Totally β* - Continuous Functions in Topological Spaces

P. Anbarasi Rodrigo¹, K. Rajendra Suba²

- Assistant Professor, Department of Mathematics St. Mary's College (Autonomous), Thoothukudi, Manonmanium Sundaranar University, Tirunelveli, India
- Part time Internal Research Scholar, Register Number: 19122212092012 Department of Mathematics St. Mary's College (Autonomous), Thoothukudi Manonmanium Sundaranar University Tirunelveli, India.

Abstract

The aim of this paper is to define a new class of functions namely totally β^* - continuous functions and slightly β^* - continuous functions and study their properties . Additionally, we relate and compare these functions with some other functions in topological spaces.

Keywords and phrases: Totally β^* - continuous and Slightly β^* - continuous.

I. Introduction

Continuity is an important concept in mathematics and many forms of continuous functions have been introduced over the years. Abd El- Monsef et al. introduced the notion of β - open sets and β -continuity in topological spaces. RC Jain introduced the concept of totally continuous functions and slightly continuous for topological spaces. In this paper, we define totally β^* - continuous functions and slightly β^* - continuous functions and basic properties of these functions are investigated and obtained.

II. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η) or X, Y, Z represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X is denoted by P(X). If A is β^* -open and β^* - closed, then it is said to be β^* - clopen.

Definition 2.1: A subset A of a topological space X is said to be a β^* -open [5] if A \subseteq cl (int* (cl(A))).

Definition 2.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called totally continuous [2] if $f^{-1}(V)$ is clopen set in X for each open set V of Y.

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a β^* - continuous [8] if $f^{-1}(O)$ is a β^* -open set of (X, τ) for every open set O of (Y, σ) .

Definition 2.4: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be perfectly β^* - continuous [6] if the inverse image of every β^* -open set in (Y, σ) is both open and closed in (X, τ) .

Definition 2.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a slightly continuous[2] if the inverse image of every clopen set in Y is open in X.

Definition 2.6: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a contra continuous [1] if $f^{-1}(O)$ is closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.7: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called Contra β^* - continuous functions [7] if $f^{-1}(O)$ is β^* - closed in (X, τ) for every open set O in (Y, σ) .

Definition 2.8: A topological space X is called a β^* - connected [9] if X cannot be expressed as a disjoint union of two non-empty β^* -open sets.

Definition 2.9: A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be pre β^* -open [7] if the image of every β^* - open set of X is β^* -open in Y.

Definition 2.10: A topological space X is said to be connected [10] if X cannot be expressed as the union of two disjoint nonempty open sets in X.

Definition 2.11: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a strongly β^* - continuous [6] if the inverse image of every β^* - open set in (Y, σ) is open in (X, τ) .

Definition 2.12: A Topological space X is said to be β^* -T_{1/2} space or β^* - space [8] if every β^* - open set of X is open in X.

Definition 2.13: A space (X, τ) is called a locally indiscrete space [3] if every open set of X is closed in X.

Theorem 2.14[5]:

(i) Every open set is β^* - open and every closed set is β^* -closed set.

III. Totally β^* - continuous functions

Definition 3.1: A function $(X, \tau) \rightarrow (Y, \sigma)$ is called totally β^* - continuous functions if the inverse image of every open set of (Y, σ) is both β^* - open and β^* - closed subset of (X, τ) .

 $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X \} \text{ and } \beta^* C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X \}. \text{ Let } f: (X, \tau) \longrightarrow (Y, \sigma) \text{ be defined by } f(a) = c, f(b) = a, f(c) = b. \text{ since }, f^{-1}(\{a\}) = \{b\}, f^{-1}(\{a, b\}) = \{b, c\}, f^{-1}(\{a, b\}) = \{b,$

c} and $f^{-1}(\{a, c\}) = \{a, b\}$ is both β^* - open and β^* - closed in X. Therefore, f is totally β^* - continuous.

Theorem 3.2: Every totally β^* - continuous functions is β^* - continuous.

Proof: Let O be an open set of (Y, σ) . Since, f is totally β^* - continuous functions, f ⁻¹(O) is both β^* - open and β^* - closed in (X, τ) . Therefore, f is β^* - continuous.

Remark 3.3: The converse of above theorem need not be true.

Example 3.4: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}, \sigma = \{\phi, \{a, b\}, Y\}$. Let $f:(X, \tau) \longrightarrow (Y, \sigma)$) be defined by f(a) = a, f(b) = b, f(c) = c. $\beta * O(X, \tau) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\beta * C(X, \tau) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly, f is not totally β *-continuous since $f^{-1}(\{a, b\}) = \{a, b\}$ is β *-open in X but not β *- closed. However, f is β *- continuous.

Theorem3.5: Every totally continuous function is totally β^* - continuous.

Proof: Let O be an open set of (Y, σ) . Since, f is totally continuous functions, f^{-1} (O) is both open and closed in (X, τ) . Since every open set is β^* - open and every closed set is β^* - closed. f^{-1} (O) is both β^* - open and β^* - closed in (X, τ) . Therefore, f is totally β^* - continuous.

Remark 3.6: The converse of above theorem need not be true.

Example 3.7: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \tau^c = \{\phi, \{b, c\}, X\}, \sigma = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f (a) = a, f(b) = b, f(c) = c . $\beta^*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, $\beta^* C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Clearly, f is totally β^* -continuous but $f^{-1}(\{a, b\}) = \{a, b\}, f^{-1}(\{a, c\}) = \{a, c\}$ is not open and closed in X. Therefore, f is not totally continuous.

Theorem 3.8: Every perfectly β^* - continuous map is totally β^* - continuous.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a perfectly β^* - continuous map. Let O be an open set of (Y, σ) . Then O is β^* - open in (Y, σ) . Since f is perfectly β^* - continuous, f^{-1} (O) is both open and closed in (X, τ) , implies f^{-1} (O) is both β^* - open and β^* - closed in (X, τ) . Therefore, f is totally β^* - continuous. **Remark 3.9:** The converse of above theorem need not be true.

Example3.10: Let X = Y = {a, b, c, d}, $\tau = \{\phi, \{a, b\}, \{a, b, c\}, X\}, \tau^c = \{\phi, \{c, d\}, \{d\}, X\}, \sigma = \{\phi, \{d\}, A\}, \sigma = \{$

 $\{a\}, \{b, c, d\}, Y\}. Let f: (X, \tau) \rightarrow (Y, \sigma) be defined by f (a) = a, f(b) = b, f(c) = c, f(d) = d. \beta^*O(X, \tau) = \{ \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}, \beta^* C(X, \tau) = \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{c, d\}, \{a, b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{b, c, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, Y\}. Clearly, f is totally \beta^*-continuous but f^{-1} (\{a\}) = \{a\}, f^{-1} (\{b\}) = \{b\}, f^{-1} (\{c\}) = \{c\}, f^{-1} (\{a, c\}) = \{a, c\}, f^{-1} (\{a, d\}) = \{a, d\}, f^{-1} (\{b, c\}) = \{b, c\}, f^{-1} (\{b, c, d\}) = \{b, c\}, f^{-1} (\{b, c, d$

Remark 3.11: The concept of totally β^* - continuous and strongly β^* - continuous are independent of each other.

Example 3.12: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a, b\}, X\}, \tau^c = \{\phi, \{c, d\}, X\}, \beta^*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}, \beta^*C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}, \sigma = \{\phi, \{a\}, \{abc\}, Y\}, \beta^*O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, b\}, \{c\}, \{a, b\}, \{a, b\}, \{c\}, \{a, b\}, \{a, b\}, \{a, b\}, \{c\}, \{a, b\}, \{a,$

b, d},{a, c, d},{b, c, d}, Y} Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f (a) = a, f(b) = b, f(c) = c, f(d) = d. Clearly, f is totally β *continuous but $f^{-1}(\{b\}) = \{b\}, f^{-1}(\{c\}) = \{c\}, f^{-1}(\{d\}) = \{d\}, f^{-1}(\{a, c\}) = \{a, c\}, f^{-1}(\{a, d\}) = \{a, d\}, f^{-1}(\{b, c\}) = \{b, c\}, f^{-1}(\{b, d\}) = \{b, d\}, f^{-1}(\{c, d\}) = \{c, d\}, f^{-1}(\{a, b, c\}) = \{a, b, c\}, f^{-1}(\{a, c, d\}) = \{a, c, d\}, f^{-1}(\{b, c, d\}) = \{b, c, d\}$ is not open in X. Therefore, f is not strongly β *- continuous.

Example 3.13: Let X = Y = {a, b, c}, $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, \tau^c = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\phi, \{a\}, \{a, c\}, \{a, c\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f (a) = c, f(b) = b, f(c) = a . $\beta^* O(X, \tau) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, \beta^* C(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\beta^* O(Y, \sigma) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Clearly, f is strongly β^* -continuous but $f^{-1}(\{a\}) = \{c\}, f^{-1}(\{a, b\}) = \{b, c\}, f^{-1}(\{a, c\}) = \{a, c\}$ is β^* - open in X but not β^* - closed .Therefore, f is not totally β^* -continuous.

Theorem 3.14: If f: X × Y is a totally β^* - continuous map, and X is β^* - connected, then Y is an indiscrete space.

Proof: Suppose that Y is not an indiscrete space. Let A be a non-empty open subset of Y. Since, f is totally β^* - continuous map, then $f^{-1}(A)$ is a non-empty β^* - clopen subset of X. Then $X = f^{-1}(A) \cup (f^{-1}(A))^c$. Thus,X is a union of two non-empty disjoint β^* - open sets which is contradiction to the fact that X is β^* -connected. Therefore, Y must be an indiscrete space

Theorem 3.15: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then $g \circ f: X \to Z$

(i) If f is β^* - irresolute and g is totally β^* - continuous then $g \circ f$ is totally β^* - continuous

(ii) If f is totally β^* - continuous and g is continuous then g \circ f is totally β^* - continuous.

Proof:

(i) Let O be an open set in Z. Since g is totally β^* - continuous, g^{-1} (O) is β^* - clopen in Y. Since f is β^* irresolute, $f^{-1}(g^{-1}(O))$ is β^* - open and β^* - closed in X. Since, $(g \circ f) - 1$ (O) = $f^{-1}(g^{-1}(O))$. Therefore, $g \circ f$ is totally β^* - continuous.

(ii) Let O be an open set in Z. Since g is continuous, g^{-1} (O) is open in Y. Since, f is totally β^* continuous, f^{-1} (g^{-1} (O)) is β^* - clopen in X. Hence, g \circ f is totally β^* - continuous.

IV. Slightly β^* - continuous functions.

Definition 4.1: A function $(X, \tau) \rightarrow (Y, \sigma)$ is called slightly β^* -continuous at a point $x \in X$ if for each clopen subset V of Y containing f(x), there exists a β^* - open subset U in X containing x such that $f(U) \subseteq V$. The function f is said to be slightly β^* - continuous if f is slightly β^* - continuous at each of its points. **Definition 4.2:** A function $(X, \tau) \rightarrow (Y, \sigma)$ is said to be slightly β^* - continuous if the inverse image of every clopen set in Y is β^* - open in X.

 $\{\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},Y\}$.Let f: (X, τ) \rightarrow (Y, σ) be defined by f (a) = a, f(b) = b, f(c) = c, Clearly, f is slightly β^* - continuous.

Proposition 4.4: The definition 4.1 and 4.2 are equivalent.

Proof: Suppose the definition 4.1 holds. Let O be a clopen set in Y and $x \in f^{-1}(O)$. Then $f(x) \in O$ and thus there exists a β^* - open set U_x such that $x \in U_x \subseteq f^{-1}(O)$ and $f^{-1}(O) = \bigcup U_x$. Since, arbitrary union of β^* - open set is β^* - open. $f^{-1}(O)$ is β^* - open in X and therefore, f is slightly β^* -continuous Suppose, the definition 4.2 holds. Let $f(x) \in O$ where, O is a clopen set in Y. Since, f is slightly β^* - continuous, $x \in f^{-1}(O)$ where $f^{-1}(O)$ is β^* - open in X. Let $U = f^{-1}(O)$. Then U is β^* - open in X, $x \in X$ and $f(U) \subseteq O$.

Theorem 4.5: For a function f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent.

- (i) f is slightly β^* continuous.
- (ii) The inverse image of every clopen set O of Y is β^* open in X.
- (iii) The inverse image of every clopen set O of Y is β^* closed in X.
- (iv) The inverse image of every clopen set O of Y is β^* clopen in X.

Proof:

(i) \Rightarrow (ii): Follows from the proposition 4.4

(ii) \Rightarrow (iii): Let O be a clopen set in Y which implies O^c is clopen in Y. By (ii), f⁻¹ (O^c) = (f⁻¹ (O))^c is

 β^* - open in X. Therefore, f⁻¹ (O) is β^* - closed in X.

(iii) \Rightarrow (iv): By (ii) and (iii), f⁻¹ (O) is β^* -clopen in X.

(iv) \Rightarrow (i): Let O be a clopen set in Y containing f(x), by (iv) f⁻¹ (O) is β^* - clopen in X. Take U = f⁻¹(O), then f(U) \subset O. Hence, f is slightly β^* -continuous.

Theorem 4.6: Every slightly continuous function is slightly β^* - continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a slightly continuous function. Let O be a clopen set in Y. Then, f⁻¹ (O) is open in X. Since, every open set is β^* - open. Hence, f is slightly β^* - continuous .

Remark 4.7: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.8: Let X = Y = {a, b, c, d}, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$, $\tau^c = \{\phi, \{d\}, \{b, c, d\}, X\}$ $\sigma = \{\phi, \{a\}, \{b, c, d\}, Y\}$, $\sigma^c \{\{\phi, \{a\}, \{b, c, d\}, Y\}$ and $\beta^* O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Let f: (X, τ) \rightarrow (Y, σ) be defined by f(a)= a, f(b)= b, f(c)= c, f(d)= d. Clearly, f is slightly β^* -continuous but not slightly continuous. Since, f⁻¹(b, c, d)]= {b, c, d} is not open in X.

Theorem 4.9: Every β^* - continuous function is slightly β^* - continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a β^* - continuous function. Let O be a clopen set in Y. Then, f⁻¹ (O) is β^* - open in X and β^* - closed in X. Hence, f is slightly β^* - continuous.

Remark 4.10: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.11: Let X = { a, b, c} , $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $\tau^c = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $\sigma = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, Y\}$, $\sigma^c = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, Y\}$ and $\beta^* O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let f: (X, τ) \rightarrow (Y, σ) be defined by f(a) =c, f(b) = b, f(c) =a, The function f is slightly β^* -continuous but not β^* -continuous, since, f⁻¹ { b} = { c} is not β^* -open in X.

Theorem 4.12: Every contra β^* - continuous function is slightly β^* -continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra β^* - continuous function. Let O be a clopen set in Y. Then, f⁻¹ (O) is β^* - open in X. Hence, f is slightly β^* - continuous.

Remark 4.13: The converse of the above theorem need not be true as can be seen from the following example.

Example 4.14: Let X = Y = { a, b, c, d}, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, Y\}$ and $\sigma^c = \{\phi, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c\}, \{a, b, d\}, \{c, d\}, \{a, c, d\}, \{b, c\}, \{a, b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$, $\beta^* C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a)=a, f(b)=b, f(c)=c, f(d) = d. The function f is slightly β^* -continuous but not contra β^* -continuous, since, f⁻¹ {(a, b, c)}= { a, b, c } is not β^* - closed in X.

Remark 4.15: Composition of two slightly β^* -continuous need not be slightly β^* -continuous as it can be seen from the following example.

Example 4.16: Let X=Y= Z ={a, b, c, d}, and the topologies are $\tau = \{ \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a,$

Theorem 4.17: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the following properties hold:

(i) If f is β^* - irresolute and g is slightly β^* -continuous then (g \circ f) is slightly β^* -continuous.

(ii) If f is β^* - irresolute and g is β^* -continuous then (g \circ f) is slightly β^* -continuous.

(iii) If f is β^* - irresolute and g is slightly continuous then (g \circ f) is slightly β^* -continuous.

(iv) If f is β^* -continuous and g is slightly continuous then (g \circ f) is slightly β^* -continuous.

(v) If f is strongly β^* -continuous and g is slightly β^* - continuous then (g \circ f) is slightly continuous.

- (vi) If f is slightly β^* -continuous and g is perfectly β^* continuous then (g \circ f) is β^* irresolute.
- (vii) If f is slightly β^* -continuous and g is contra continuous then (g \circ f) is slightly β^* -continuous.
- (viii) If f is β^* irresolute and g is contra β^* -continuous then (g \circ f) is slightly β^* -continuous.

Proof:

(i) Let O be a clopen set in Z. Since, g is slightly β^* -continuous, g ⁻¹ (O) is β^* - open in Y. Since, f is β^* - β^* - irresolute, f ⁻¹ (g ⁻¹ (O)) is β^* - open in X. Since, (g \circ f) ⁻¹ (O) = f ⁻¹ (g ⁻¹ (O)), g \circ f is slightly β^* - continuous .

(ii) Let O be a clopen set in Z. Since, g is β^* -continuous, g⁻¹ (O) is β^* -open in Y. Since, f is β^* -

irresolute, f⁻¹ (g⁻¹ (O)) is β^* -open in X. Hence, g \circ f is slightly β^* - continuous.

(iii) Let O be a clopen set in Z. Since, g is slightly continuous, g⁻¹(O) is open in Y. Since, f is β^* -

irresolute, f⁻¹ (g⁻¹ (O)) is β^* -open in X. Hence, g \circ f is slightly β^* - continuous.

(iv) Let O be a clopen set in Z. Since, g is slightly continuous, g $^{-1}$ (O) is open in Y. Since, f is β^* -

continuous, f⁻¹ (g⁻¹ (O)) is β^* - open in X. Hence, g \circ f is slightly β^* - continuous.

(v) Let O be a clopen set in Z. Since, g is slightly β^* -continuous, g ⁻¹ (O) is β^* -open in Y. Since, f is

strongly β^* - continuous, f⁻¹ (g⁻¹ (O)) is open in X. Therefore, g \circ f is slightly continuous.

(vi) Let O be a β^* -open in Z. Since, g is perfectly β^* -continuous, g ⁻¹ (O) is open and closed in Y. Since, f is slightly β^* -continuous, f ⁻¹ (g ⁻¹ (O)) is β^* - open in X. Hence, g \circ f is β^* - irresolute.

(vii) Let O be a clopen set in Z. Since, g is contra continuous, g ⁻¹ (O) is open and closed in Y. Since, f is slightly β^* - continuous, f ⁻¹ (g ⁻¹ (O)) is β^* - open in X. Hence, g \circ f is slightly β^* - continuous.

(viii) Let O be a clopen set in Z. Since, g is contra β^* - continuous, g ⁻¹ (O) is β^* - open and

 β^* - closed in Y.Since, f is β^* - irresolute, f ⁻¹ (g ⁻¹ (O)) is β^* - open and β^* - closed in X. Hence, g \circ f is slightly β^* -continuous.

Theorem 4.18: If the function f: $(X, \tau) \rightarrow (Y, \sigma)$ is slightly β^* -continuous and (X, τ) is β^* - T1/2 space, then f is slightly continuous.

Proof: Let O be a clopen set in Y. Since, g is slightly β^* -continuous, f⁻¹ (O) is β^* -open in X. Since, X is β^* -T1/2 space, f⁻¹ (O) is open in X. Hence, f is slightly continuous.

Theorem 4.19: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be functions. If f is surjective and pre β^* open and $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is slightly β^* -continuous, then g is slightly β^* - continuous.

Proof: Let O be a clopen set in (Z, η). Since, (g \circ f): (X, τ) \rightarrow (Z, η) is slightly β^* - continuous, f⁻¹ (g

¹(O)) is β^* - open in X. Since, f is surjective and pre β^* - open f(f ⁻¹ (g ⁻¹ (O))) = g ⁻¹ (O) is β^* - open in Y. Hence, g is slightly β^* - continuous.

Theorem 4.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be functions. If f is surjective, pre β^* open and β^* irresolute, then $(g \circ f)$: $(X, \tau) \rightarrow (Z, \eta)$ is slightly β^* continuous if and only if g is
slightly β^* continuous.

Proof: Let O be a clopen set in (Z, η). Since, (g \circ f): (X, τ) \rightarrow (Z, η) is slightly β^* - continuous, f⁻¹(g⁻¹(O)) is β^* - open in X. Since, f is surjective and pre β^* -open f(f⁻¹(g⁻¹(O))) = g⁻¹(O) is β^* - open in Y. Hence, g is slightly β^* - continuous.

Conversely, let g is slightly β^* - continuous. Let O be a clopen set in (Z, η), then g⁻¹ (O) is β^* - open in Y. Since, f is β^* - irresolute, f⁻¹ (g⁻¹ (O)) is β^* - open in X. Hence, (g \circ f): (X, τ) \rightarrow (Z, η) is slightly β^* -continuous.

Theorem 4.21: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly β^* - continuous and (Y, σ) is a locally indiscrete space then f is β^* - continuous.

Proof: Let O be an open subset of Y. Since, (Y, σ) is a locally indiscrete space, O is closed in Y. Since, f is slightly β^* - continuous, f⁻¹ (O) is β^* - open in X. Hence, f is β^* - continuous.

Theorem 4.22: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a slightly β^* -continuous and A is an open subset of X then the restriction f |A : $(A, \tau_A) \rightarrow (Y, \sigma)$ is slightly β^* -continuous.

Proof: Let V be a clopen subset of Y. Then $(f | A)^{-1}(V) = f^{-1}(V) \cap A$. Since $f^{-1}(V)$ is β^* -open and A is open, $(f | A)^{-1}(V)$ is β^* - open in the relative topology of A. Hence, $f | A : (A, \tau_A) \longrightarrow (Y, \sigma)$ is slightly β^* - continuous.

REFERENCES

[1] P.Anbarasi Rodrigo and K.Rajendra Suba, More functions associated with β *-Continuous, (IJAETMAS), Volume 05 - Issue 02, PP. 47-56.

[2] Anbarasi Rodrigo and Rajendra Suba, A new notion of β^* - closed sets, IMRF.

[3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19 (1996), 303–310

[4] RC Jain, The role of regularly open sets in general topology, Ph.D Thesis, Meerut 1980

[5] S. Jafari, T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest 42(1999), 27-34.

[6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[7] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly,67(1960), 269-279.

[8] Noiri, T. Strong form of continuity in topological spaces, Rend.cire. math. Plaermo (1986)107-113

[9] P. Sundaram, K. Balachandran, and H. Maki, "On Generalised Continuous Maps in topological

spaces," Memoirs of the Faculty of Science Kochi University Series A, vol. 12, pp. 5–13, 1991.

[10] Willard, S., General Topology, (Addison Wesley, 1970).