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Abstract:

To acquire diffraction-limited imagery, high-resolution satellite camera systems must be
precisely aligned. Optical aberrations caused by misalignments, often detected using
interferometry, can significantly degrade performance. We propose an enhanced deep learning
framework for real-time alignment correction that combines a Complex-Valued Convolutional
Neural Network (Complex CNN) architecture with wavelet-based preprocessing. First,
interferograms are decomposed using a discrete wavelet transform to separate amplitude and
phase components, enabling more effective extraction of their intrinsic complex characteristics.
The classical CNN architecture is then reformulated into a fully complex-valued structure by
modifying both the feedforward and backpropagation stages to properly handle complex-valued
inputs and gradients. To further improve performance and interpretability, Zernike polynomial
coefficients—mathematical descriptors of optical aberrations—are incorporated as additional
inputs, creating a physics-informed learning process. Using a simulated dataset of satellite
interferograms, we evaluate the proposed Wavelet-Enhanced Zernike Complex CNN and
demonstrate its robustness and accuracy in predicting and correcting optical misalignments.

1. Introduction

High-resolution satellite cameras, which provide unmatched capacity for recording precise
imagery, are essential for both terrestrial and space observation. However, these cameras get more
complicated as demands for larger fields of view and higher resolution rise. Mirror alignment
becomes a more difficult task as optical systems become more complicated. The exact alignment
of optical components is a basic constraint on the performance of contemporary space-based
optical systems, ranging from Earth observation satellites to deep-space telescopes such as
the James Webb Space Telescope [1]. Launch vibrations, heat cycling, and material stress are
a few examples of factors that can result in minuscule misalignments and substantial optical
aberrations that skew images and diminish their scientific value. For wide-field optical systems
to achieve their design requirements for image quality, mirror alignment is essential. This
intricacy is best demonstrated by the off-axis three-mirror anastigmat (TMA) systems [2, 3].
This design introduces significant tilt and eccentricity between the optical axes of each optical
surface along the path [4]. A TMA off-axis system featuring free-form surfaces is another
challenging complexity [5-7]. The optical arrangement of a telescope becomes especially
intricate when adopting the off-axis TMA system, defined by a non-symmetric optical route.
Moreover, incorporating non-symmetric optical surfaces, such as freeform surfaces, into an off-
axis TMA telescope system provides additional hurdles in optical alignment operations. The
alignment procedure for such systems often commences after the first integration of the system
components. The development of computer-aided alignment (CAA) systems evolved in response
to the rising complexity of alignment methods [8].With CAA, the disparity between the
theoretical design performance and the measured performance of the system is tried to be
minimized. Misalignment is calculated utilizing algorithms and computer software to execute
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the alignment procedures.

The sensitivity matrix approach is a numerical method to calculate the misalignment values
of the system. This linear technique has converging concerns with the increasing nonlinearity
of the complicated optical system in a noisy environment [9]. Computer-aided alignment of an
off-axis TMA telescope having substantial initial misalignment by employing the sensitivity
matrix approach is impacted by nonlinearity [10, 11]. Nodal aberration theory (NAT) is an
analytical method that aims to solve the mathematical model of the system [12]. NAT incorporates
complicated mathematical concepts and repetitive calculations to quantify aberrations and their
causes. Additionally, precisely describing the optical system with a freeform surface through
mathematical expressions is incredibly complicated [13]. NAT-based techniques require specified
models and assumptions, which can limit their flexibility to new configurations or unforeseen
alignment concerns. The gold standard method for identifying these flaws is interferometry. The
system’s wavefront is used to create an interference pattern, or interferogram, which yields a
high-fidelity map of the optical path difference and encodes the exact type of misalignment [18].
Since phase (fringe location) and magnitude (fringe contrast) are inseparable, an interferogram
is by definition complex-valued data. It has historically required a lot of computing power to
analyze these interferograms and determine alignment fixes. Despite being used for comparable
image analysis tasks, typical deep learning models—Ilike real-valued Convolutional Neural
Networks (CNNs)—are not always appropriate for complex-valued data. A real-valued CNN
must artificially divide the data into two channels (e.g., magnitude and phase, or real and
imaginary components) in order to process an interferogram. As a result, the network must use
its capacity to learn the basic physical connection between the two parts from the beginning. It is
not just optical interferometry that faces this difficulty. Raw picture data in the Synthetic Aperture
Radar (SAR) area is likewise complex-valued, and the phase includes important information for
tasks like terrain categorization and target recognition. By processing the magnitude and phase
information as a single entity, researchers have created Complex-Valued Convolutional Neural
Networks (Complex CNNs), which have shown noticeably better performance on SAR data
despite the constraints of real-valued networks. [19, 20]. Motivated by these achievements, we
suggest that the most efficient and natural design for interferogram analysis is a Complex CNN.
Three major contributions are made by this paper’s hierarchical method to enhancing alignment
prediction: We suggest that complex-valued interferograms be directly analyzed using a Complex
CNN. To determine the performance improvements brought about by switching to the complex
domain, we evaluate our method against a baseline real-valued CNN. We present our main
contribution, an architecture for physics based information. This is accomplished by adding
Zernike polynomial coefficients to the Complex CNN’s input. A collection of orthogonal
functions known as Zernike polynomials provides a logical foundation for explaining optical
distortions [21]. We guide the model to a more reliable and accurate answer by injecting past
knowledge of optical physics into it by explicitly supplying these coefficients [22]. This paper
shows a clear route from a typical data-driven model to a more complex, physics-informed
answer by outlining the architecture for these three models and offering a mechanism for
evaluating them using simulated data.

2. Background and Related Work
2.1. Interferometry in High-Precision Optics

An essential component of optical metrology is interferometry. As seen by the employment of
high-speed interferometry in the testing and verification of the segmented mirror system of
the JWST, its use in space telescopes is crucial. [1]. *Test’ and ‘reference’ wavefronts are
combined to create the technique. The phase difference term contains the important information
regarding the aberrations of the system. The complicated domain is where the full information is
most naturally expressed. This underlying complicated information is recovered from several
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intensity measurements using methods such as phase-shifting interferometry. Therefore, a more
straightforward and physically accurate method of analysis is to treat the recovered interferogram
data as essentially complex.

1(x,y) = [Ex(x, )P + [E2(x, y) P+ 2|Ei(x, Y)|[E2(x, y)| cos (1(x, ¥) — pa(x, y))

Here:
* I(x, y): The intensity of the interferogram at coordinates (x, y)
* |[Ei(x, y)| and |E2(x, y)|: Amplitudes of the interacting light fields at (x, y)
* ¢i1(x, y) and ¢2(x, y): Phases of the interacting light fields at (x, y)

* di(x, y) — ¢a(x, y): Phase difference between the two fields (typically represents the
aberration of interest)

2.2.  Zernike Polynomials and Physics-Informed Models

Any arbitrary wavefront aberration can be decomposed into a weighted sum of Zernike poly-
nomials. Each polynomial term corresponds to a specific, well-understood aberration (e.g., Z1
= Piston, Z2/Z3 = Tip/Tilt, Z4 = Defocus, Z5/Z6 = Astigmatism) [21]. This provides a compact,
physically meaningful, and orthogonal representation of the system’s error. Recently, Physics-
Informed Neural Networks (PINNs) have emerged as a powerful paradigm for combining data-
driven models with known physical laws [22]. While our approach does not directly embed a PDE
into the loss function, it follows the same philosophy. By providing the Zernike coefficients as an
explicit input to the network, we are directly informing the model with a physical basis for the
patterns it sees in the interferograms. This has been explored in other optical applications, where
deep learning models have been trained to estimate Zernike coefficients directly from intensity
images [16]. Our work combines this concept with the power of Complex CNNs for a more
holistic solution.

2.3.  Optical System, Misalignment, and Aberrations

Optical design software serves as a powerful tool for simulating misalignments and evaluating
the performance of optical systems. In our study, we utilized Zemax OpticStudio to construct
the optical system under examination [17]. The three-mirror anastigmat (TMA) telescope in
focus possesses the following key parameters: a focal length of 5457 mm, an aperture of 600
mm, and a field of view of 1.1°. The optical system comprises three mirrors, each with distinct
characteristics. All optical design and measurement parameters are considered with respect to a
wavelength of 632.8 nm. We introduced a 42 nm RMS surface figure error to the mirrors to
enhance the realism of the system simulation. The Zernike fringe sag surface is used to simulate
the surface figure error. Random values of Zernike fringe coefficients are applied to represent
surface deviations. Each optical surface within the system possesses six degrees of freedom.
We denote these axes as DECX, DECY, TH, TX, TY, and TZ. DECX refers to the decentering
along the X-axis, DECY corresponds to the decentering along the Y-axis, and TH represents the
decentering along the Z-axis. TX denotes the tilt around the X-axis, TY indicates the tilt around
the Y-axis, and TZ describes the tilt around the Z-axis. For standard surfaces, five of these degrees
of freedom can impact the imaging performance. However, in the case of a free-form surface,
rotation around the Z-axis (TZ) also influences system performance.

The Three Mirror Anastigmat (TMA) telescope in focus possesses the following key parameters:
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* Focal length: 5457 mm
¢+ Aperture: 600 mm

¢+ Field of view: 1.1°

The optical system comprises three mirrors, each with distinct characteristics. TMA telescope
system model is given in Figure 1 (a). Detailed system parameters are given in Table 2. All
optical design and measurement parameters are considered with respect to a wavelength of
632.8 nanometers..

It 500 mm

@ (b)

Fig. 1. Optical layout of off-axis TMA telescope model and optical freedoms of a
mirror; (a) Optical layout of off-axis TMA telescope model (b) optical freedoms of a
mirror

3. METHOD

To validate our hypothesis, we propose comparing three distinct neural network architectures.
Each model is designed to take interferogram data as input and output the required alignment
corrections (e.g., adjustments in x-tilt, y-tilt, z-focus).
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Table 2. Parameters of Optical System

Surfaces Radius Semi-diameter | Thickness | Conic
(mm) (mm) (mm)
Primary mirror (M1) -3600.410 300 -1539.802 | -0.897
Secondary mirror (M2) | -910.903 70 1558.771 -3.637
Third mirror (M3) -1219.413 185 1160.059 | -13.297

3.1. Dataset Generation

A synthetic dataset was generated using a high-fidelity optical model created in Zemax OpticStudio.
The model represents a Three-Mirror Anastigmat (TMA) telescope, a common design for high-
resolution satellite imaging due to its wide field of view and correction of key aberrations. To
create the training and validation samples, misalignments were programmatically introduced by
perturbing the position and orientation of the secondary and tertiary mirrors within realistic
tolerance ranges. For each unique combination of misalignments, a full ray-tracing simulation
was performed to generate the resulting wavefront at the exit pupil. This wavefront, sampled as
a 64x64 float array, serves as the input data. Each interferogram is paired with a ground-truth
vector containing the nine misalignment parameters that produced it.

3.2, Complex-Valued CNN

This model is designed to process the interferogram data in its native complex format. Input: A
1-channel tensor of size (64, 64, 1) with a float data type. Architecture: The architecture mirrors
the real-valued CNN but replaces standard layers with their complex-aware counterparts. As a
practical solution we preprocessed the interferogram images by using wavelets.

Wavelet-Based Complex Representation of Interferograms

To preserve both amplitude and phase information, each interferogram I(x,y) was decomposed
using the Daubechies-4 discrete wavelet transform (DWT):

I(x,y) > DWT — (cA, cH, ¢V, cD)

Here, cA denotes approximation coefficients and cA, cH, ¢V, cD are horizontal, vertical, and
diagonal detail coefficients. The real input was set as:

Xr=cA
and the imaginary input as
Xi =sqrt(cH? + ¢ V> + cD?)

This representation preserves the intrinsic complex structure of the interferogram. Both inputs
were normalized prior to training.

Complex Convolutional Architecture
A complex input and filter are expressed as:
Z=X,+1iX;
W= Ww,.+ W
Their convolution is given by:
ZxW =X x Wp— Xy W) +i(X + Wi+ X+ W)

After each convolution, batch normalization, ReLU activation, and max pooling were applied.
Residual connections linked specific convolutional layers:

Res(x) =F(x) +x
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Complex Fully Connected Layer
Post-convolutional features were processed by a complex dense layer:
y =X W, — XiW; + b,) + (X, W; + X;W, + by)

Here: Wr, Wi are real and imaginary weights, and br, bi are biases.

Complex Backpropagation
Gradient computations were adapted for the complex domain.

For convolutional layers:

dx, = dy, * w, + dy; = w,
dx; = dyy x (=wy) + dy; * w, (3.7)
dw, = x, * dy, + x; * dy;
dw; = xp * dy; — x; * dyy
For dense layers:

Re(y) = x,W, — x;W; + b,

Im(y) = x,W; + x;W, + b; (3.8)

dxr = dYr W7T + dyi WiT
dx; = —dy, w] + dy; wr

dw, = X[ dy, + X[dy, (3.9)

Interferograms, being products of wave interference, are naturally described in amplitude—phase
form. Standard CNNs treat only the amplitude, discarding valuable phase information. The
proposed complex-valued CNN preserves both components, enabling physics-consistent feature
extraction and achieving lower prediction errors compared to conventional real-valued
networks.
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3.3.  Model C: Zernike-Enhanced Complex CNN (Physics-Informed)

This is our most advanced model, which incorporates prior physical knowledge. Input: This
model has two inputs: The (64, 64, 1) complex-valued interferogram. A 1D vector containing
the first 37 Zernike polynomial coefficients extracted from the interferogram’s phase map.
Architecture: The interferogram is processed by a Complex CNN feature extractor (similar to
Model B). The resulting feature vector is then concatenated with the input Zernike coefficient
vector. The Zernike polynomials are a sequence of polynomials that are orthogonal on the unit
disk. This property makes them a good feature extraction tool for wavefront data. They can
represent the misalignment characteristic of the telescope system. This combined vector is fed
into a final block of Dense layers to produce the alignment correction output. This architecture
allows the model to learn from both the raw pixel data and a physically meaningful representation
of the aberration simultaneously.

4. EXPERIMENTAL SETUP

All models are trained for 200 epochs using the Adam optimizer with a learning rate of 1e-4. The
loss function will be Mean Squared Error (MSE) between the predicted alignment parameters
and the ground truth. The dataset will be split into 80 for training, 10 for validation, and 10 for
testing.

Table 3. Hyperparameters and Their Values

Hyperparameter Value
Neural Network Architecture CNN with preprocessing on the images and zernike input
Fully Connected Layers 64 and 32 neurons, ReLU activation.
Dropout Rate 0.5
Output Layer Activation Linear
Learning Rate 0.001, decay factor of 0.5 each 5 non improving validation mae
Batch Size 32
Number of Epochs 500 with Early stopping
Optimization Algorithm Adam optimizer with default parameters
Loss Function Mean absolute error
Evaluation Metrics Mean squared error, mean absolute error
Data Preprocessing Zernike terms and misalignment data normalized to the range [0, 1]
, misalignment parameters as floating-point values
Validation Strategy 90 training, 10 validation set with early stopping
Hardware Environment Online GPU server
Software Environment TensorFlow 2.8.0

5. RESULTS AND DISCUSSION

The mean absolute error of the test data results are as given in Table 4
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Table 4. MAE results

Method Zernike input | Preprocessing | MAE
CNN No No 0.996
Complex CNN No Wavelets 0.15
Complex CNN Yes Wavelets 0.07
DECX2 DECX3 DECY2

100 100 100

Percent (%)
Percent (%)
Percent (%)

0.001-0.01  0.01-0.1 0.1-1 12 >2

80 80

0.1 05

60 60

40

Percent (%)
Percent (%)
Percent (%)

40 34.7]

20 20 159

0 0.001-0.01  0.01-0.1 - 0.001-0.01  0.01-0.1 0.1-1 12 >2

0.001-0.01

100 100

80 80

60 60 AL

Percent (%)
Percent (%)
Percent (%)

40 40 s 574

20 20

0

0.001-0.01  0.01-0.1 0.1-1 12 0.001-0.01  0.01-0.1 0.1-1 - 0.001-0.01  0.01-0.1 0.1-1 12 >2

Fig.2. Comparisson of error percents for the different methods

The best MAE is observed when wavelet preprocessing and zernike input. Using wavelets
is also giving a better result when compared with classical CNN architecture.

When comparing the results across different input representations, it is observed that the
wavelet-based model demonstrates superior performance in estimating errors along the TX and
TY axes. In all three configurations, the majority of predictions for TX and TY remain within
the 0.1°-1° error range, with the wavelet-only model achieving over 75

Furthermore, the addition of Zernike coefficients to the wavelet-based input leads to a noticeable
improvement in performance, particularly in the rotational components (DECX, DECY) and the
Z-axis translation (TZ). For instance, in the DECY component, the proportion of predictions
with errors above 2° decreases when Zernike terms are included, indicating that the combination
of localized wavelet features with global aberration descriptors (Zernike terms) enhances the
model’s ability to generalize across multiple misalignment directions. We anticipate the results
will show that Model B (Complex CNN) outperforms Model A (Real CNN), demonstrating the
benefit of processing interferometric data in its native domain. Furthermore, we expect Model C
(Zernike-Enhanced) to achieve the lowest error, confirming our hypothesis that informing the
model with a physical basis for aberrations leads to a more accurate and robust solution.
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6. CONCLUSION

In this paper, we proposed and outlined a framework for a physics-informed deep learning model
to determine alignment corrections for satellite cameras from interferograms. We argued for the
theoretical advantages of using a Complex-Valued CNN over a standard real-valued network for
processing inherently complex wave-based data. Our primary contribution is the enhancement of
this architecture by incorporating Zernike polynomial coefficients as an explicit input, creating a
physics-informed model that leverages prior knowledge of optical systems. In summary, wavelet
features are especially effective for capturing translational misalignments, while the inclusion of
Zernike polynomials significantly improves the model’s performance in estimating more complex,
rotational misalignments, ultimately resulting in a more robust prediction architecture.

Although the proposed models show promising performance, particularly in estimating
translational misalignments (TX and TY) using wavelet features and improved accuracy in other
axes with the inclusion of Zernike coefficients, the current prediction accuracy is not yet at a
satisfactory level for practical deployment in high-precision alignment tasks.

The analyses suggest that the combination of localized (wavelet) and global (Zernike) feature
representations enhances the model’s ability to interpret misalignment patterns. However, further
improvements are necessary, especially in reducing the residual errors in rotational components
(e.g., DECX, DECY), which remain relatively high in some cases.

These findings underscore the complexity of the inverse mapping from interferometric images
to misalignment parameters. Future work will focus on refining the model architecture, exploring
more robust feature representations, and increasing the diversity and realism of the training data,
with the aim of achieving a level of accuracy suitable for operational implementation.
Nevertheless, even in its current form, the model has the potential to accelerate the alignment
process by providing a fast and approximate initial estimation, which could significantly reduce
the overall alignment time.

Future work will involve validating these models on real-world data from an optical testbed
and eventually from an operational satellite. Further research could also explore embedding the
Zernike decomposition process directly into the network architecture as a learnable layer. The
proposed approach represents a promising step towards creating highly accurate, real-time, and
autonomous alignment systems for the next generation of space-based optics.
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