible runtime settings. 

The TX operation begins upon writing to the TX_CONFIGURE 

register, mapped to the APB (Advanced Peripheral Bus) 

address space. This register contains fields for selecting the 

number of header and data frames, and flags for enabling 

optional encryption and parity functionalities. 

Upon activation, the TX module assembles a complete 

packet consisting of: 

• Header Frames: Used for metadata or framing structure. 

The number of headers is configurable. 

• Data Frames: Payload data to be transmitted. 

• Start-of-Packet (SOP) and End-of-Packet (EOP): De- 

limiters inserted automatically by the control logic. 

If parity is enabled, the TX logic computes even parity for 

each data frame. The parity bit is appended to ensure single- 

bit error detection. For security, if encryption is enabled, the 

module uses an XOR-based encryption algorithm. Each data 

frame is XORed with a user-defined encryption key. This 

lightweight approach maintains low hardware overhead while 

providing basic confidentiality suitable for embedded or low- 

power systems. Additionally, when encryption is enabled, the 

encryption key is appended at the end of the packet just before 

the EOP marker, enabling the receiver to perform decryption. 

The TX controller manages timing by issuing one frame 

per clock cycle, synchronized with an internal finite state 

machine  (FSM).  Once  the  transmission  completes,  the 

TX_CONFIGURE register is automatically reset to zero to pre- 

vent re-transmission without explicit reconfiguration, thereby 

avoiding unintended behavior. All state transitions are care- 

fully gated with the system clock and asynchronous reset 

support is built-in to ensure safe recovery. 

B.  Robust Packet Reception and Error Detection in RX Mode 

The receiver (RX) module was designed to validate and 

process incoming packets while preserving both correctness 

and configurability. RX mode is activated by configuring 

the RX_CONFIGURE register via the APB interface. It con- 

tains control fields for specifying the number of header and 

data frames, enabling/disabling parity and decryption, and 

the en_drop flag to determine whether malformed packets 

should be discarded. 

The RX module continuously listens on its input lines for 

incoming data frames. Upon detecting a valid SOP signal, 

the RX logic initiates packet reception. It reads the expected 

number of header and data frames, validates the presence of 

the EOP marker at the correct boundary, and performs the 

following operations: 

• Parity Check: For each data frame, the received parity 

bit is compared with the calculated parity. A mismatch 

indicates corruption. 

• Decryption: If enabled, the module extracts the encryp- 

tion key from the packet and applies an XOR operation 

to retrieve the original data. 

• SOP/EOP Validation: Ensures structural integrity of the 

packet. Misplaced or missing markers trigger framing 

errors. 

Processed data is stored into one of two FIFO queues: 

• QUEUE_E: For packets that were encrypted and success- 

fully decrypted. 

• QUEUE_NE: For plain (non-encrypted) packets. 

If any error is encountered (parity mismatch, SOP/EOP 

violation, FIFO overflow), the RX logic immediately raises 

the error_pin and logs the corresponding error code in the 

ERROR_REGISTER. The error handling system is modular, 

capable of reporting multiple types of errors independently 

and concurrently. Furthermore, the en_drop configuration 

controls whether corrupted packets should be discarded or 

partially processed, making the system flexible for debugging 

and production scenarios. 

C. Controlled Data Retrieval and Queue Management Mech- 

anism 

To provide external access to received data, the de- 

sign includes a carefully orchestrated pop and flush 

mechanism. These operations are facilitated through the 

DATA_REGISTER, which is APB-mapped and contains con- 

trol and status bits for both QUEUE_E and QUEUE_NE. 

When a pop operation is initiated via control bits in 

DATA_REGISTER, the module checks for queue emptiness. 

If the queue contains valid data, the oldest frame is forwarded 

to the output and the read pointer is incremented. If the queue 

is empty at the time of a pop attempt, an underflow error 
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is triggered. The RX module sets the appropriate bit in the 

ERROR_REGISTER and raises the error_pin to notify the 

system of the invalid access attempt. 

Additional features include: 

• Self-Clearing Registers: Both DATA_REGISTER and 

ERROR_REGISTER are designed to automatically reset 

their contents after a fixed number of clock cycles (typi- 

cally 4 cycles) to avoid stale data lingering in the control 

path. 

• Flush Operation: Allows complete clearing of either or 

both queues, typically used during mode transitions or 

system resets to avoid propagation of invalid data. 

• Concurrent Queue Protection: The design prevents 

simultaneous read and flush operations, enforcing safe 

and atomic queue access. 

These features ensure that packet retrieval is reliable, syn- 

chronized, and protected against incorrect usage. They con- 

tribute to the robustness and fault tolerance of the overall 

system, making it suitable for deployment in high-integrity 

embedded applications. 

 

D. Verification Methodology Using SystemVerilog Testbench 

To ensure functional correctness, robustness, and full cov- 

erage of the encrypted communication module, a modular 

SystemVerilog-based testbench was developed. The testbench 

architecture adheres to industry-standard best practices and 

includes dedicated components for stimulus generation, mon- 

itoring, checking, and coverage analysis. 

1) Testbench Architecture: The verification environment is 

composed of the following primary components: 

• Generator: Randomizes and generates transaction-level 

stimulus based on configurable constraints. These trans- 

actions encapsulate the number of headers, data frames, 

and encryption/parity settings. 

• Driver: Receives transactions from the generator and 

converts them into pin-level signal activity on the DUT 

inputs through the interface. 

• Interface: Encapsulates all DUT input and output sig- 

nals for consistent access across the environment. This 

promotes reusability and modularity. 

• Monitor: Observes DUT I/O activity and translates low- 

level signal transitions into transaction-level events. Sep- 

arate input and output monitors were implemented for 

APB transactions and FIFO interactions. 

• Scoreboard: Compares actual DUT output against ex- 

pected results. It handles encrypted and plain data paths, 

validates parity, SOP/EOP, and decryption correctness. 

• Environment: Acts as a container for all components, 

managing connections, mailbox handles, and component 

initialization. 

• Test Cases: Parameterized scenarios to validate boundary 

cases, error injection, configuration variants, and concur- 

rent operations. 

The block diagram of the testbench is illustrated in Figure 2. 

 

 

 

Fig. 2. Block Diagram Of testbench 
 

 

2) Key Verification Features: 

• Directed and Randomized Testing: Both deterministic 

tests for control paths and constrained-random tests for 

stress conditions were employed. 

• Assertion-Based Verification (ABV): SystemVerilog as- 

sertions were added to critical datapaths (e.g., queue 

overflows, invalid configuration writes) to catch corner- 

case violations early. 

• Self-Checking Tests: All tests are self-validating. Any 

mismatch, timeout, or invalid transaction is flagged auto- 

matically. 

• Scoreboard Matching: The scoreboard checks decrypted 

data output, parity correctness, and error flag accuracy 

based on known stimulus inputs. 

• Self-Clearing Behavior Validation: The testbench 

verifies that TX_CONFIGURE, RX_CONFIGURE, and 

DATA_REGISTER reset automatically after execution. 

3) Coverage and Bug Analysis: Functional coverage was 

tracked using Cadence IMC to ensure all configuration modes, 

data paths, and error conditions were exercised. Simulation 

was run using Cadence Xcelium, and waveform analysis was 

performed in SimVision. Key corner cases tested include: 

• Queue overflows and underflows. 

• SOP/EOP framing errors. 

• Parity mismatch scenarios. 

• Mid-transaction mode toggling. 

• Pop/flush operations on empty queues. 

Multiple bugs were discovered during the test phase, such 

as failure to reset queues after flush, improper encryption key 

handling, and delayed error pin assertion. All were fixed and 

re-verified to closure using assertions and directed tests. 

V. RESULTS AND DISCUSSION 

A. Simulation Setup 

The design was simulated using Cadence Xcelium for 

RTL verification and functionally validated through a modular 

SystemVerilog testbench. Waveform analysis was performed 

using SimVision, and functional coverage data was collected 

via Cadence IMC. Both directed and randomized test cases 

were executed to comprehensively validate the transmit (TX) 
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and receive (RX) paths, queue operations, and APB register 

interface. 

B. Functional Verification Outcomes 

The following test scenarios were validated successfully: 

• TX Mode Packet Generation: 

– Transmit sequences with all combinations of parity 

and encryption: disabled, parity-only, encryption- 

only, both enabled. 

– Self-clearing behavior of TX_CONFIGURE register 

after transmission completion. 

– Correct generation and sequencing of SOP, headers, 

data, optional parity, encryption key, and EOP. 

• RX Mode Packet Reception and Processing: 

– SOP/EOP validation, header/data parsing, and in- 

tegrity checks (parity and decryption). 

– Correct  placement  of  received  packets  into 

QUEUE_E or QUEUE_NE. 

– Functional verification of packet drop logic when 

en_drop is enabled. 

• Queue Operations: 

– Pop and flush operations for both queues. 

– Triggering of appropriate error flags on underflow 

and overflow. 

– Verification of self-clearing behavior for 

DATA_REGISTER and ERROR_REGISTER. 

A comprehensive test involved enabling both parity and en- 

cryption simultaneously. A data byte ‘8’h51‘ combined with 

key ‘8’h13‘ produced an encrypted output ‘8’h42‘ and a 

computed parity bit of ‘1‘. These values were sequentially 

output after the data byte, confirming that the FSM correctly 

transitioned through all active states before EOP as illustrated 

in Figure 3. 

 

 

Fig. 3. Transmit mode with parity and encryption enabled 

 

Another comprehensive test involving both parity and en- 

cryption disabled, the RX FSM transitioned through SOP 

detection, header and data reception, and finally to EOP vali- 

dation. All received fields were routed to ‘queue ne‘ as plain 

data, and no errors were flagged. This confirmed the basic 

packet reception functionality as illustrated in Figure 4. To 

validate the POP operation for encrypted packets, simulation 

tests were conducted by writing to ‘data reg[1]‘ through the 

APB interface, which triggered the POP FSM associated with 

‘queue e‘. This queue stores decrypted data resulting from 

 

 
 

Fig. 4. Reception of multiple header and data frame with parity and encryption 

 

 

packets that were originally transmitted in encrypted form. as 

illustrated in Figure 5. 

 

Fig. 5. Pop operation of encrypted packet 
 

 

C. Key Test Results 

 
TABLE I 

SUMMARY OF KEY FUNCTIONAL TEST RESULTS 
 

Test Scenario Expected Outcome Result 

TX with parity and encryption Correct SOP–EOP 
sequence, encrypted data, 
appended key 
Packet dropped, error pin 
set, error code logged 
Error flag set, packet dis- 
carded 
Underflow error raised, 
pin triggered 
Safe reset, no data corrup- 
tion 
Slave error triggered 

Pass 

RX with invalid parity Pass 

Queue overflow in RX mode Pass 

Pop on empty queue Pass 

Mid-transaction mode toggle Pass 

APB invalid address access Pass 
 

 

D. Coverage Analysis 

The functional coverage was found to be over 95% for key 

features, including: 

• All configuration modes of TX and RX. 

• Error scenarios for SOP, EOP, parity, queue conditions. 

• Transition coverage for FSMs in both TX and RX modes. 

This high coverage confirms the design’s robustness and 

readiness for integration in secure communication SoCs. 
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