
HMI For E-Surveillance IoT Panel In Smart
Multi-location Facility Management System

1Farid Ahmad Shaikh, 2Sonia Rohit Joshi, 3Makarand Govind Kulkarni
Dept. of Electronics Engineering

K J Somaiya School of Engineering
Somaiya Vidyavihar University

Mumbai, INDIA
1faridahmad.as@somaiya.edu, 2soniajoshi@somaiya.edu, 3makarandkulkarni@somaiya.edu

Abstract—The design and implementation of a Human-
Machine Interface(HMI) for an IoT based E-Surveillance panel
aimed at enhancing facility management in multi-location envi-
ronments. With the rapid expansion of IoT technology, managing
multiple facilities remotely has become increasingly feasible and
necessary for modern organizations. Our proposed HMI inte-
grates diverse surveillance and monitoring systems, allowing for
seamless, centralized control of various functionalities, including
video surveillance, intrusion detection, energy monitoring, and
environmental controls, across geographically dispersed sites. The
system leverages data-driven analytics and a unified interface
to provide real-time feedback and support decision making,
helping to improve facility security, operational efficiency, and
resource utilization. By enabling intelligent automation and
remote management capabilities, this E-Surveillance IoT Panel
offers a scalable solution for the complex demands of smart
facility management. Smart surveillance integrates the Internet
of Things (IoT) with machine learning to create advanced
security systems capable of real-time monitoring, analysis, and
response. Automated Threat Detection and Behavior and Pattern
Recognition is possible.

Index Terms—GUI Design, Intelligent Video Surveillance Sys-
tem, PySide, QT, SQL

I. INTRODUCTION

In recent years, the rapid expansion of the Internet of
Things (IoT) has transformed traditional facility management,
enabling organizations to monitor and manage their facilities
remotely and more effectively. Facility management for geo-
graphically dispersed sites has historically been challenging,
often requiring significant manpower, onsite monitoring, and
manual data collection [1]. However, IoT technology now
offers a way to streamline these processes, providing real-time
data and automation capabilities that allow for centralized and
remote oversight. This shift is particularly relevant for organi-
zations operating across multiple locations, such as corpora-
tions with numerous office buildings, campuses, or retail sites,
where maintaining consistency and security across all facilities
is crucial. The demand for more robust and unified facility
management solutions has driven the development of inte-
grated Human-Machine Interfaces (HMIs) that bring together
different monitoring systems into one cohesive platform. Such
HMIs enable centralized control over diverse systems like
video surveillance, environmental controls, and energy man-

agement [2]. Additionally, data-driven analytics within these
HMIs can assist in decision-making by offering insights on
factors like energy consumption, occupancy patterns, and
environmental conditions. These capabilities not only enhance
the security and operational efficiency of facilities but also
help in meeting sustainability goals by optimizing resource
usage [3]. Our project addresses this need by designing and
implementing an IoT-based E-Surveillance panel equipped
with a comprehensive HMI. This system is intended to be
scalable and adaptable, capable of integrating new devices and
responding dynamically to the unique needs of each facility
[4]. The E-Surveillance HMI aims to consolidate facility man-
agement operations onto a single interface, providing facility
managers with greater visibility and control across multiple
locations. The platform’s capabilities are further enhanced by
automation and real-time analytics, which help organizations
to proactively manage risks, improve operational efficiency,
and make data-informed decisions [5].

II. LITERATURE REVIEW
A. Background

In the era of smart technology, the demand for efficient
multi-location facility management systems has grown expo-
nentially. Traditional methods of facility management often
rely on manual monitoring and operations, leading to ineffi-
ciencies, high costs, and delayed responses to critical issues
[6]. With the advent of IoT (Internet of Things) and HMI
(Human-Machine Interface) technologies, a new paradigm
has emerged, enabling centralized, automated, and real-time
control of facilities across multiple locations. IoT Panels play
a crucial role in connecting physical devices (e.g., sensors,
cameras, actuators) to the digital interface provided by HMI
[7]. These panels gather data from IoT devices, process it, and
provide actionable insights to operators through an intuitive
HMI [8]. This integration is especially valuable in applications
like e-surveillance, energy management, and environmental
monitoring [10].

The integration of IoT into surveillance and facility man-
agement systems has transformed traditional security infras-
tructure into intelligent, connected ecosystems [6]. With the
proliferation of smart devices and high-speed communication

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 14

Tanoy
Textbox

Fig. 1. Basic Block Diagram

networks, organizations are now capable of monitoring and
managing multiple facilities from a centralized control unit.
This shift enables improved responsiveness, efficiency, and
data-driven decision-making in real-time environments [10].

B. Related work

With the proliferation of IoT technologies, the demand
for efficient monitoring and visualization systems has grown
significantly. IoT panels, which aggregate data from multiple
sensors, are critical for real-time decision-making in smart
facility management systems. However, ensuring that this data
is presented in an intuitive and actionable format remains a
challenge. Human-Machine Interfaces (HMIs) have emerged
as an effective solution for bridging the gap between raw
IoT sensor data and user-friendly visualizations. Various ap-
proaches have been explored for integrating IoT data with
HMI systems. Cloud-based platforms such as AWS IoT Core
and Google Cloud IoT offer dashboards for monitoring and

analysing sensor data. These solutions are effective for remote
facilities but rely heavily on internet connectivity, making
them less suitable for environments where local control is
critical. In contrast, web-based HMIs built using technologies
like HTML, CSS, and JavaScript provide flexible visualization
solutions. While these are widely adopted, their reliance
on browser-based interfaces can introduce latency, especially
when handling real-time data from multiple sensors [6]. Desk-
top and embedded systems, such as those built using the
QT framework, are gaining traction in industrial IoT settings
due to their performance and adaptability. QT’s rich graphical
libraries and cross-platform support make it an ideal choice
for developing robust and responsive HMIs [3].

C. Our Contribution

In this work, we focus on implementing an IoT panel
that visualizes sensor data through an HMI developed using
QT for Python. The panel is designed to collect data from
various sensors, such as temperature, humidity, and air quality
monitors, and display this data in real time. The following
steps outline the key features and implementation of our
approach:

1) Sensor Integration: Sensors such as temperature and
humidity modules are connected to the IoT panel through com-
munication protocols like MQTT and I2C. Data is aggregated
on the panel and processed for visualization.

2) Real-time Visualization: The HMI displays sensor data
in graphical formats, such as line graphs for temperature trends
and bar charts for humidity levels [9]. Alerts and warnings are
integrated into the interface, with color-coded visual indicators
for critical sensor values.

3) HMI Development Using QT: QT for Python (PySide6)
was used to design a scalable and responsive interface [3].
Features include zoomable charts, interactive dashboards, and
buttons for controlling devices connected to the IoT system.

4) Local and Cloud Storage: The panel uses SQLite for
offline storage and synchronizes data with a cloud server for
centralized monitoring when connectivity is available [4].

III. METHODOLOGY

A. QT Framework

The development of this IoT-based E-Surveillance Human-
Machine Interface (HMI) utilizes a combination of technolo-
gies focused on delivering a robust, user-friendly, and scalable
platform. The QT framework serves as the foundation for
the HMI’s graphical interface, providing a cross-platform
solution that enables consistent functionality and design across
different operating systems. QT’s extensive libraries allow for
creating highly customizable and interactive user interfaces,
essential for visualizing real-time IoT data, alerts, and system
controls. QT also offers support for multimedia, making it
well-suited for integrating video feeds, graphical displays, and
interactive elements critical in monitoring and surveillance
applications[3].

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 15

B. Python Programming

Python is the primary language used for backend program-
ming, processing data from IoT devices, handling system
logic, and interacting with the QT-based front end. Python’s
versatility and extensive libraries make it ideal for developing
the backend modules that support data processing, analytics,
and communication with IoT devices. Python libraries such as
PyQt5 or PySide are employed to integrate Python with the
QT framework, bridging the backend and the interface, en-
abling real-time data visualization, and implementing control
mechanisms [5].

C. Hardware Used Raspberry Pi (RPI)

The IoT-based E-Surveillance HMI leverages the Raspberry
Pi (RPI) as a central hardware component, serving as a ver-
satile and cost-effective device for running the HMI software
and managing interactions with IoT devices and sensors. The
Raspberry Pi’s compact size, low power consumption, and
compatibility with a wide range of sensors and modules make
This chapter can be summarized as the logical thinking behind
the proposed logic of HMI GUI design and implementation of
ML.

D. Protocols and Data Handling

The HMI connects to various IoT devices via standard IoT
communication protocols such as MQTT (Message Queuing
Telemetry Transport) or HTTP/REST APIs, depending on M.
Tech (Electronics Engineering) Batch: 2023-2025 Page — 11
the specific devices and sensors used. These protocols ensure
reliable, low-latency communication between the HMI and
the distributed sensors and controllers, allowing real-time data
collection and command execution across multiple locations
[5].

E. Database Management System (DBMS)

A database management system, potentially a lightweight
database like SQLite or a more scalable solution like Post-
greSQL or MySQL, is used to store historical data, system
logs, and configuration settings. The DBMS allows the HMI
to access and display historical data trends, enabling better
decision-making and performance analysis.

F. Data Analytics and Visualization Libraries

For data processing and analytics, Python libraries like Pan-
das, NumPy, and Matplotlib (or PyQtGraph for QT) support
the real-time analysis and visualization of IoT data, providing
insights on key metrics such as energy usage, security alerts,
and environmental conditions. This layer of analytics is critical
in helping users make informed decisions and spot patterns
that might require attention.

G. Security Protocols

Cybersecurity is essential in IoT-based applications, es-
pecially for surveillance. SSL/TLS encryption, secure user
authentication (OAuth or two-factor authentication), and data
encryption ensure that sensitive data transmitted between de-
vices, databases, and the HMI remains secure. By leveraging

these technologies, the HMI offers a unified, data-driven
platform that enhances facility management by supporting
real-time monitoring, interactive controls, and intelligent au-
tomation for security, environmental monitoring, and resource
optimization across multiple sites

IV. IMPLEMENTATION
The implementation of the IoT-based E-Surveillance

Human-Machine Interface (HMI) involves a systematic ap-
proach to integrating hardware, software, and communication
protocols to create a cohesive system for multi-location fa-
cility management. The HMI is designed to provide facility
managers with an intuitive, scalable, and responsive platform
for real-time monitoring and control [9]. Below, we outline
the key steps and components involved in the implementation
process, including the design of the graphical user interface
(GUI), hardware setup, IoT device integration, data processing,
and system testing.

A. HMI Design with QT Framework
The HMI’s graphical user interface (GUI) was developed

using the QT framework, specifically leveraging PySide6 for
Python integration. The GUI is modular, allowing for dynamic
updates and seamless integration of new functionalities. Key
design considerations include:

1) Modular Layouts: The interface is divided into distinct
panels for different functionalities, such as video surveillance,
environmental monitoring, energy usage, and alerts. Each
panel is designed to be collapsible or expandable, ensuring
that users can prioritize the most relevant information.

2) Real-Time Data Visualization: Sensor data (e.g. tem-
perature, humidity, air quality) is displayed using interactive
widgets, including:

• Line graphs for tracking trends over time.
• Bar charts for comparing metrics across multiple loca-

tions.
• Gauge widgets for instantaneous readings of critical pa-

rameters.
• Video feed windows for live surveillance streams.
3) User Interaction: The GUI includes interactive elements

such as buttons for controlling IoT devices (e.g., turning on/off
lights or HVAC systems), drop down menus for selecting
specific locations, and sliders for adjusting thresholds for
alerts.

4) Responsive Design: The QT framework ensures that the
GUI adapts to different screen sizes and resolutions, making it
compatible with both desktop monitors and embedded displays
on Raspberry Pi touchscreen modules [8].

5) Alert System: Critical alerts (e.g., intrusion detection,
abnormal energy usage) are highlighted using color-coded
indicators (red for critical, yellow for warnings) and pop-
up notifications to ensure immediate attention. The GUI was
iteratively designed with feedback from potential users (fa-
cility managers) to ensure usability and clarity. QT’s QML
(Qt Modeling Language) was used for rapid prototyping of
complex graphical elements, while Python scripts handled the
backend logic for data updates and user inputs[3].

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 16

B. Hardware Setup with Raspberry Pi
The Raspberry Pi (RPi) serves as the central hardware

platform for running the HMI software and managing IoT
device communications[4]. The implementation involved the
following steps:

1) Hardware Selection: The Raspberry Pi 4 Model B was
chosen for its quad-core processor, 4GB RAM, and support for
multiple connectivity options (Wi-Fi, Bluetooth, GPIO pins).
This ensured sufficient processing power for running the HMI
and handling real-time data [4].

2) Peripherals: The RPi was interfaced with a 7-inch
touchscreen display for standalone operation, enabling on-
site monitoring without requiring an external monitor [8].
Additional peripherals included:

• USB cameras for video surveillance.
• Sensors for temperature, humidity, and motion detection

connected via GPIO or I2C interfaces.
3) Power Management: To ensure reliability in multi-

location deployments, the RPi was equipped with a stable
power supply and a backup battery module to handle power
outages.

4) Enclosure:: The RPi and peripherals were housed in a
compact, industrial-grade enclosure to protect against environ-
mental factors like dust and temperature fluctuations, making
it suitable for deployment in diverse facility environments.

C. IoT Device Integration
The HMI communicates with a variety of IoT devices

across multiple locations, ensuring seamless data collection
and control. The integration process included:

1) Sensor and Device Connectivity: :
• Sensors (e.g., DHT22 for temperature / humidity, PIR for

motion detection) were connected to the RPi via I2C or
GPIO pins for local data collectionGALOIS.

• IP cameras and smart actuators (e.g. relays for controlling
lights or doors) were integrated using Wi-Fi and Ethernet
connections.

2) Communication Protocols:
• MQTT: Used for lightweight, publish-subscribe-based

communication between RPi and IoT devices. An MQTT
broker (for example, Mosquitto) was hosted on the RPi
to manage message exchanges [7].

• HTTP/REST APIs: Used for cloud-based interactions,
enabling the HMI to fetch data from external services
or synchronize with a central server.

• WebSocket: Implemented for real-time video streaming
from IP cameras to the HMI [7].

• Device Management: A device registry was maintained
in the SQLite database to track connected devices, their
statuses, and configurations. This allowed the HMI to
dynamically update the GUI when new devices were
added or removed [8].

D. Data Processing and Storage
The HMI processes and stores data to support real-time

monitoring and historical analysis:

Fig. 2. Hardware Implementation

1) Real-Time Processing: Python scripts running on the
RPi process incoming sensor data using libraries like Pandas
and NumPy. Data is filtered, aggregated, and formatted for
visualization on the GUI[3].

2) Local Storage: SQLite was used to store sensor read-
ings, system logs, and user configurations locally on the
RPi. The database schema was optimized for quick retrieval
of time-series data, enabling efficient rendering of historical
trends.

3) Cloud Synchronization: When internet connectivity is
available, data is periodically synced to a cloud database
(e.g., PostgreSQL hosted on AWS) using REST APIs [8].
This ensures centralized access to data from all locations and
supports remote monitoring[8].

4) Analytics: : Real-time analytics, such as detecting
anomalies in energy usage or identifying unusual patterns in
motion sensor data, were implemented using machine learning
models (e.g., scikit-learn). These models were trained offline
and deployed on the RPi for edge-based inference.

E. Security Implementation

To protect the system from cyber threats, the following
security measures were implemented:

1) Data Encryption: All data transmitted between IoT
devices, the RPi, and the cloud was encrypted using SSL/TLS
protocols [10].

2) User Authentication: : The HMI requires secure login
credentials, with OAuth 2.0 implemented for user authentica-
tion. Two-factor authentication (2FA) was added for adminis-
trative accounts[4].

3) Network Security: The RPi was configured with a fire-
wall to restrict unauthorized access, and MQTT communica-
tions were secured with username/password authentication [7].

4) Data Integrity: : Hashing algorithms (e.g., SHA-256)
were used to verify the integrity of stored and transmitted
data [8].

CONCLUSION

This research presents the design and implementation of
an IoT-based E-Surveillance Human-Machine Interface (HMI)
tailored for efficient management of multi-location facilities.
By leveraging the QT framework, Python programming, and
Raspberry Pi hardware, the proposed system integrates diverse

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 17

functionalities video surveillance, intrusion detection, energy
monitoring, and environmental control into a unified, user-
friendly platform. The HMI enables real-time data visual-
ization, intelligent automation, and centralized control across
geographically dispersed sites, addressing the challenges of
traditional facility management with enhanced scalability and
operational efficiency. The system’s modular architecture,
supported by robust communication protocols like I2C and
secure data handling with SQLite and cloud synchronization,
ensures adaptability to diverse facility requirements. Real-
time analytics and machine learning-driven features, such as
automated threat detection and behavior recognition, further
enhance security and decision-making capabilities. Testing and
validation confirmed the system’s reliability, responsiveness,
and usability, making it a practical solution for organizations
managing complex, multi-site operations. The proposed E-
Surveillance HMI contributes to the growing field of smart
facility management by offering a cost-effective, scalable,
and secure platform that optimizes resource utilization and
improves operational oversight. Future work will focus on
enhancing the system’s machine learning capabilities for pre-
dictive analytics, integrating advanced edge computing tech-
niques to reduce latency, and expanding compatibility with
emerging IoT devices. Additionally, real-world deployments
across varied facility types will provide further insights into
the system’s performance and scalability, paving the way for
broader adoption in smart infrastructure management.

ACKNOWLEDGMENT

We sincerely thank K J Somaiya School of Engineering,
Somaiya Vidyavihar University, for providing the necessary
resources, lab facilities, and academic support. We are grateful
to the Department of Electronics Engineering for encouraging
innovation and research.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp.
22–32, Feb. 2014, doi: 10.1109/JIOT.2014.2306328.

[2] S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IoT-based monitoring and
smart surveillance system using machine learning,” in Proc. Int. Conf.
Electron., Commun. Aerosp. Technol. (ICECA), Coimbatore, India,
2019, pp. 1366–1371, doi: 10.1109/ICECA.2019.8822170.

[3] The Qt Company, Qt 5.15 Documentation, 2020. [Online]. Available:
https://doc.qt.io/qt-5.15/.

[4] Raspberry Pi Foundation, Raspberry Pi 4 Model B Documentation, 2020.
[Online]. Available: https://www.raspberrypi.org/documentation/.

[5] M. Summerfield, Rapid GUI Programming with Python and Qt: The
Definitive Guide to PyQt and PySide, Upper Saddle River, NJ, USA:
Prentice Hall, 2007.

[6] A. McEwen and H. Cassimally, Designing the Internet of Things,
Chichester, UK: John Wiley and Sons, 2013.

[7] MQTT.org, MQTT Version 5.0 Specification, 2019. [Online]. Available:
https://mqtt.org/mqtt-specification/.

[8] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015, doi: 10.1016/j.comnet.2014.11.008.

[9] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013, doi:
10.1016/j.future.2013.01.010.

[10] D. Bandyopadhyay and J. Sen, “Internet of Things: Applications and
challenges in technology and standardization,” Wirel. Pers. Commun.,
vol. 58, no. 1, pp. 49–69, May 2011, doi: 10.1007/s11277-011-0288-5.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 7 2025

PAGE NO: 18

