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Abstract 

Drone navigation in complex environments, such as urban areas or disaster zones, 

requires robust systems for obstacle detection and path planning. This paper introduces the 

Situational Awareness Grid Depth Estimation (SAGDE) framework, a lightweight, scalable 

solution for drone navigation using grid-based pathfinding and readily available drone 

footage. The framework integrates image processing, grid creation, and a modified Breadth-

First Search (BFS) algorithm to ensure safe and efficient navigation. The proposed SAGDE 

model uses the drone footage for the estimation and computation of hurdles in the path. With 

the estimation of the hurdles, grid is constructed with the probabilistic Breadth-First Search 

(BFS). The designed grid are computed and estimated for the optimal finding of the path in 

the drone path. The system was evaluated across various grid resolutions (10x10, 20x20, 

30x30, and 40x40), achieving hurdle detection precision ranging from 90.3% to 94.0% and 

recall values from 88.1% to 91.0%. The pathfinding efficiency was measured between 97.2% 

and 98.3%, with processing times ranging from 0.95 to 2.75 seconds per frame. Additionally, 

the pathfinding success rate varied from 94.5% to 97.8%, demonstrating the robustness of the 

system in dynamic environments. Hurdle estimation for different obstacle types, such as 

buildings, trees, vehicles, and power lines, achieved precision rates between 89.5% and 

93.0%, with recall values between 85.8% and 90.5%.  

Keywords: Drone Navigation, Grid Depth, Probabilistic, Breadth-First Search (BFS), 

Hurdle, Path estimation 

1. Introduction 

Recently, drone navigation required integration of enhanced Robotics, Artificial 

Intelligence and Sensor systems to allow UAVs to Navigate either autonomously or in semi-

automated way in challenged environment [1-3]. Drones have recently gained massive use in 

industries like agriculture, logistics, disaster management and surveillance among others; to 

enhance this use they required to be navigated with high level accuracy. Uncertain terrain, 

especially with many objects around, exceptional object avoidance, variability of work 

surface and weather conditions are considered critical [4]. Using such technologies as 

computer vision on-board endowment, SLAM technologies, and machine learning, the 

inventors and technologists are now researching ways of designing drones that can operate 

under different conditions with as little input from man as is possible [5]. Thus, the indicated 

introduction opens up the possibility for further discussion of technologies, difficulties, and 

progress in the field of drone navigation. Drone navigation is subject to several crucial 

challenges that affect its efficiency and stability in interaction with a number of factors. Still, 

several problems can be enumerated, such as the inability to detect and avoid obstacles as 

well as to determine the UAV’s position in GPS-denied spaces or in the presence of moving 

objects or dense vegetation [6 -8]. Lack of battery power as well as energy resources remain 

an issue as the drones must find optimal ways to get from point A to point B while 
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performing their tasks. Some environmental factors, such as wind, rain, or fog affect stability 

and reliability of the sensors, thereby challenging control. Also, signals may be jammed and 

or hackers may infiltrate the system affecting and controls leading to crashes or loss of the 

drone [9]. Calculating accurate position and structure mapping, particularly when travelling 

in areas with weak or no GPS signals, requires the use of algorithms such as the SLAM, 

which are hardware intensive. 

Soaring through a thick metropolitan environment bringing essential items and aid or 

performing a reconnaissance and search [10]. In such circumstances, the safe and efficient 

operation is crucial to missions’ success oriented by the hostile environment characterized by 

numerous challenges such as tall constructions, entangled power optical cables, and rough 

terrains. Conventionally, robots lack intrinsic means to overcome these impediments, using 

instead preprogrammed charts or complex sensors. However, these methods present several 

challenges [11 -13]: pre-defined maps become outdated very easily due to the dynamic nature 

of addressing change; many sensor configurations can be very costly and are not feasible 

while deploying drones. In response to these gaps, the present study specifically targets the 

creation of an accurate lightweight obstacle detection and navigation system specifically 

designed for drones while utilizing raw videos readily available from a drone [14] Although 

current literature has investigated on different forms of robot navigation, several of such 

techniques fail in dynamic settings or require much initial configuration. [15 &16] Hence this 

study seek to fill this gap by designing a novel efficient and robust navigation strategy that 

leverage on the efficiency and versatility of drone captured videos for obstacle identification 

and planning. 

This paper offers vast and novel contributions to the field of drone navigation through the 

development of the Situational Awareness Grid Depth Estimation (SAGDE), which 

empowers the detection of obstacle and efficient path planning using raw and raw drone 

footage streams. Unlike common approaches that require prior arrangement of the maps or 

installation of costly sensors, SAGDE utilizes image analysis procedures as object 

recognition, depth prediction, and image segmentation to identify the obstacles and build a 

grid-based model of the environment. This approach actually decouples the system 

architecture and maintains real time performance and responsiveness to dynamic phenomena. 

Furthermore, the paper presents an original grid-based A* path search algorithm derived from 

a modified BFS approach, enhancing the drone’s motion planning in densely formed 

environment. From the results of the evaluation, the system addresses high hurdle detection 

accuracy and optimizes path finding in real time with fast processing that can support real 

time applications. The proposed method contributes significantly to drone navigation 

problems like obstacle detection and online path planning but also gives several potentials for 

future study, which is adding dynamic obstacle updates and enhancing path planning 

algorithms. Altogether, the given contributions will serve as a reasonable, lightweight 

strategy for the autonomous drone navigation into crowded and unstable territories. 

2. Proposed Situational Awareness Grid Depth Estimation (SAGDE) 

The novel framework Situational Awareness Grid Depth Estimation (SAGDE) suggests a 

general procedure for drones’ navigation based on image analysis, grid construction, and 

grid-based routing. These components have been described in figure 1 to show how they 

operate in a sequence to ensure safer and efficient navigation. The process then begins with 

image processing, where open sky images captured by the drones are subjected to image 

processing to retrieve environmental information of interest. This information is processed 

further and is transformed into a grid that represents different parts of the drone’s visual 

space. The last applied method learns the orthogonal grid-based path planning approach to 
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find out the best way from the robot’s current state to the target position while avoiding the 

detected obstacles. The image processing stage uses optimal and non-optimal methods for the 

hurdle detection based on the type of the input data and the detection accuracy needed. Three 

primary methods include: 

1. Object Detection: Pre-trained deep learning models like YOLO or SSD can identify 

and localize obstacles such as buildings or trees. 

2. Depth Estimation: For drones equipped with depth cameras, depth information 

directly identifies obstacles and their relative distances. 

3. Image Segmentation: This approach classifies individual pixels in the footage, 

distinguishing between obstacles and navigable areas. 

On processing the footage the resulting classified image is one that is put on a grid. Each 

cell in the grid is assigned a classification: Navigable Space – that is denoted by a dot (“.”) 

and the Obstacle Space which is denoted by the symbol “@”. The grid effective resolution 

depends on a required level of detail in solution, as well as the complexity of the model: 

precision/cost ratio. The grid-based pathfinding component uses a modification of the 

Breadth-First Search (BFS) algorithm because of its efficiency in pathfinding on grids. From 

the source point, the algorithm expands a region outward, incrementing a counter for the 

number of iterations in unvisited free cells. In case of hurdles, neighbours are scanned for 

potential verge within a specified distance. Once the destination is reached, the algorithm 

retraces through the cells of having the least iteration count to find out the shortest path. A 

major advantage of the proposed method is that it also handles ties where equal-cost paths are 

retained for additional analysis. The Situational Awareness Grid Depth Estimation (SAGDE) 

is a framework that includes image processing, grid creation and grid-based pathfinding. It 

entails mathematical modeling and methods to transform drone image into a grid map and 

then compute the path that the drone can take. In figure 1 illustrates the process involved in 

the proposed SAGDE model for the drone hundle estimation with detection of grid path in 

the drones.  

 

 Figure 1: Process in Proposed SAGDE 
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Convert the drone's raw footage into a classified image where each pixel represents free 

space or an obstacle. Pre-trained object detection models, like YOLO, use bounding boxes to 

identify obstacles. The detection model predicts the class 𝐶𝑖, confidence 𝑃(𝑐), and bounding 

box (𝑥, 𝑦, 𝑤, ℎ) for each detected object. The obstacle is identified using equation (1)  

𝐶𝑖 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐(𝑃(𝑐) × 𝑃(𝐵|𝐶))                                             (1) 

In equation (1) 𝑃(𝐶) stated as the Probability of the object belonging to class 𝐶. 𝑃(𝐵|𝐶) 

defined as the Conditional probability of the bounding box 𝐵 given the class 𝐶. For drones 

with depth cameras, depth estimation uses pixel disparity 𝑑 between two camera images 

(stereo vision) computed using equation (2) 

𝑍 =  
𝑓.𝐵

𝑑
                                                                   (2) 

In equation (2) 𝑧 represented as Depth (distance to object); 𝑓denoted as Focal length of the 

camera; 𝐵 denotes the distance between cameras and 𝑑 represented as the Disparity between 

pixel coordinates in the stereo images. With semantic segmentation, each pixel is classified 

into a category 𝑘 (free space or obstacle) using equation (3) 

𝐿(𝑝) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝑃𝑘(𝑝))                                                   (3) 

In equation (3) 𝐿(𝑝) represets the Label assigned to pixel 𝑝; 𝑃𝑘(𝑝) denotes the Probability 

that pixel 𝑝 belongs to category 𝑘. The output of this stage is a classified image, where 

Obstacles 𝑂(𝑥, 𝑦) are marked as 1 and Free space 𝐹(𝑥, 𝑦) is marked as 000. 

3. Grid-based Probabilistic path Finding with SAGDE 

 In the procedure of pathfinding based on the grid in the SAGDE 

framework, guarantees safe and efficient mobility due to the grid-designated environment 

obtained by drone footage. Every cell in the grid is associated with a corresponding area of 

drone vision space and is marked either as free space (".") or a hurdle ("@") based on the 

image analysis. Using pathfinding algorithm, this grid helps the drone to steer towards its 

target with least interference from obstacles. The pathfinding algorithm employed here is the 

cut-down Breadth First Search (BFS), an efficient technique for exploring grid based terrain. 

From the starting cell, the algorithm scans surrounding cells in a wavefront fashion for all the 

free space cells, assigning the iteration numbers to these cells as the measure of the shortest 

distance from the start. When encountering an obstacle which is represented by a “@”, the 

algorithm looks at its neighboring cells to discover possible paths to avoid within an area of a 

particular range. This then helps the drone avoid going round and round a particular obstacle 

formation needlessly. Finally the reconstruction of the shortest path is obtained by back 

tracking from the destination to the source, using the cells which has the least iteration 

number. If all solutions cost the same, all paths are saved for subsequent decision-making 

processes evaluations. This method also takes much computational time but is accurate to 

ensure that the drone takes right path to its destination. The classified image is then 

transformed in to a simple grid structure. Every cell 𝐺𝑖𝑗 can be uniquely associated with a 

particular region of the drone’s vision field identified using equation (4) 

𝐺𝑖𝑗 =  {
". "                   𝑖𝑓    𝑓𝑟𝑒𝑒  𝑠𝑝𝑎𝑐𝑒
@                            𝑖𝑓𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

                                                                 (4) 

Grid resolution is determined by the scaling factor 𝑆, defined as in equation (5) 

𝑆 =  
𝑑𝑖𝑚𝑎𝑔𝑒

𝑑𝑔𝑟𝑖𝑑
                                         (5) 
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In equation (5) 𝑑𝑖𝑚𝑎𝑔𝑒 stated as the distance covered by the classified image and 𝑑𝑔𝑟𝑖𝑑 

defined as the  distance covered by the grid. Grid classification is performed using equation 

(6) 

𝐺𝑖𝑗 =  ∑ 𝐿(𝑝)𝑝∈𝑐𝑒𝑙𝑙                                                    (6) 

In equation (6) if any pixel 𝑝 in the cell is classified as an obstacle, 𝐺𝑖𝑗 = "@". With 

Pathfinding using Probabilistic Breadth-First Search (BFS) is an enhanced approach to the 

traditional BFS algorithm, designed to handle uncertainty and dynamic environments. Unlike 

standard BFS, which operates on deterministic grids with known obstacles, probabilistic BFS 

incorporates a level of randomness or probability into the exploration process. This allows the 

algorithm to adapt to environments where the exact positions of obstacles may not be fully 

known or where there is noise in the data, such as in real-time drone navigation or other 

robotics applications. In probabilistic BFS, the algorithm evaluates the likelihood of certain 

paths being free from obstacles, factoring in potential variations in sensor data or 

environmental conditions. The grid cells are treated with associated probabilities that reflect 

the chances of being free space or containing an obstacle, rather than absolute values. As the 

algorithm explores the grid, it uses these probabilities to make decisions about which paths 

are more likely to lead to a successful destination. This probabilistic approach can help 

overcome issues in environments with dynamic changes, where obstacles may appear or 

disappear unpredictably. 

Algorithm 1: Probabilistic BFS for drone path estimation with SAGDE 

Input:  

- Grid: A 2D grid representing the environment, where each cell contains a probability of 

being free (P[i][j]). 

- Start: The starting position of the drone (Start_x, Start_y). 

- Goal: The target destination (Goal_x, Goal_y). 

Output: 

- Path: A list of coordinates representing the optimal path from Start to Goal. 

- If no path exists, return "No Path Found." 

1. Initialize: 

    - Queue = [(Start_x, Start_y)]  // The queue for BFS, starting from the initial point. 

    - Visited = Set()  // Set to store visited nodes. 

    - Path_Probabilities = {}  // Dictionary to store the probability of each cell being part of the 

path. 

    - Parent = {}  // Dictionary to store the parent of each node, used for backtracking the 

optimal path. 

 

2. Set the probability for the start point: 

    - Path_Probabilities[(Start_x, Start_y)] = 1.0  // Start with a probability of 1 for the starting 

point. 

3. While Queue is not empty: 

    a. Dequeue (current_x, current_y) from Queue. 

    b. If (current_x, current_y) is the Goal: 

        - Backtrack the path using the Parent dictionary. 

        - Return the path from Start to Goal. 

    c. For each neighbor (nx, ny) of (current_x, current_y): 

        - If (nx, ny) is not in Visited: 

            i. Compute the probability of the path via (nx, ny): 

                - Prob = Path_Probabilities[(current_x, current_y)] * P[nx][ny] 
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            ii. If (nx, ny) has not been visited or has a higher probability of reaching: 

                - Path_Probabilities[(nx, ny)] = Prob 

                - Parent[(nx, ny)] = (current_x, current_y) 

                - Add (nx, ny) to Queue. 

    d. Add (current_x, current_y) to Visited. 

4. If the Queue is empty and the Goal has not been reached: 

    - Return "No Path Found." 

End 

  

4. Results and Discussion 

With the proposed SAGDE model simulation is performed for the estimation of the drone 

path with the formation of the grid path in the system to achieve high accuracy in hurdle 

detection using the chosen techniques. The pathfinding algorithm is expected to generate 

optimal paths for drone navigation while avoiding obstacles. In figure 2 drone footage for the 

path formation is presented with the formation of the grid system in the drone.  

 

(a)                                                      Figure  (b) 

Figure 2: Drone (a) footage (b) Image Grid 

 

 

                                   (a)                                                 (b)                                 (c) 

Figure 3: SAGDE model for the path estimation (a) hurdle estimation (b) Path 

estimation (c) path finding 
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Figure 4: Grid constructed with the SAGDE 

 

 

Figure 5: Probabilistic BFS for path estimation  

   

Figure 6: Estimation of the grid with the hurdle with SAGDE 

   

Figure 7: path estimated for the SAGDE for the optimal path 
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In Figures 2 through 7 provide a visual representation of the SAGDE (Situational 

Awareness Grid Depth Estimation) model and its various stages involved in drone navigation. 

Figure 2 presents the process of transforming the drone's raw video feed into a grid-based 

representation. (a) depicts the original drone footage, while (b) shows the corresponding 

image grid, which breaks down the environment into discrete cells for easier analysis and 

pathfinding. Moving to Figure 3, the overall SAGDE model is illustrated, with (a) showing 

hurdle estimation where obstacles are detected, (b) presenting path estimation to calculate 

potential routes, and (c) highlighting the pathfinding process, where the drone calculates the 

optimal route to navigate around obstacles. Figure 4 further elaborates on the grid 

construction with SAGDE, showing how the environment is divided into grid cells, each 

marked as either free space or occupied by obstacles. In Figure 5, Probabilistic BFS is 

applied to path estimation, incorporating uncertainty and dynamically adjusting the 

pathfinding algorithm based on probabilistic data, which is critical for navigation in 

unpredictable environments. Figure 6 demonstrates the grid estimation with hurdles, showing 

how obstacles are identified and incorporated into the grid, while Figure 7 showcases the 

optimal path estimation, illustrating the final route the drone will take, calculated by the 

SAGDE model to avoid obstacles and reach its destination safely. These figures collectively 

highlight the step-by-step process of obstacle detection, grid-based pathfinding, and optimal 

path generation, showcasing the capabilities of the SAGDE framework in real-world drone 

navigation applications. 

Table 1: Grid based performance of SAGDE 

Grid 

Resolution 

(Cells) 

Hurdle 

Detection 

Precision 

Hurdle 

Detection 

Recall 

Pathfinding 

Efficiency 

Processing 

Time 

(Seconds per 

Frame) 

Pathfinding 

Success Rate 

10 × 10 90.3% 88.1% 97.2% 0.95 94.5% 

20 × 20 92.4% 89.7% 98.3% 1.35 96.8% 

30 × 30 93.1% 90.4% 97.8% 2.05 97.2% 

40 × 40 94.0% 91.0% 97.4% 2.75 97.8% 

 

This can be seen in the SAGDE grid-based performance where a relationship between the 

system’s grid resolution is well defined to efficiency. In the detections of hurdles, the 

precision as well as recall both increase with the increase of the grid resolution from 10 × 10 

to 40 × 40, and the maximum precision and recall obtained are 94.0% and 91.0%, 

respectively at the highest grid resolution of 40 × 40. This suggests that objects of higher 

resolution afford a more refined definition of difficulty to the robot’s path planning 

algorithms. But this gain in detection performance is for the expensive price of the increased 

time required for their calculation as the grid becomes more refined. For instance, at the grid 

dimensionality of 10 × 10 cells, it took 0.95 s per frame while with 40 × 40, took 2.75 s per 

frame. This is as it implies more grid cell that have to be addressed for each resultant image 

with high resolution hence more computational power is needed. The average pathfinding 

efficiency is still very good for all the grid sizes, and reduces slightly to 97.2% at 10 × 10 

cells for 97.4% at 40 × 40 cells. Pathfinding success rate also increases with increases in the 

number of subgrids, and at the highest resolution it achieves 97.8 % meaning that the system 

improves on its ability to avoid obstacles. 
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Table 2: Hurdle estimation with SADGE 

Hurdle 

Type 

Precision Recall False 

Positive Rate 

False 

Negative Rate 

Processing Time 

(Seconds per Frame) 

Buildings 92.3% 89.0% 5.1% 7.4% 0.80 

Trees 89.5% 86.2% 6.5% 8.1% 0.78 

Vehicles 93.0% 90.5% 4.2% 6.8% 0.82 

Power 

Lines 

90.1% 85.8% 7.3% 9.2% 0.76 

 

In Table 2 shows the performance of the SAGDE framework with the hurdle estimation 

results where the ability of the system shines in the presence of such obstacles in the 

environment. It can be observed that the highest levels of precision and recall point towards 

vehicles proving the ability of the system to provide obstacles of this type with very high 

precision and also remarkable recall. On the other hand, trees have the least performance, 

with accuracy of 0.895 and recall of 0.862, indicating slightly lower ability of recognizing 

tree obstacles. They complement each other and make understanding the reliability of the 

system easier; We also see from the figure that vehicles have the least false positive rate at 

4.2% implying that the system gives a small chance of labelling non-obstacle regions as 

obstacles. Nonetheless, power lines have the highest false positive rate at 7.3% implying that 

this hurdle type is band misidentified more frequently. Also like the case with power line, the 

false negative values are slightly high at 9.2% which shows that the system is more likely to 

fail to recognize power line hurdles than other types of hurdles. As for the processing time, 

the system yields the best result in case of power lines at 0.76 sec per frame, trees – in case of 

shortest processing time of 0.78 sec per frame. Vehicles via image processing result in a 

slightly longer processing time with 0.82 seconds per frame, while buildings have compute 

time of 0.80 second per frame. 

Table 3: Comparative Analysis 

Hurd

le 

Type 

Hurdl
e 
Type 

Preci
sion  

Rec
all  

Fals
e 
Posi
tive 
Rate  

False 
Nega
tive 
Rate  

Proce
ssing 
Time 
(s/fra
me) 

Refer
ence 

Preci
sion  

Rec
all  

Fals
e 
Posi
tive 
Rate  

False 
Nega
tive 
Rate  

Proce
ssing 
Time 
(s/fra
me) 

Build

ings 
Build
ings 

92.3
% 

89.
0% 

5.1% 7.4% 0.80 

Chang 
et al. 
(2023
) 

91.5
% 

88.
7% 

5.4% 7.8% 0.85 

Trees Trees 
89.5
% 

86.
2% 

6.5% 8.1% 0.78 

Suanp
ang & 
Jamju
ntr 
(2024
) 
 

88.9
% 

85.
5% 

6.8% 8.3% 0.82 

Vehic
Vehic
les 

93.0
% 

90.
5% 

4.2% 6.8% 0.82 
Patoli
ya et 

92.7
% 

90.
1% 

4.5% 7.0% 0.86 
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les al. 
(2022
) 

Powe

r 

Lines 

Powe
r 
Lines 

90.1
% 

85.
8% 

7.3% 9.2% 0.76 

Mour
tzis et 
al. 
(2024
) 

89.8
% 

85.
2% 

7.6% 9.5% 0.80 

 In Table 3 presents a comparative analysis of hurdle detection performance across 

different obstacle types, evaluating key metrics such as precision, recall, false positive rate, 

false negative rate, and processing time. The results from this study are compared against 

findings from relevant published articles. For buildings, the proposed method achieves a 

precision of 92.3% and a recall of 89.0%, with a false positive rate of 5.1% and a false 

negative rate of 7.4%. These results are slightly better than those reported by Chang et al. 

(2023), which recorded a precision of 91.5% and a recall of 88.7%. However, the processing 

time in this study (0.80s per frame) is marginally faster than the 0.85s reported in the 

literature, indicating improved computational efficiency. In the case of trees, this study 

attained a precision of 89.5% and a recall of 86.2%, outperforming Suanpang & Jamjuntr 

(2024), who reported slightly lower values of 88.9% precision and 85.5% recall. Additionally, 

the false positive and false negative rates are marginally improved, reducing misclassification 

errors. The processing time is also slightly better at 0.78s per frame compared to 0.82s. For 

vehicles, this study shows the highest precision (93.0%) and recall (90.5%) among all hurdle 

types, surpassing the 92.7% precision and 90.1% recall reported by Patoliya et al. (2022). The 

false positive rate (4.2%) and false negative rate (6.8%) are also lower than in the literature, 

suggesting a more robust detection performance. Furthermore, the processing time of 0.82s 

per frame is slightly faster than the 0.86s recorded in previous research, highlighting the 

efficiency of the proposed approach. Regarding power lines, this study achieves a precision 

of 90.1% and a recall of 85.8%, closely aligning with Mourtzis et al. (2024), who reported 

values of 89.8% and 85.2%, respectively. The false positive and false negative rates are also 

marginally lower, indicating a reduction in misclassifications. Additionally, the processing 

time (0.76s per frame) is slightly more efficient than the 0.80s reported in prior research. 

 

5. Conclusion 

This paper presents robust and efficient framework for autonomous drone navigation 

using the Situational Awareness Grid Depth Estimation (SAGDE) model. By leveraging 

readily available drone footage and applying advanced image processing techniques, the 

system successfully detects obstacles and estimates paths for safe navigation in complex 

environments. The incorporation of a grid-based representation and a probabilistic approach 

to pathfinding ensures that the drone can adapt to dynamic conditions and navigate with high 

accuracy, even in uncertain or partially obstructed environments. The experimental results 

demonstrate that the proposed method offers significant improvements in hurdle detection 

precision, recall, and pathfinding efficiency, with real-time processing capabilities suitable for 

practical applications. The use of probabilistic BFS further enhances the system’s robustness 

by accounting for uncertainties and noisy data. This approach, with its lightweight 

architecture and real-time performance, presents a promising solution for autonomous drones 

operating in dynamic, obstacle-rich environments. 
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