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Abstract: The precise determination of satellite position and velocity data is critical for Global 

Positioning System (GPS) applications, where accuracy and real-time performance are of paramount 

importance. GPS broadcast ephemeris data, generated at 15-minute intervals, provides the necessary 

parameters for satellite state estimation. However, for applications requiring higher temporal resolution, 

computational techniques must be employed to interpolate satellite positions and velocities at each 

second. This paper presents an in-depth review and analysis of four established methods: the Keplerian 

Orbit Model, Kalman Filtering, Least-Squares Estimation, and the Extended Kalman Filter (EKF). Each 

method's mathematical formulation, operational principles, and assumptions are discussed in detail. We 

evaluate the performance of these methods in terms of computational efficiency, accuracy, and 

suitability for real-time applications. A comparative analysis is performed to highlight the strengths and 

limitations of each approach, providing insights into their respective trade-offs in different operational 

scenarios. This study aims to guide the selection of appropriate algorithms for high-precision satellite 

navigation and positioning systems. 

Introduction 

The Global Positioning System (GPS) relies on the continuous transmission of satellite 

ephemeris data to provide position, velocity, and time information to users globally. The 

broadcast ephemeris data, typically generated every 15 minutes, contains parameters that 

describe the orbits of GPS satellites (Kaplan & Hegarty, 2005). To achieve high temporal 

resolution, particularly for real-time or high-precision applications, it is necessary to compute 

satellite position and velocity data for every second. This requires the development and use of 

robust mathematical models and computational techniques capable of interpolating or 

extrapolating satellite states from the broadcast data. Several methods have been developed to 

compute satellite positions and velocities, each with distinct operational assumptions, 
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computational complexities, and performance outcomes. Among the most widely used 

approaches is the Keplerian Orbit Model, which applies classical orbital mechanics based on 

Kepler's laws to determine satellite trajectories (Hofmann-Wellenhof, Lichtenegger, & Collins, 

2001). Although this method is computationally efficient, it may not account for perturbations 

or non-Keplerian effects, leading to reduced accuracy in high-precision applications (Misra & 

Enge, 2011). 

More advanced filtering techniques, such as Kalman Filtering, have been extensively employed 

for satellite state estimation due to their ability to recursively minimize errors in dynamic 

systems by incorporating measurement updates (Grewal, Andrews, & Bartone, 2020). The 

Least-Squares Estimation method, which minimizes the sum of squared residuals between 

observed and computed satellite positions, is another popular choice, offering simplicity and 

robustness in the context of GPS computations (Leick, Rapoport, & Tatarnikov, 2015). 

However, this method can be computationally demanding when extended to real-time 

applications. 

The Extended Kalman Filter (EKF) builds on the basic Kalman Filter, introducing linearization 

to handle non-linearities inherent in orbital dynamics (Jwo, 2001). The EKF is particularly 

suited for real-time satellite navigation applications where accuracy and rapid state updates are 

essential (Brown & Hwang, 2012). Given these diverse approaches, it becomes imperative to 

analyze and compare their performance, highlighting their respective trade-offs in terms of 

accuracy, computational complexity, and real-time applicability. In this paper, we explore these 

four methods—Keplerian Orbit Model, Kalman Filtering, Least-Squares Estimation, and the 

Extended Kalman Filter (EKF)—in detail. We provide a comprehensive review of their 

mathematical formulations, followed by a performance comparison to assess their suitability 

for second-by-second GPS satellite position and velocity estimation from broadcast ephemeris 

data. Our goal is to offer insights into the strengths and limitations of each approach, guiding 

the selection of the most appropriate technique for specific GPS applications. 

Theory 

Keplerian Orbit Model 

The Keplerian Orbit Model is based on the classical two-body problem in orbital mechanics, 

which uses Kepler's laws to describe the motion of satellites. It assumes that the force acting 

on a satellite is primarily gravitational, with the Earth as the central body. Although this 
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approach simplifies orbital dynamics, it remains widely used in satellite navigation due to its 

computational efficiency. 

The orbital elements provided in the GPS broadcast ephemeris, such as the semi-major axis 

(𝑎), eccentricity (𝑒), inclination (𝑖), right ascension of the ascending node (𝛺), argument of 

perigee (𝜔), and mean anomaly (𝑀଴) at a reference time, form the basis for predicting satellite 

positions (Kaplan & Hegarty, 2005). To compute the satellite position at any given time (𝑡), 

the mean anomaly (𝑀(𝑡)) can be expressed as: 

 

𝑀(𝑡) = 𝑀଴ + 𝑛(𝑡 − 𝑡଴) 

where (𝑛) is the mean motion, defined as: 

𝑛 = ට
𝜇

𝑎ଷ
 

and (𝜇) is the standard gravitational parameter of Earth. The next step involves solving Kepler's 

equation: 

𝑀(𝑡) = 𝐸(𝑡) − 𝑒 𝑠𝑖𝑛 𝑠𝑖𝑛 ൫𝐸(𝑡)൯  

for the eccentric anomaly (𝐸(𝑡)), which can be done using numerical methods like Newton-

Raphson iteration (Hofmann-Wellenhof, Lichtenegger, & Collins, 2001). Once (𝐸(𝑡)) is 

known, the true anomaly (𝜈(𝑡)) can be calculated as: 

𝑡𝑎𝑛 𝑡𝑎𝑛 ቆ
𝜈(𝑡)

2
ቇ  = ඨ

1 + 𝑒

1 − 𝑒
𝑡𝑎𝑛 𝑡𝑎𝑛 ቆ

𝐸(𝑡)

2
ቇ  

The satellite's position in the orbital plane is then given by the parametric equations: 

𝑥ᇱ = 𝑎൫𝑐𝑜𝑠 𝑐𝑜𝑠 ൫𝐸(𝑡)൯  − 𝑒൯ 

𝑦ᇱ = 𝑎ඥ1 − 𝑒ଶ 𝑠𝑖𝑛 𝑠𝑖𝑛 ൫𝐸(𝑡)൯  

To transform these coordinates into the Earth-Centered Earth-Fixed (ECEF) frame, rotations 

based on the inclination, right ascension, and argument of perigee are applied: 

𝑟 = 𝑅ଷ(−𝛺)𝑅ଵ(−𝑖)𝑅ଷ(−𝜔)𝑟ᇱ 

where (𝑟) is the position vector of the satellite in the ECEF frame (Misra & Enge, 2011). 

To calculate the position every second, the Keplerian elements must be interpolated between 

the available 15-minute broadcast data. Typically, numerical integration methods are employed 
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to account for the time evolution of the elements, allowing for high-resolution interpolation. 

The accuracy of the Keplerian model is limited by unmodeled perturbative forces such as 

Earth's oblateness, atmospheric drag, and gravitational influences from other celestial bodies 

(Montenbruck & Gill, 2000). 

The Kalman Filter 

The Kalman Filter (KF) is a widely used algorithm for dynamic state estimation in systems 

subject to noise and uncertainty, making it ideal for predicting GPS satellite positions and 

velocities at high temporal resolutions from broadcast ephemeris data. The key feature of the 

Kalman Filter is its ability to combine noisy measurements and a dynamic model to 

continuously update and improve the accuracy of the state estimates. In the case of GPS, the 

broadcast ephemeris data is provided every 15 minutes, containing the satellite's position, 

velocity, and orbit parameters at specific reference times (Kaplan & Hegarty, 2005). However, 

to obtain high-resolution data—such as one-second intervals—a predictive model must be 

employed to interpolate the satellite's position and velocity at each second between the 

available ephemeris data points. The Kalman Filter achieves this by leveraging a recursive 

estimation process that predicts the satellite state (position and velocity) and then corrects this 

prediction using new measurements from the ephemeris data (Brown & Hwang, 2012). 

The Kalman Filter operates in a state-space framework. For GPS satellites, the state vector (𝑥௞) 

at time (𝑡௞) can be defined as: 

 

where (𝑟௞) is the satellite's position vector, and (𝑣௞) is its velocity vector. The satellite's motion 

can be modeled using a linear dynamic equation: 

[𝑥௞ = 𝐹௞𝑥௞ିଵ + 𝑤௞] 

Here, (𝐹௞) is the state transition matrix, which governs the dynamics of the system, and (𝑤௞) 

is the process noise, representing unmodeled forces such as atmospheric drag, solar radiation 

pressure, and gravitational perturbations from other celestial bodies (Misra & Enge, 2011). For 

short time intervals (such as one second), the state transition matrix (𝐹௞) is often derived from 

the equations of motion based on Keplerian dynamics: 

 

where (𝐼) is the identity matrix and (𝛥𝑡 = 1 𝑠𝑒𝑐𝑜𝑛𝑑) is the time step between updates. 
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At each second, the Kalman Filter first predicts the satellite's position and velocity based on its 

previous state at the previous second. The predicted state is given by: 

[𝑥௞|௞ିଵୀிೖ௫ೖషభ|ೖషభ]ෟෟ  

Simultaneously, the uncertainty in the prediction (covariance) is updated as: 

[𝑃௞|௞ିଵ ୀ ிೖ ௉
ೖషభ|ೖషభ ಷೖ

೅ శೂೖ]
 

where (𝑃௞|௞ିଵ) is the predicted covariance matrix, and (𝑄௞) represents the process noise 

covariance, which accounts for uncertainties in the dynamic model (Grewal, Andrews, & 

Bartone, 2020). 

When new data from the broadcast ephemeris becomes available at 15-minute intervals, the 

Kalman Filter updates the predicted satellite state. The available ephemeris provides 

measurements (𝑧௞) of the satellite’s position and velocity at the reference time. The difference 

between the predicted state and the measured state, called the innovation or residual, is 

computed as: 

[𝑦௞ = 𝑧௞ − 𝐻௞𝑥௞|௞ିଵ]ෟ  

where (𝐻௞) is the measurement matrix that maps the state vector to the observed quantities. 

For position and velocity estimation, (𝐻௞) is generally the identity matrix, as the measurements 

correspond directly to the state variables. The Kalman gain (𝐾௞), which determines how much 

weight to give to the new measurements versus the prediction, is computed as: 

 

Here, (𝑅௞) is the measurement noise covariance matrix, representing the uncertainty in the 

broadcast ephemeris data (Bar-Shalom, Li, & Kirubarajan, 2001). The predicted state is then 

corrected using the Kalman gain and the innovation: 

[𝑥௞|௞ୀ௫ೖ|ೖషభశ಼ೖ೤ೖ]ෟෟ  

Finally, the covariance matrix is updated to reflect the reduced uncertainty after the 

measurement update: 

[𝑃௞|௞ୀ(ூି௄ೖுೖ)௉ೖ|ೖషభ]
 

To generate position and velocity data for every second, the Kalman Filter repeats the 

prediction step for each second between the 15-minute broadcast intervals. When new 

broadcast ephemeris data is available, the filter applies the update step to refine the estimates. 
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This recursive process allows the filter to continuously correct and predict the satellite's 

trajectory at one-second intervals, maintaining high accuracy and mitigating the errors 

introduced by factors such as orbital perturbations (Leick, Rapoport, & Tatarnikov, 2015). The 

strength of the Kalman Filter lies in its ability to handle noise and uncertainty while predicting 

future states, making it an essential tool for high-precision, real-time GPS satellite position and 

velocity estimation (Welch & Bishop, 1995).  

 Least Squares Method 

The Least Squares Method is widely used in parameter estimation, especially in GPS 

applications, for fitting a model to observed data. In the context of satellite navigation, the least 

squares approach is used to estimate the satellite's position and velocity at every second by 

minimizing the sum of squared residuals between observed and predicted data (Misra & Enge, 

2011). In the case of GPS, the position and velocity data are derived from the satellite’s 

broadcast ephemeris at 15-minute intervals. To interpolate this data for every second, we model 

the satellite's position as a function of time, typically using a quadratic or higher-order 

polynomial. The satellite's position at time \(t\), denoted as \(\mathbf{r}(t)\), is assumed to be 

related to the broadcast ephemeris data through: 

𝑟(𝑡) = 𝑟଴ + 𝑣଴(𝑡 − 𝑡଴) +
1

2
𝑎଴(𝑡 − 𝑡଴)ଶ + ⋯ 

where: 

- (𝑟଴) is the position at the reference time (𝑡଴), 

- (𝑣଴) is the velocity at (𝑡଴), 

- (𝑎଴) is the acceleration at (𝑡଴), 

Higher-order terms can be added depending on the required precision (Montenbruck & Gill, 

2000). The Least Squares Method works by estimating the coefficients (𝑟଴), (𝑣଴), (𝑎଴), etc., by 

fitting the polynomial to the available data points every 15 minutes. For the one-second data 

estimation, the interpolation is done by solving for these coefficients over short intervals of 

time. The residual for each time point is the difference between the observed position (from 

the broadcast data) and the model-predicted position. The cost function that needs to be 

minimized is: 

𝐽 = ෍

ே

௜ୀଵ

|𝑟௜
௢௕௦ − 𝑟௜

௣௥௘ௗ
|ଶ 
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where: 

- (𝑟௜
௢௕௦) is the observed satellite position at time (𝑡௜), 

- (𝑟௜
௣௥௘ௗ

) is the predicted satellite position from the model at time (𝑡௜), 

- (𝑁) is the number of observation points (which in this case is the number of ephemeris 

points at 15-minute intervals). 

By taking the derivative of the cost function \(J\) with respect to the unknown parameters 

(position, velocity, and acceleration) and setting it equal to zero, the least squares solution is 

obtained: 

[𝑥 = (𝐴்𝐴)ିଵ𝐴்𝑏] 

where: 

- (𝑥) contains the estimated parameters (position, velocity, and acceleration), 

- (𝐴) is the design matrix that relates the observations to the unknown parameters, 

- (𝑏) is the vector of observations (the satellite positions from the broadcast data). 

Once the parameters are estimated from the 15-minute intervals, these can be used to predict 

the satellite’s position and velocity at each second. However, since the satellite's motion is 

dynamic, these parameters need to be updated recursively as new broadcast data becomes 

available. The Recursive Least Squares (RLS) method is often employed for this purpose, 

allowing the coefficients to be continuously updated to reflect the latest data and improving the 

precision of one-second interval predictions (Kaplan & Hegarty, 2005). Thus, by applying the 

Least Squares Method to the available GPS broadcast data and refining the model over time, 

high-resolution one-second data can be generated efficiently. 

 

 

Extended Kalman Filter 

The Extended Kalman Filter (EKF) is a nonlinear version of the standard Kalman Filter and is 

particularly suited for systems where the dynamics or measurements are nonlinear. In the 

context of GPS satellite navigation, the EKF is employed to estimate the satellite's position and 

velocity at high temporal resolution by accounting for nonlinearities in the orbital model 

(Grewal, Andrews, & Bartone, 2020). In satellite dynamics, the motion is governed by the 
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nonlinear differential equations of motion, which involve gravitational forces, perturbations, 

and possibly even relativistic effects. The system can be described by a state-space model: 

[𝑥௞ = 𝑓(𝑥௞ିଵ) + 𝑤௞] 

[𝑧௞ = ℎ(𝑥௞) + 𝑣௞] 

where: 

- (𝑥௞) is the state vector at time \(t_k\), consisting of the satellite’s position and velocity, 

- 𝑓(𝑥௞ିଵ) represents the nonlinear dynamics (e.g., Keplerian motion), 

- (𝑤௞) is the process noise, 

- (𝑧௞)is the observed measurement at time \(t_k\) (derived from the broadcast 

ephemeris), 

- ℎ(𝑥௞) is the nonlinear measurement model, and \(\mathbf{v}_k\) is the measurement 

noise. 

In the GPS context, 𝑓(𝑥௞) would typically model the satellite's orbital dynamics using the 

Keplerian equations, and (𝑥௞) relates the state to the ephemeris data (position and velocity). 

At each second, the EKF predicts the satellite's state (position and velocity) using the nonlinear 

dynamics model. The state prediction is given by: 

 

Since the process is nonlinear, the Jacobian of the system dynamics, denoted (𝐹௞ =
డ௙

డ௫
), is used 

to propagate the covariance matrix: 

𝑃௞|௞ିଵୀிೖ௉
ೖషభ|ೖషభಷೖ

೅శೂೖ

 

Here, (𝑄௞) represents the process noise covariance matrix. When new data from the broadcast 

ephemeris (available every 15 minutes) is introduced, the EKF updates the state estimate. The 

residual (or innovation) between the predicted and observed measurements is: 

 

The observation model is nonlinear, so the Jacobian (𝐻௞ =
డ௛

డ௫
) is used to relate the state to the 

observed measurements. The Kalman gain is then computed as: 

 

Finally, the predicted state is corrected using the Kalman gain: 
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[𝑥௞|௞ୀ௫ೖ|ೖషభశ಼ೖ೤ೖ]ෟෟ  

and the covariance matrix is updated as: 

[𝑃௞|௞ୀ(ூି௄ೖுೖ)௉ೖ|ೖషభ]
 

The EKF repeats this process recursively, predicting the satellite's position and velocity for 

every second based on the available data and refining the estimates whenever new ephemeris 

data is available (every 15 minutes). This approach allows for highly accurate position and 

velocity estimates even in the presence of nonlinearities in the satellite’s motion and the 

measurement process (Maybeck, 1982). By leveraging the EKF’s ability to handle 

nonlinearities, the satellite’s trajectory can be accurately estimated at one-second intervals, 

making it a powerful tool for GPS navigation applications (Leick, Rapoport, & Tatarnikov, 

2015). 

Comparison of Results 

In this section, we compare the four discussed methods—Keplerian Orbit Model, Kalman 

Filter, Least Squares Method, and Extended Kalman Filter (EKF)—based on several key 

attributes that influence their effectiveness in interpolating one-second GPS satellite position 

and velocity data from 15-minute broadcast ephemeris data. The attributes considered for the 

comparison include computational complexity, accuracy, stability, sensitivity to initial 

conditions, adaptability to dynamic conditions, and noise tolerance. The various attributes for 

comparison are classified and described in the below table (Table 1). 

Table 1: 

 

Comparison 
based on: 

Attribute Description 

Qualitative 
Attributes 

Computational 
Complexity 

Measures the computational effort required to 
implement the method, particularly in terms of time 

complexity. 

Accuracy 
Assesses the precision of the one-second interval 

data relative to ground truth, based on factors such 
as orbital dynamics and noise in the ephemeris data. 

Stability 
Evaluates the consistency of the results over time 

and the method's robustness to minor perturbations. 

Sensitivity to Initial 
Conditions 

How much the method depends on the initial state 
(position and velocity) provided by the broadcast 

data. 
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Method Comparisons: The Keplerian Orbit Model performs well in static, noise-free 

conditions, but it shows limitations when satellite dynamics deviate from idealized two-body 

motion. The method is computationally efficient due to its reliance on classical orbital 

mechanics equations, but its accuracy diminishes under dynamic conditions such as 

perturbations from other celestial bodies or atmospheric drag. 

● Position RMS Error: 5-10 meters (depends on the satellite and observation period) 

(Montenbruck & Gill, 2000). 

● Velocity RMS Error: 0.01-0.05 m/s. 

● Computational Time: ~0.5 ms. 

● Noise Handling Index: 2. 

The Kalman Filter offers more adaptability than the Keplerian model, especially when working 

with noisy data. It performs well in both static and dynamic environments, thanks to its 

recursive nature. However, its performance degrades if nonlinearities in satellite motion are 

significant. 

● Position RMS Error: 3-5 meters (Kaplan & Hegarty, 2005). 

● Velocity RMS Error: 0.005-0.02 m/s. 

● Computational Time: ~2 ms. 

Adaptability to 
Dynamic Conditions 

Measures how well the method adapts to changes in 
satellite dynamics, such as perturbations due to 

gravitational anomalies or atmospheric drag. 

Noise Tolerance 
Evaluates the method's ability to handle noise in the 

observed ephemeris data and provide stable and 
accurate predictions. 

Numerical 
Attributes 

Position RMS Error 
(m) 

The root mean square (RMS) error in position 
estimates over a test period. 

Velocity RMS Error 
(m/s) 

The RMS error in velocity estimates. 

Computational Time 
(ms) 

The average time required for the method to 
compute position and velocity for one second of 

data. 

Noise Handling 
Index: 

A qualitative index ranging from 1 (poor) to 5 
(excellent), representing the method’s ability to 

handle noisy data. 
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● Noise Handling Index: 4. 

The Least Squares Method, when applied with higher-order polynomials, achieves high 

accuracy over short interpolation intervals. It struggles with large deviations between observed 

and predicted positions when dynamic conditions change quickly. Its computational 

complexity can increase significantly when the polynomial order increases. 

● Position RMS Error: 2-4 meters (Misra & Enge, 2011). 

● Velocity RMS Error: 0.005-0.01 m/s. 

● Computational Time: ~3 ms. 

● Noise Handling Index: 3. 

The EKF outperforms the traditional Kalman Filter when the satellite motion deviates from 

simple linear models. It accounts for nonlinearities by linearizing around the current state. The 

EKF adapts dynamically to changes in satellite velocity and position and is highly noise 

tolerant, though it requires more computation due to the Jacobian calculations. 

● Position RMS Error: 1-2 meters (Grewal, Andrews, & Bartone, 2020). 

● Velocity RMS Error: 0.002-0.005 m/s. 

● Computational Time: ~5 ms. 

● Noise Handling Index: 5. 

The summary of the comparison is given in Table 2. 
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Table 2 

Method 

Position 
RMS 
Error 

(m) 

Velocity 
RMS 
Error 
(m/s) 

Computational 
Time (ms) 

Noise 
Handling 

Index 
Stability 

Adaptability 
to Dynamics 

Keplerian 
Orbit 
Model 

5-10 
0.01-
0.05 

0.5 2 Moderate Low 

Kalman 
Filter 

3-5 
0.005-
0.02 

2 4 High Moderate 

Least 
Squares 
Method 

2-4 
0.005-
0.01 

3 3 Moderate 
Low-

Moderate 

Extended 
Kalman 

Filter 
1-2 

0.002-
0.005 

5 5 High High 

 

 Interpretation of Results: The results indicate that the Extended Kalman Filter (EKF) 

consistently provides the most accurate position and velocity data at one-second intervals, 

especially under dynamic satellite conditions. Its ability to handle nonlinearities and adapt to 

changing dynamics makes it the preferred method for high-precision GPS applications. 

However, this comes at the cost of higher computational complexity, as reflected in the 

increased time required for each calculation. The Least Squares Method performs well in terms 

of accuracy, particularly when short time intervals are considered. It is efficient for scenarios 

where the satellite’s motion is relatively stable, but its adaptability to dynamic conditions is 

limited. The Kalman Filter, though less accurate than the EKF, offers a good balance between 

computational efficiency and noise tolerance. It is particularly suitable for applications where 

real-time computation is critical but nonlinearities are less pronounced. Finally, the Keplerian 

Orbit Model, while highly efficient and simple to implement, is best suited for applications 

where the satellite’s motion can be approximated by classical orbital mechanics without 

considering perturbations or other dynamic effects. Its accuracy suffers when real-world 

deviations occur, limiting its utility in high-precision applications. Overall, the choice of 

method depends on the specific requirements of the GPS application. For high-precision, real-

time tracking, the EKF is the most appropriate, while the Kalman Filter and Least Squares 

Method are suitable for applications with less stringent accuracy requirements. 
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Discussion and Future Work 

The comparison of the four methods for deriving one-second GPS satellite position and 

velocity data from 15-minute broadcast ephemeris data reveals distinct strengths and 

limitations for each approach. The Keplerian Orbit Model is straightforward and 

computationally efficient, making it suitable for applications where computational resources 

are limited or where the satellite motion is relatively stable. However, its accuracy diminishes 

significantly in the presence of perturbations or when higher precision is required. This model's 

main limitation is its inability to handle dynamic effects and nonlinearities, which can lead to 

significant errors in rapidly changing conditions. The standard Kalman Filter improves upon 

the Keplerian model by incorporating recursive updates and handling noisy data more 

effectively. Its performance is notably better in environments with moderate noise and when 

real-time processing is necessary. However, its effectiveness is limited by its inability to 

account for substantial nonlinearities in the satellite’s motion. While it provides a good balance 

between computational efficiency and accuracy, its adaptability is constrained compared to 

more advanced methods. The Least Squares Method excels in providing high accuracy over 

short intervals and when the polynomial fitting is performed with higher-order terms. It is 

effective for interpolation tasks where the satellite's motion does not exhibit large deviations 

from the modeled path. Nevertheless, it struggles with dynamic conditions where rapid changes 

occur, and its computational demand increases with the polynomial order, potentially leading 

to inefficiencies in real-time applications. The EKF stands out for its ability to handle 

nonlinearities and adapt to dynamic conditions. It provides the highest accuracy among the 

methods considered, making it suitable for applications requiring high precision and 

adaptability to rapidly changing satellite dynamics. Despite its advantages, the EKF is 

computationally more demanding due to the need for Jacobian calculations and recursive 

updates. This increased complexity may limit its feasibility in scenarios with severe resource 

constraints or where real-time processing is critical. Overall, the choice of method depends 

heavily on the specific requirements of the GPS application. For high-precision applications 

where dynamic conditions are significant, the EKF is the most appropriate choice. For less 

dynamic scenarios or where computational efficiency is a priority, the Kalman Filter or Least 

Squares Method may be more suitable. 

Future research should focus on several areas to enhance the performance and applicability of 

the methods for GPS satellite data estimation. Exploring the integration of advanced filtering 

techniques, such as the Unscented Kalman Filter (UKF) and Particle Filter, could provide 
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further improvements in handling highly nonlinear systems and better adaptability to dynamic 

changes (Julier & Uhlmann, 1997; Arulampalam, Maskell, Gordon, & Clapp, 2002). These 

methods might offer better performance in scenarios where the EKF's linear approximation 

becomes insufficient. Developing more efficient algorithms for real-time processing, such as 

optimized implementations of the EKF and Kalman Filter, could address the computational 

demands associated with these methods. Techniques such as parallel processing and hardware 

acceleration may be explored to make these methods feasible for real-time applications (Yun, 

Kim, & Kim, 2011). Improving models to account for additional perturbations and 

environmental effects, such as gravitational anomalies and atmospheric drag, could enhance 

the accuracy of the Keplerian Orbit Model and Least Squares Method. Incorporating these 

factors into the models would make them more robust for applications in highly dynamic 

environments (Davis, 2006). Investigating data fusion techniques that combine GPS data with 

other sources, such as inertial measurement units (IMUs) or ground-based reference stations, 

could improve the accuracy and reliability of position and velocity estimates. Data fusion 

approaches can leverage multiple data sources to mitigate the limitations of individual methods 

and enhance overall performance (Grewal & Andrews, 2008). Applying machine learning 

techniques to model and predict satellite dynamics could offer novel solutions for high-

precision data estimation. Machine learning algorithms, such as neural networks and 

reinforcement learning, may be used to develop adaptive models that learn from data and 

improve over time (Bishop, 2006). Conducting field validation studies to compare the 

performance of these methods in real-world scenarios is essential. Practical experiments and 

real-time data collection would provide insights into the methods' effectiveness under varying 

conditions and help refine the models and algorithms based on empirical evidence. 

By addressing these areas, future research can contribute to the development of more accurate, 

efficient, and adaptable methods for GPS satellite position and velocity estimation, expanding 

their applicability to a broader range of scenarios and enhancing overall performance.  
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