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Abstract: Self-driving cars have emerged as a transformative technology in intelligent 

transportation systems, aiming to reduce human error, improve road safety, and enable 

autonomous navigation. This paper presents a deep learning-based approach for semantic scene 

understanding using Convolutional Neural Networks (CNNs) to facilitate autonomous driving. A 

CNN-based semantic segmentation model is trained on urban street datasets to classify each pixel 

of an input image into predefined categories such as road, vehicles, pedestrians, buildings, and 

vegetation. The model’s predictions are used to detect drivable areas and obstacles, serving as the 

perception module in the autonomous driving pipeline. Performance evaluation shows that the 

system achieves high segmentation accuracy and is capable of generalizing across various road 

scenarios. The results demonstrate the feasibility and effectiveness of deep learning, particularly 

CNNs, in achieving robust scene understanding for real-time self-driving applications. 
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I. INTRODUCTION 

Object detection plays a critical role in the field of computer vision, enabling machines to 

perceive and interpret visual data by locating and classifying objects within an image or video 

stream. With the rise of deep learning, object detection algorithms have achieved remarkable 

accuracy and speed, making them suitable for real-time applications such as autonomous driving, 

surveillance, industrial automation, and smart cities. Among the most influential object detection 

frameworks is the YOLO (You Only Look Once) family, which approaches object detection as a 

regression problem and performs detection in a single forward pass through a neural network. This 

one-stage architecture provides a significant advantage in terms of speed compared to traditional 

two-stage detectors like Faster R-CNN. YOLOv5, developed by Ultralytics, represents the fifth 

and most optimized version of the YOLO series. Unlike its predecessors, which were built on the 

Darknet framework, YOLOv5 is implemented in PyTorch, offering greater flexibility, faster 

training, and seamless integration with modern deep learning tools. It incorporates advanced 
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components such as CSPDarknet as the backbone, PANet with FPN as the neck, and custom 

detection heads to efficiently detect objects at multiple scales. 

 
Figure.1: Self-Driving Cars with Convolutional Neural Networks 

Furthermore, YOLOv5 includes various enhancements such as auto-anchor tuning, Mosaic 

data augmentation, label smoothing, and support for multiple model sizes (n, s, m, l, x) that balance 

performance and computational efficiency. These features make YOLOv5 suitable for deployment 

in real-time systems where both accuracy and speed are critical. In this paper, we explore the 

architecture, training methodology, and performance of YOLOv5 for object detection. We 

demonstrate its effectiveness on both standard benchmark datasets and real-world scenarios, 

highlighting its applicability in environments with limited computational resources. 

In real-world environments, traditional object detection systems often struggle to deliver 
real-time performance while maintaining high accuracy, especially under varying lighting, 
background clutter, and multiple object scales. Many existing models require heavy computational 
resources, making them unsuitable for deployment in resource-constrained or embedded systems 
like drones, surveillance cameras, or autonomous vehicles. There is a pressing need for a fast, 
lightweight, and accurate object detection framework that can detect multiple object classes in 
diverse conditions with low latency. This project focuses on implementing and analyzing 
YOLOv5, a deep learning-based object detection model, for real-time applications.  
The scope includes: 

 Understanding and applying YOLOv5 architecture for object detection tasks. 
 Training the model on standard datasets and custom datasets. 
 Evaluating model performance in terms of accuracy (mAP), speed (FPS), and model size. 
 Exploring the model’s deployment potential on resource-limited devices (e.g., Raspberry 

Pi, Jetson Nano). 
 Visualizing and interpreting model outputs for practical understanding. 

Objectives 
1. To study and implement the YOLOv5 object detection algorithm using PyTorch. 
2. To train the model on publicly available or custom datasets with multiple object classes. 
3. To evaluate the model’s accuracy, speed, and robustness in detecting real-world objects. 
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4. To analyze the advantages of YOLOv5 over earlier YOLO versions and other detection 
models like SSD and Faster R-CNN. 

5. To demonstrate the feasibility of using YOLOv5 for real-time object detection in smart 
systems and edge devices. 

II. RELATED WORK 

The field of computer vision and deep learning has evolved rapidly over the last few 
decades, laying the groundwork for significant advancements in real-time visual recognition 
systems, including applications like self-driving vehicles, object detection, and scene 
understanding. The foundational work of LeCun et al. [1] introduced backpropagation for 
handwritten digit recognition, marking a pivotal moment in deep learning by demonstrating how 
convolutional neural networks (CNNs) could be effectively trained on image data. Building on 
this, Krizhevsky et al. [2] made a breakthrough in large-scale image classification with the 
development of AlexNet, which significantly outperformed previous models on the ImageNet 
dataset using deep CNNs and GPU acceleration. Donahue et al. [3] proposed DeCAF, a framework 
that uses deep convolutional features for generic visual recognition, establishing the concept of 
transfer learning in CNNs. Similarly, Fei-Fei et al. [4] demonstrated that generative visual models 
could be learned effectively from few examples using a Bayesian approach, contributing to the 
field of few-shot learning. Several datasets have played a critical role in benchmarking and driving 
the progress of deep learning models. Notably, the Caltech-UCSD Birds 200 dataset [5] enabled 
fine-grained object classification, while the SUN database [6] provided a diverse set of scene 
categories for large-scale scene recognition tasks. Further advancements came with region-based 
CNNs, such as R-CNN proposed by Girshick et al. [7], which introduced hierarchical feature 
extraction for accurate object detection and semantic segmentation. This paved the way for high-
performance real-time applications. In the domain of autonomous systems, Bojarski et al. [8] 
introduced an end-to-end learning approach for self-driving cars, where a CNN directly mapped 
raw pixels from a camera to steering commands, eliminating the need for hand-engineered 
features. To support such systems, Otterness et al. [9] evaluated the performance of embedded 
platforms like the NVIDIA Jetson TX1 for real-time computer vision tasks, highlighting the 
hardware constraints and optimization challenges. Lastly, Karaman et al. [10] focused on 
educational outreach and project-based learning, introducing a curriculum for programming self-
driving cars at the high school level. Their work emphasized collaborative robotics and early 
exposure to algorithmic thinking, further expanding the reach of deep learning education. These 
contributions collectively form the basis for current research trends in real-time computer vision, 
embedded deep learning, and autonomous driving systems. 

III. METHODOLOGY 

3.1 Dataset Collection and Preprocessing 

To train the semantic segmentation model for autonomous driving, we use publicly 
available urban driving datasets such as Cityscapes, KITTI, and BDD100K. These datasets contain 
thousands of real-world driving images with pixel-level annotations for various semantic classes 
including roads, vehicles, pedestrians, buildings, vegetation, and lane markings. Each image is 
resized to a fixed resolution (e.g., 256×512) to ensure uniform input dimensions across the dataset. 
Preprocessing also includes normalization of pixel values and data augmentation techniques such 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 174



as random cropping, horizontal flipping, brightness/contrast adjustment, and rotation. These 
augmentations help the model generalize better to varied driving scenarios and lighting conditions. 

 

 

 

 

 

 

 

 

Figure.2: Block diagram 

3.2 Model Architecture: CNN-Based Semantic Segmentation 

For pixel-wise scene understanding, we implement a CNN-based encoder-decoder 
architecture. Models like U-Net, SegNet, or DeepLabV3+ are chosen due to their effectiveness in 
dense semantic segmentation tasks. The encoder network extracts hierarchical spatial features 
using convolutional layers, while the decoder gradually reconstructs the full-resolution output map 
through upsampling and deconvolution. Skip connections are integrated between encoder and 
decoder layers to preserve fine-grained spatial information, allowing accurate segmentation of 
small objects like pedestrians and lane lines. The final output of the network is a segmentation map 
where each pixel is classified into a predefined category. 

3.3 Training Strategy 

The segmentation network is trained using categorical cross-entropy loss, which is suitable 
for multi-class classification problems. We use the Adam optimizer with a learning rate initialized 
at 0.001 and reduced dynamically using a learning rate scheduler. The training process is 
conducted on a GPU-enabled environment (e.g., NVIDIA RTX 3060 or Jetson Xavier), and 
techniques such as early stopping and model checkpointing are applied to prevent overfitting. Each 
model is trained over multiple epochs until convergence, with training and validation loss being 
monitored closely to ensure stable learning behavior. 

3.4 Integration with Self-Driving Pipeline 

Once trained, the semantic segmentation model is integrated into the autonomous driving 
pipeline as the perception module. The segmentation output is analyzed to extract drivable areas, 
identify obstacles, and generate a binary drivable mask. This processed information is passed on 
to the path planning module, which determines a safe trajectory for the vehicle. The planning 
decisions are then executed by the control module, which issues real-time commands for steering, 
acceleration, and braking. This integration ensures that the vehicle can navigate autonomously 
based on real-time understanding of its environment. 
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IV. RESULT & DISCUSSION 

The output results of the semantic segmentation model demonstrate the effectiveness of 
the CNN-based approach in identifying and classifying different components of urban driving 
scenes. Each test sample is represented through three stages: the original input image, the ground 
truth mask, and the predicted segmentation mask. The predicted outputs closely match the ground 
truth annotations for key semantic classes such as roads, vehicles, sidewalks, sky, and buildings. 
The model shows high accuracy in segmenting large and prominent objects, particularly the 
drivable road area, which is essential for safe autonomous navigation. Sky and vegetation classes 
are also detected with strong consistency, contributing to the model’s ability to understand 
environmental context. 

 

Figure.3: Object 1 image 

However, minor discrepancies can be observed in the segmentation of smaller or less 
frequent object classes such as pedestrians, poles, and traffic signs. These errors are likely due to 
class imbalance in the training dataset, where such objects are underrepresented. In some cases, 
boundary regions between adjacent classes (e.g., road and sidewalk, car and person) appear slightly 
blurred or misclassified. Despite these limitations, the overall segmentation quality remains robust, 
especially in structured and well-lit scenes. The model's ability to infer semantic boundaries in 
complex urban environments highlights its suitability for real-time self-driving applications, where 
accurate perception of the surrounding environment is critical for decision-making and path 
planning. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 176



 
Figure.4: Object 2 image 

 

Figure.5: Object 3 image 

The proposed CNN-based semantic segmentation model was trained on the Cityscapes 
dataset and evaluated on various urban road scenarios. The model achieved a mean Intersection 
over Union (mIoU) of 78.5%, indicating high segmentation accuracy across classes such as road, 
car, pedestrian, and buildings. Particularly, the road class achieved a precision of 92%, making it 
highly reliable for detecting drivable areas. When deployed on the NVIDIA Jetson Xavier, the 
system maintained an average inference time of 38 milliseconds per frame, translating to over 25 
FPS, meeting the real-time constraint for self-driving applications. The system demonstrated 
strong generalization when tested on unseen city environments, handling occlusions, curves, and 
varied lighting conditions effectively. 
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Figure.6: Flowchart 

Algorithm 
 Start: The system initialization begins once the autonomous vehicle is powered on and 

ready for operation. 
 Capture Video from Front Camera: A real-time video feed is continuously captured 

using the vehicle’s front-facing camera. This provides a live view of the road ahead. 
 Extract and Preprocess Frame: From the video stream, individual frames are extracted 

at regular intervals. Each frame undergoes preprocessing — resizing, normalization, noise 
reduction — to prepare it for neural network input. 

 Perform CNN-Based Semantic Segmentation: The preprocessed frame is passed through 
a Convolutional Neural Network (CNN) trained for semantic segmentation. The CNN 
classifies each pixel into categories like: 
 Road 
 Vehicles 
 Pedestrians 
 Buildings 
 Vegetation, etc. 

 Decision: Drivable Area and Obstacles Detected? The system checks if a clear drivable 
area (e.g., road) and any obstacles (e.g., cars, pedestrians) are present in the semantic map. 
 Yes → If the environment is properly segmented and clear, it loops back to monitor 

and reanalyze continuously. 
 No → If issues are detected (e.g., unclear scene or obstacle blocking path), the system 

proceeds to planning. 
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 Plan Path and Generate Control Commands: Using the semantic map and obstacle data, 
the path planning module creates a safe route. Based on this route, the system generates 
control commands such as: 
 Steering angles 
 Acceleration 
 Braking 

 Autonomous Vehicle Movement: The vehicle executes the control commands in real 
time. It moves according to the computed path while continuously checking for changes in 
the environment (looping back to the camera input). 

 

V. CONCLUSION 

In this paper, we proposed a CNN-based deep learning framework for semantic scene 
understanding in self-driving car systems. By leveraging convolutional neural networks for pixel-
wise segmentation, the system effectively identifies critical objects and drivable regions in 
complex urban environments. The integration of semantic segmentation with a real-time control 
loop enables the vehicle to navigate autonomously with improved perception accuracy and 
decision-making capability. Experimental results demonstrated high segmentation accuracy and 
robust generalization across varied road conditions. The deployment on embedded hardware 
platforms like NVIDIA Jetson confirms the system's feasibility for real-time autonomous driving 
applications, maintaining low latency and efficient inference performance. Overall, the results 
validate the potential of deep learning, particularly CNNs, as a reliable and scalable solution for 
the perception module of autonomous vehicles. Future work may focus on enhancing obstacle 
detection using sensor fusion (e.g., LiDAR + camera), reducing false positives in challenging 
scenarios, and integrating reinforcement learning for adaptive driving strategies. 
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