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Abstract 

 

Respiratory disorders, including severe conditions like lung carcinoma, are on the rise 

globally, posing a growing health burden. Early and accurate diagnosis is essential for 

effective treatment. Recent innovations in machine learning (ML) and deep learning (DL) 

have shown considerable promise in supporting pulmonary diagnostics through enhanced 

prediction accuracy in imaging and acoustic analysis. These methods facilitate automated 

respiratory sound evaluation by extracting and analyzing key audio features, reducing noise, 

and identifying pathological patterns. This study reviews the application of ML and DL in 

computer-aided lung sound analysis, drawing from major databases such as Elsevier, 

Springer, IEEE, and PubMed. Key aspects explored include types of respiratory sounds, 

related pathologies, dataset characteristics, preprocessing strategies, classification methods, 

and model performance. The review concludes with insights into current limitations and 

future directions for advancing intelligent respiratory sound diagnostics. 

Keywords: Lung sound analysis, Respiratory sound, Machine learning, Deep learning. 

 

Introduction 

 

Auscultation using a stethoscope remains a fundamental and widely adopted clinical 

method for evaluating respiratory function. Historically, it was one of the earliest diagnostic 

techniques employed by physicians to detect various pulmonary disorders [1]. The method is 

non-invasive, cost-effective, safe, and simple to perform. Different types of lung sounds—

such as tracheal, bronchial, bronchovesicular, vesicular, and oral—can be detected depending 

on the anatomical site of auscultation [2]. Notably, the majority of respiratory sound energy is 

concentrated below 200 Hz [3]. Under normal physiological conditions, healthy lungs 

generate typical breath sounds. In contrast, pathological lungs often produce adventitious 

sounds, categorized as either continuous or discontinuous. The detection and interpretation of 

these abnormal sounds—based on their location, acoustic properties, and surrounding clinical 

context—can aid physicians in identifying underlying respiratory conditions [4]. However, 

this process requires substantial clinical experience. Inexperienced practitioners may 

misinterpret lung sounds due to external noise interference, suboptimal instrument 
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calibration, or limited training [10]. To address these challenges, several automated 

algorithms have been developed for the detection and classification of lung sounds [5]. 

Computational analysis enables systematic identification of respiratory anomalies by 

automatically extracting acoustic features from recorded signals [3,6]. Numerous techniques 

have been employed to detect irregularities in respiratory sounds; yet, earlier research has 

focused on the recognition of pulmonary sounds rather than on comprehensive diagnostic 

systems. Consequently, respiratory sound analysis remains an active area of investigation [7]. 

This review presents an overview of respiratory sound types, acoustic features, and 

associated pathological conditions. Furthermore, it summarizes previous studies that have 

applied machine learning techniques to automated respiratory sound analysis. These include 

Support Vector Regression (SVR), Principal Component Analysis (PCA), Mel-Frequency 

Cepstral Coefficients (MFCC), k-Nearest Neighbors (KNN), Gaussian Support Vector 

Machines (SVM), Neural Networks (NN), Empirical Mode Decomposition (EMD), Discrete 

Wavelet Transform (DWT), Convolutional Neural Networks (CNN), Bidirectional Gated 

Recurrent Units (BiGRU), Convolutional Bidirectional Long Short-Term Memory (C-

BiLSTM), Artificial Neural Networks (ANN), and Deep Neural Networks (DNN). 

The subsequent sections elaborate on the categories and distinguishing characteristics 

of respiratory sounds, as well as related medical conditions. A detailed summary of prior 

research is provided, covering aspects such as respiratory sound acquisition using hardware 

devices, datasets used, feature extraction techniques, and classification algorithms. Finally, 

the paper concludes with an evaluation of the reviewed methods and a discussion of their 

outcomes. 

Breathing sounds 

Respiratory sounds are generated by the movement of air through the airways and the 

respiratory tract. In healthy individuals, these sounds are typically smooth and soft, reflecting 

unobstructed airflow. In contrast, abnormal or pathological respiratory sounds often indicate 

underlying medical conditions. Normal breath sounds are generally categorized into three 

types: vesicular, bronchovesicular, and bronchial. Abnormal respiratory sounds are typically 

classified as adventitious sounds, which may be either continuous or discontinuous in nature 

[1,2]. Due to their irregular and often non-stationary characteristics, adventitious lung sounds 

can be challenging for clinicians to detect and interpret accurately [8]. Figure 2 illustrates the 

classification and defining features of various respiratory sounds, including both normal and 

abnormal types [1,2,4,5,9].  
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Each respiratory pathology is commonly associated with specific acoustic signatures 

that vary in frequency content, ranging from low to high pitch, depending on their origin and 

characteristics [9]. Moreover, Figure 2 provides a comprehensive overview of the diseases 

associated with different respiratory sound types. 

Methodology 

 

This section will examine the search methodology and inclusion and exclusion 

parameters for selected publications. 

Search Methodology 

 

A comprehensive literature search was conducted across major scientific databases, 

including Scopus, Elsevier, Springer, IEEE, and PubMed. The search focused on studies related 

to lung sound analysis, respiratory signal processing, and machine learning-based classification of 

lung sounds. Relevant English-language articles were identified using keywords found in the title, 

abstract, and author-specified terms, without restrictions on publication year. Initially, 182 

records were retrieved. After a preliminary screening based on titles and abstracts, 120 articles 

were excluded. Of the remaining 62, an additional 23 were removed due to insufficient 

methodological or experimental detail. Ultimately, 39 studies met the inclusion criteria and were 

selected for in-depth review  

Guidelines for Inclusion and exclusion 

 

This comprehensive analysis includes Studies that identified severe breathing-related 

conditions using machine learning techniques and breathing sound characteristics. An 

investigation considered for inclusion in this comprehensive assessment had to meet a certain 

threshold of training, cross-validation evaluation, or analysis of data sets. This is because 

algorithms need methods for resizing to have a higher likelihood of correctly generalizing on 

unrelated databases. The age of those involved in the lung condition investigation varies [11]. 

The most common cause of sickness and mortality in people is chronic breathing-related 

conditions, which are the focus of this comprehensive investigation. This thorough 

investigation uses machine learning techniques and lung sounds to recognize breathing-related 

conditions. Additionally, patients from one specific non-target illness group or those who were 

healthy were omitted from the adverse or non-disease classification since these individuals 

have more fundamental issues with little medical significance.  
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Here, we used pulmonary sound analysis to analyze the early stages of respiratory 

illness. The one pulmonary sound consists of two or more lung diseases. Similarly, the basis 

for this inquiry is separated breathing noises. 

 

 

 

Fig.1 Workflow for lung sound classification 

 

 

 

                
 

(a) Respiratory Sound (b) Abnormal Lung Sound
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(c) Normal Lung Sound 

 

 
 

(d) Adventitious Lung Sound 
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Fig. 2 Lung sounds and their types. (a) shows respiratory sound types. (b) shows 

abnormal lung sounds. (c) various normal lung sounds and their frequency range. (d) The two 

kinds of adventitious lung sounds and their frequency range, time duration for respiration, 

and associated lung diseases [1, 2-5, 8, 9, 12]. 

A brief description review of the literature 

 

The machine learning and deep learning algorithms investigators previously 

used to investigate lung sounds are covered in this discussion. The eligibility requirements 

based on selected 39 publications are summarized in the Table. 1. 

Lung sound recording devices 

 

Many researchers use real-time respiratory lung sound records with different devices 

for auscultation. Here, we see some auscultate devices. Samples were acquired using an 

inexpensive electronic stethoscope, recording at 44.1 kHz. Concurrently collecting background 

sounds, a separate Sony-ICD-UX71-81 sensor [13] was attached to the stethoscope's front. [14] 

proposed the use of two instruments to capture tracheal noises. A digital stethoscope that 

connects to a mobile is called HF-Type-2. The components of the HF-Type-3 include a mobile 

device, an earpiece, an abdominal part, and a stethoscope cable. The mobile phone uses an 

application designed to capture the bronchial sounds it obtained. The microphone device 

comprised a signal processing system, a notebook PC, and an electro-stethoscope with a broad- 

spectrum sound detector (Bio-Sound Sensor BSS-01) [15, 16] affixed to the interior of a 

diaphragm. [17] An audio device is fixed to the back of the upper body, while another receives 

data using a flow sensor, which is employed to time the respiration sounds. Hence, they 

correspond with the inhalation and exhalation processes. The lung sound detector is an air- 

coupled electret instrument (Sony ECM-44) that measures a lung cavity's shape. A tape-fixed 

and an audio detector were placed on the chest area. An audio connector converts the sound 

input to digital form at 48 kHz and 24 bits per data and stores it on a laptop drive [18]. The 

researchers recorded the respiratory sounds using mobile phone applications. The electronic 

stethoscope is used to auscultate the lung sounds and separate lung sounds from heart sounds. 

Respiratory sound dataset 

 

Here, we see three central lung sound databases that earlier researchers used, such as e 

International Conference on Biomedical and Health Informatics (ICBHI) 2017 Challenge 

Respiratory Sound Database [19, 20, 22], Computerized Respiratory Sound Analysis (CORSA) 

[23, 24], R.A.L.E. (Respiration Acoustics Laboratory Environment) [25, 26], 
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RespiratoryDatabase@TR [27], and Kaggle platform [28, 29]. Then, many researchers created 

their own datasets. Many investigators primarily use the ICBHI dataset. ICBHI also details the 

subject's respiratory condition chest status, data collection device, collecting method, and age 

and gender. Of the 6898 phases, 1864 fall under wheezes, 886 as crackles, 506 as having both 

occurrences and 3642 as having none [19 - 22]. Several lung sound databases, such as the Lung 

audio dataset, Respiratory sound database, Physiological Signal Analysis System (PhiSAS), 

and Marburg Respiratory Sounds (MARS), are movable online. The dataset was created with 

the help of a stethoscope. A stethoscope that is sold publicly was used for gathering data from 

the lungs [30]. 

Feature extraction algorithm 

 

In this section, the procedure for categorizing a significant incoming signal with 

numerous of the same elements can be simplified to a lesser number of typical characteristics 

that can precisely define the source signal [31]. Numerous characteristics can be extracted from 

sounds in the frequency, time, and frequency-time domains, and those characteristics have 

served as the foundation for techniques for analysing sound [31 - 33]. A machine learning 

algorithm uses characteristics to differentiate across the various respiratory sound categories. 

Respiratory sounds are fundamentally irregular, so their character cannot be predicted by just 

one characteristic [22]. Existing computational implementations of computerized lung sound 

identification have utilized Mel frequency domain analyses. These characteristics enable the 

feature minimization stage to choose precisely the appropriate attributes for every category 

assignment by offering broad knowledge of the audio spectrum and in-depth analyses of 

particular frequencies [34]. The capacity to differentiate between distinct irregular adventitious 

sounds and typical respiration sounds is necessary for practical respiratory sound assessment 

[35]. For respiratory sound data evaluation, a variety of spectrum methods for analysis 

employed in the research, such as autoregressive, Fourier transform (FT), AR-Burg, 

autoregressive moving average, Mel-frequency cepstral coefficients (MFCC), and fast Fourier 

transform (FFT)-Welch. 

Classification methods 

 

Table 1. Review the kind of machine and deep learning algorithms used by earlier 

investigators for computerized lung/respiratory sound analysis. The CNN and SVM algorithms 

have often been utilized in previous research. The various machine learning algorithms 

primarily served in this review study. 
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Table 1. Machine and Deep learning-based lung/Respiratory sounds analysis 

 

 

Study 

 

Sound 

type 

 

Auscultation 

 

No. of 

inputs 

 

Database 

 

Method 

 

Results 

[21] Normal, 

crackles, 

and wheeze 

Digital 

stethoscope 

with audio 

recorder 

n = 770 Own database K – fold cross 

validation 

For usual vs. unusual, 

crackles vs. wheezing, 

normal vs. crackles, and 

normal vs. wheezing, the 

algorithms verification 

accuracy values included 

83.68%, 83.67%, 

80.94%,  and  90.42%, 

correspondingly. 

The precision rates of the 

future assessment 

included  82.22%, 

67.74%,  67.80%,  and 

81.36%, in that order 

[22] COPD and 

Pneumonia 

- n = 703 ICBHI 2017 

database 

Quadratic 

discriminate 

Quadratic discriminate 

attained 99.70% of 

precision value. 

[23] Wheeze - n = 111 CORSA k-NN The highest performance 

for MFCC-based element 

categorization  is  99%, 

90%, and 89% for mild, 

moderate, and severe 

specimens. 93% of 

wheezes were detected 

on the median. The 

telemedicine software 

was determined to be 

57%, 72%, and 76% for 

mild,  moderate,  and 

severe stages. 

[24] COPD stethoscope 

with a 

microphone 

attached 

n = 51 Own database STFT 86.6% for moderate 

COPD, 69.2% for severe 

COPD, and 84.5% for 

extremely severe COPD 

are  the  true  positive 

signs. 

[26] Lung 

Sounds 

- - R.A.L.E database CNN We succeeded in raising 

the precision to 95.56% 

from 95.10%. 
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[27] COPD Littmann3200 

digital 

stethoscope 

n = 42 RespiratoryDatabas 

e@TR 

SVM SVM classification 

required 0.836 seconds to 

provide an early COPD 

severe assessment. 

[28] Lung 

Sounds 

Electronic 

stethoscope 

with audacity 

software 

n = 920 Kaggle Dataset GB It was discovered that the 

gradient boosting 

algorithm predicted the 

pneumonia cases with a 

greater precision of 97%. 

[30] Lung 

Sounds 

electronic 

stethoscope 

and sound 

recording 

device HF- 

Type-1 

- HF_Lung_V1 CNN–BiGRU The developed model 

displayed the potential to 

classify breathing as 

DASs wrongly; a fresh 

database with better- 

matched input or a 

different training 

technique is necessary to 

      overcome this issue. We 

developed the DAS 

identification algorithm 

using sound records with 

a D label. 

[35] Lung 

Sounds 

Electronic 

stethoscope 

n = 500 Own database 

ICBHI 2017 

database 

Fine Gaussian 

SVM 

A Fine Gaussian SVM 

algorithm yielded 99% 

accuracy, 99.04% 

sensitivity, and 99.2% 

specificity 

[36] Lung 

Blowing 

sound 

Microphone n = 188 Own database Quadratic 

Linear 

Discriminant 

94.69% accuracy, 

94.45%sensitivity and 

99.45%specificity  they 

attained. 

[37] Cough 

sound 

Smartphone 

microphone 

n = 150 Own database ResNet50 +SVR Combination displays 

exceptional assessment 

of the condition of the 

lungs measures while 

coughing, enabling the 

realization of 

an  easy  and  quick 

assessment for patients 

with pneumonia. 
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[38] Lung 

sounds 

Electronic 

stethoscope 

with 

microphone 

n = 532 Own database ALSD-Net Methodology obtained 

94.24% precision by 

using methods of data 

enhancement for several 

classifications along with 

instruction of pulmonary 

sounds. 

[39] Lung 

sounds 

- n = 126 ICBHI 2017 

database 

Peking University 

(PKU) respiratory 

dataset 

CNN When developed on the 

ICBHI+PKU database, 

our algorithm 

outperforms all of them 

significantly. Specificity 

is 95.80%. 

[40] Respiratory 

sounds 

Electronic 

stethoscope 

and mobile 

phone 

n = 145 Own database 

ICBHI 2017 

database 

lightweight 

MobileNetV2, 

The classification 

accuracy is 89.23%. 

[41] Lung 

sounds 

- n = 126 ICBHI 2017 

Respiratory sound 

database 

CNN In the 2 Class Crackling 

sounds, CNN_dualInput 

reached 99.6% precision 

rate and 99.6% AUC; 

during  the 2 Class 

Wheezes, 

CNN_dualInput reached 

98.6% precision  and 

98.4% AUC. CNNs 

performed higher in the 

two assignments. 

[42] Cough 

sound 

SONY ICD- 

LX30 portable 

digital 

recorder and 

an ECM-CS10 

microphone 

n = 42 Own database C-BiLSTM The algorithm has an 

outstanding quality with 

a specificity rating of 

99.82%. 

[43] Lung 

sounds 

Electronic 

stethoscope 

n = 105 

n = 126 

Own database 

 

 

ICBHI 2017 

database 

Boosted 

decision tree 

Boosted decision tree 

algorithm performed the 

most well, as indicated by 

its greatest levels of spe 

(98.55%),sen   91.5%), 

and acc (98.20%). 
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[44] Lung 

sounds 

- n = 126 ICBHI 2017 

database 

Multilayer 

Perceptron 

Obtained a maximum 

precision of 99.22% 

(AUC = 0.9993) using a 

collection of data that is 

accessible to the public. 

[45] Lung 

sounds 

Electronic 

stethoscope, 

Eight electret 

microphones 

n = 261 HF_Lung_V1 CNN Lastly, the precision of 

respiratory sound 

evaluation was enhanced 

with the use of a CNN, 

particularly in the 

continuous adventitious 

sound    identification 

work. 

[46] Lung 

sounds 

Electronic 

stethoscope 

n = 1630 Own database CNN and SVM CNN and SVM attained 

86% of precision rate. 

[47] Asthma 

COPD 

3 M Littmann 

Classic II SE 

Stethoscope 

n = 240 Own database Decision tree The investigated report is 

to have succeeded with 

the most excellent 

categorization  precision 

at 99.3%. 

[48] COPD, 

Asthma, 

lower and 

upper 

respiratory 

tract 

infection 

- n = 126 ICBHI 2017 

database 

Mel-Frequency 

Cepstral 

Coefficients 

Out of all the Librosa 

machine learning library 

characteristics, "MFCC" 

is indicated to be more 

accurate for identifying 

COPD, according to the 

studies performed. 

[49] Respiratory 

sound 

3M™ 

Littmann® 

Electronic 

Stethoscope 

3200, 

3M Littmann 

StethAssist 

Software 

n = 50 BRACETS CNN + LSTM Our approach allows for 

calculating spirometric 

values from the airflow 

curve without the 

dimensions obtained 

using the respiration 

sound data. 
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[50] Respiratory 

sound 

- - ICBHI 2017 

database 

VMD-ELM Manhattan distance- 

based VMD-ELM 

disclosed a precision of 

95.39% for the 2-class 

categorization while the 

study was conducted; for 

the  3-class 

categorization, Euclidean 

distance-based VMD- 

ELM according to a 

precision of 90.61%; as 

well as for the 4-class 

categorization, VMD- 

ELM   indicated   a 

precision of 89.27%. 

[51] Lung 

sounds 

- - ICBHI 2017 

database 

Lung sound dataset 

CNN Our CNN model's most 

excellent precision of 

91.04% was attained with 

multilayered 

visualization of features, 

      highlighting the 

significance of 

integrating various 

sounds' innate 

characteristics to identify 

fresh feature sets in a 

particular   respiratory 

sound area illness. 

[52] Lung 

sounds 

Electronic 

stethoscope 

n = 1152 Own database VGGish- 

BiGRU 

With an overall detection 

rate of 87.41%, the 

suggested algorithm is 

able to identify 

pulmonary sounds more 

accurately. 

[53] Respiratory 

sounds 

- n = 126 ICBHI 2017 

database 

k-NN The k-NN attained 

84.38% of the precision 

rate. 
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[54] Wheeze Microphone n = 112 - ANN The findings demonstrate 

that, when utilizing 

collections of breathing 

cycles collected from a 

similar subject, the 

recommended method 

obtains 92.86% precision 

for wheezing 

identification and 

84.82% performance for 

wheezing identification 

for  a  single  breathing 

period. 

[55] Respiratory 

sounds 

- - Own database 

R.A.L.E. database- 

CD 

ASTRA database- 

CD 

B-MFCC/GMM The suggested technique 

B-MFCC/GMM works 

better than frequently 

utilized techniques 

(p<0.05). 

[56] Lung 

sounds 

- n = 126 ICBHI 2017 

database 

CNN The best use would be a 

digital stethoscope to 

train and test a 

lightweight 

convolutional   neural 

      network. It would enable 

the doctor to differentiate 

between healthy and 

unhealthy   respiratory 

illnesses instantly. 

[57] Lung 

sounds 

Digital 

stethoscope 

n = 137 

n = 84 

RA-ILD dataset 

CTD-ILD dataset 

Deep neural 

network 

The critical roles played 

by the Knn and 

LogitBoost algorithms in 

improving the accuracy 

of the auscultations of the 

DNN processes and 

getting    up    the 

information set. 

[58] Respiratory 

sounds 

Digital 

stethoscope 

via bluetooth 

n = 920 Respiratory sound 

database 

LSTM The predicted precision 

rate is 98.82%. 

[59] Lung 

sounds 

Microphone n = 85 Own database 

R.A.L.E database 

k-NN Model   and   used 

characteristics RSFS 

chose to obtain F- 

Measure scores of 94.1%. 
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[60] Respiratory 

sounds 

microphone n = 126 ICBHI 2017 dataset 

Own database 

EMTprep 

1D-CNN-LSTM With its excellent 

diagnostic precision and 

capacity to process 

ongoing information, this 

novel wheeze counter 

may be handy for 

identifying respiratory 

illnesses from overtime 

respiration habits. 

[61] Respiratory 

sounds 

- n = 126 ICBHI 2017 

database 

Dual-channel 

CNN-LSTM 

The predicted precision 

rate and f1 score are 

99.01% and 0.99. 

[62] Respiratory 

sounds 

- n = 2840 Own database CNN The predicted precision 

rate and mean AUC are 

85.7% and 0.92. 

[63] Cough, 

Breath and 

Speech 

Microphone n = 6000 Own database DNN classifiers With an area under the 

ROC curve (AUC) of 

0.982 for cough, 0.942 

for breath, and 0.923 for 

speech,   the   top- 

      performing COVID-19 

classification resulted. 

[64] Respiratory 

sounds 

Digital 

stethoscope 

n = 

23,592 

Kaggle dataset D-Cov19Net With an AUC of 0.972 

and a sensitivity of 0.983, 

this algorithm is accurate 

and clinically helpful. 

[8] Lung 

sounds 

Microphone n = 126 Own database ANN ANN attained precision 

rate is 94.02% but the 

training precision rate is 

100%. 

 

 

The methods commonly used in computerized lung/respiratory sound analysis are 

CNN, k-NN, SVM, ANN, GB, LSTM, and DT. Here, CNN is the most widely employed 

lung/respiratory sound detection technique. The online database of ICBHI 2017 is widely 

used for lung and respiratory sound detection. Then, the investigators generate their 

respiratory sound datasets for research purposes. The ICBHI 2017 database contains 126 

subjects, including 920 annotated audio samples, 6,898 respiratory cycles, of which 1,864 had 

crackles, 886 contained wheezes, and 506 featured both crackles and wheezes [39, 40, 44, and 

48]. Here, CNN-LSTM, Decision tree, MLP, CNN, and SVM-FG attained 99% for the 

classification of lung and respiratory sounds. But in this review, Naqvi et al. [22] achieved an 

accuracy of 99.70%, 99.40%, and 99.20% accuracy on multiple pairings of 85, 97, and 116 
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characteristics in the classification method of SVM-FG for classifying the Chronic 

obstructive pulmonary disease (COPD) and pneumonia. SVM is a supervised machine learning 

technique that works on classification and regression methods. Another deep learning method 

that has drawn interest from investigators for application in identifying respiratory sounds is 

the CNN algorithm for classification. Since deep learning is a thorough method, extracting 

characteristics is unnecessary. Deep learning models get their original data [56]. Deep neural 

network classification algorithms for speech, breath, and cough sounds to identify COVID-19. 

ROC curve (AUC) of 0.982 for cough, 0.942 for breath, and 0.923 for speech, the top- 

performing COVID-19 classification resulted [63]. Using cough sound, machine learning and 

deep learning methods were employed for COVID-19 detection [65]. 

Discussion 

 

In this study, we outline the methodologies employed in a comprehensive review of 

research integrating machine learning (ML) and deep learning (DL) techniques with 

respiratory sound features for the diagnosis of chronic pulmonary diseases. Key patterns 

emerging from the analysis are synthesized to highlight technological and methodological 

advancements. While earlier studies relied on conventional recording systems, recent 

investigations have utilized digital stethoscopes, smartphones, audio sensors, and mobile 

applications to acquire lung sound data. 

All reviewed studies involved the analysis of respiratory sounds collected from 

participants to predict pulmonary conditions. It was observed that traditional ML approaches, 

dependent on handcrafted feature extraction, have been largely surpassed by newer DL-based 

models, even when trained on limited datasets. Respiratory disorders that exhibit 

characteristic lung sound signatures have shown high diagnostic accuracy when assessed 

using either sound features alone or in combination with clinical indicators. 

For instance, artificial neural networks (ANNs) demonstrated a classification accuracy 

of 92.86% for multi-cycle wheeze detection and 84.82% for single-cycle analysis. Although 

only a limited number of ML algorithms have been specifically applied to lung sound 

classification, hybrid approaches—combining ANNs with other techniques—show potential 

for enhancing diagnostic precision. In one such case, an ANN model trained on a custom 

dataset achieved a precision rate of 94.02% and a training accuracy of 100%. 

Compared to traditional methods, computer-aided lung sound analysis offers several 

advantages, including improved accuracy, non-invasiveness, and faster processing. However, 

despite its promise, such systems are not yet widely adopted in clinical practice. Future 

research should focus on the real-time implementation and deployment of automated 

respiratory sound assessment tools to bridge this translational gap. 
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Conclusion 

 

This survey presents a comprehensive overview of the various machine learning (ML) 

and deep learning (DL) methodologies previously employed in the analysis of respiratory and 

lung sounds. It explores the characteristics and classifications of different types of pulmonary 

sounds and associated pathologies. Additionally, the paper provides a structured summary of 

the disorders investigated, participant counts, signal processing techniques, and classification 

methods utilized in prior studies, along with their corresponding outcomes. Based on this 

review, the discussion section outlines recommendations and potential directions for future 

research in the domain of automated respiratory sound analysis. 
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