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Abstract

Accurate evaluation of post-hemodialysis weight is critical for improving fluid management dear
patient with renal disease, since both fluid overload and excessive ultrafiltration are linked with in-
creased morbidity and death. Despite its clinical importance, existing procedures to determine weight
after hemodialysis session frequently rely on empirical clinical experience and can be subjective and
inaccurate. This study compares the efficacy of different machine learning and deep learning models
for predicting post-hemodialysis weight in patients with renal illness. Five alternative architectures
Multilayer Perceptron (MLP), Support Vector Regression (SVR), Gradient Boosting (GB), Long
Short-Term Memory (LSTM), and Bidirectional LSTM (Bi-LSTM) were implemented and analyzed
using numerous performance criteria.

While all models had excellent correlation coefficients (> 0.99), the MLP model displayed higher
prediction accuracy, with the lowest Mean Absolute Error (MAE: 0.274 kg) and Root Mean Square
Error (RMSE: 0.383 kg). Despite their theoretical advantage in handling temporal data, sequential
models (LSTM and Bi-LSTM) demonstrated greater error rates, with the Bi-LSTM (MAE: 0.239
kg) surpassing the regular LSTM (MAE: 0.856 kg).

Visualization of prediction patterns across patient weight ranges (40-110 kg) revealed the MLP’s
constant performance to effectively track both slow weight transitions and rapid weight changes.
These findings indicate that simpler structures may be more successful for clinical weight prediction
in dialysis settings, thereby enhancing fluid management decisions..

Keywords : Hemodialysis, Nephrologists, Dry weight, Clinical decision support, Machine learning
and Deep learning.

1 Introduction

The management of dry weight (DW) in patients with end-stage kidney disease (ESKD) remains a criti-
cal and persistent challenge in hemodialysis care. Precise estimation of DW is essential to ensure proper
fluid balance, prevent cardiovascular complications, and enhance overall treatment outcomes. Inaccurate
DW assessment can result in severe consequences such as hypotension, fluid overload, or shock, thereby
compromising patient safety and the effectiveness of dialysis sessions. Over the past two decades, DW es-
timation methods have significantly progressed from conventional bio impedance techniques to advanced,
data-driven approaches powered by artificial intelligence (AI) and machine learning (ML) that leverage
multimodal clinical data [T, Bl [13].

Bioimpedance analysis (BIA) has long served as a foundational tool for evaluating body composition
and hydration status. Chamney et al. [3] introduced whole body BIA for estimating extracellular fluid
volume, establishing a baseline methodology for DW estimation. This was later validated by Basile et al.
[2], who confirmed the clinical utility of BIA based prediction equations (mean absolute error [MAE] 0.8
kg). Comparative studies, such as that by Jian et al. [?], further demonstrated BIA’s superior accuracy
(sensitivity: 92%, specificity: 88%) over traditional clinical assessment. More recently, Mussnig et al. [§]
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underscored the necessity of sex-specific BIA parameters to address inter individual variability in body
composition, linking optimal survival rates to lean tissue index (LTI 12.0 kg/m?) and fat tissue index
(FTT 8.5 kg/m?2).

AT and Machine Learning Approaches have revolutionized DW prediction through improved accuracy
and adaptability. Barbieri et al. [I] introduced one of the first AI models combining blood pressure,
fluid volume, and dialysis dose, achieving a mean absolute percentage error (MAPE) of 3.1% in clinical
validation. Building on this, Guo et al. [5, [I0] employed advanced models including multiple kernel
support vector regression (RMSE: 1.38 kg) and sparse Laplacian-regularized RVFL neural networks (ac-
curacy: 94.7%), demonstrating high predictive performance. Boonvisuth [4] confirmed that ML models
could rival BIA accuracy (MAE: 0.72 kg) while reducing dependence on manual measurement. Recent
advancements by Inoue et al. [9] incorporated machine learning to dynamically adjust DW, achieving
area under the curve (AUC) values of 0.70 and 0.74 for upward and downward adjustments, respectively.
Yang et al. [I3] further optimized DW assessment using reinforcement learning, reducing prediction
errors by 21% compared to static models.

Clinical Integration via EHR Systems has enabled scalable implementation. Bi et al. [6] designed a time-
series regression model using EHR data from 1,852 patients, achieving 95.44% accuracy in predicting
post-dialysis weight within a 0.5 kg margin. Kim et al. [I2] developed an ML-based decision-support
tool that minimized inter-clinician variability (Cohens improvement: from 0.32 to 0.67), while Kim et
al. [I5] demonstrated the applicability of ML in hemodialysis athletes, achieving 89% precision in DW
prediction despite unique body composition challenges.

Limitations and Future Directions: Heterogeneity among patient populations, variability in clinical prac-
tices, and the absence of standardized predictive frameworks hinder broader implementation. Germain
et al. [I4] highlighted discrepancies between estimated DW and actual post-transplant weight (mean
deviation: 2.1 + 1.3 kg), advocating for dynamic recalibration. In response, de Miranda Guimaraes et
al. [I1] introduced adiposity-focused equations (R? = 0.82) to refine DW estimates by incorporating fat
mass as a critical factor.

Our research is driven by the clinical importance of accurately predicting post-dialysis weight, a key
factor for tailoring treatment and ensuring patient safety. We present a comprehensive study employ-
ing both classical ML models (MLP, SVR, Gradient Boosting) and deep learning architectures (LSTM,
Bi-LSTM) to identify the most accurate and computationally efficient approach. Our goal is to develop
a robust, real-time solution that supports clinical decision-making and contributes to improved patient
outcomes in dialysis care.

2 Data preprocessing

The following section provides a summary of the characteristics and analytical algorithms employed in
this research. Multivariate time-series data collected during hemodialysis sessions are included in the
collection. Below is a collection of the raw and derived features:

2.1 Dataset Description

2.2 Basic Features

The dataset includes multivariate time-series data collected during hemodialysis sessions, capturing phys-
iological and operational parameters critical for monitoring patient stability (Table .
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Table 1: Measured clinical parameters

‘ Feature ‘ Description ‘ Unit Format ‘
Patient_ID Unique patient identifier Number
Hour Time elapsed in dialysis session | Hours (1-5)
SYS_BP Systolic blood pressure mmHg
DIA_BP Diastolic blood pressure mmHg
UF _Rate Prescribed ultrafiltration rate mL/kg/hr
UF _Real Actual ultrafiltration achieved mL
Pump_Speed Blood pump speed mL/min
Weight_Before | Patient weight pre-dialysis kg
Weight_After Patient weight post-dialysis kg

The database consists of nine direct observations from dialysis equipment and patient monitoring
devices. It includes vital indicators (systolic and diastolic blood pressure), machine characteristics (ul-
trafiltration rate, pump speed), and weight measurements taken before and after treatment. These raw
measurements serve as critical inputs for all future extracted features.

2.3 Extracted Features

To enhance the predictive capacity of machine learning models significant characteristics are derived
from raw hemodialysis data. The following features are calculated:
2.3.1 Hemodynamic Features

Five Cardiovascular markers are developed from blood pressure measurements (Table . While pulse
pressure (PP) indicates arterial stiffness, the mean arterial pressure (MAP) reflects cardiac cycle dy-
namics. Moreover, blood pressure stability during therapy is measured by the three temporal features:
trend, decline, and variability.

Table 2: Blood Pressure Derived Feature

Feature | Formula | Clinical Relevance |
MAP DIA_BP + w Perfusion pressure

PP SYS_BP — DIA_BP Vascular stiffness indicator
BP _Variability o(SYS_BP) Blood pressure stability
BP_Drop SYS_BP;nitiai — SY S_BP.yrrent | Hypotension detection
BP_Trend % Progressive BP changes

2.3.2 Ultrafiltration Features

The second features type characterizes fluid removal efficiency (Table . The system normalizes UF
rates by patient weight, calculates cumulative fluid extraction, and compares actual versus theoretical
removal rates. Advanced metrics like UF variability and acceleration detect abnormal patterns and the
second derivative of fluid removal indicates the accelerating fluid loss. These features enable real-time
machine calibration and treatment adjustment.

Table 3: Fluid removal metrics

‘ Feature ‘ Formula ‘ Purpose ‘
UF _Rate_per_Weight % Normalized UF rate
UF_Cumulative > UF_Real Total fluid removed

UF_Cumulative
HourxWeight_Before
UF_Real
UF_Ratex Hourx250

O'(UFfReal)per session

A?UF_Real
Atime?

UF_Cumulative_Rate
UF _Efficiency

UF _Variability
UF_Acceleration

Time-adjusted efficiency
Actual vs. expected UF
Treatment consistency

UF rate changes

3
PAGE NO: 322



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

2.3.3 Weight and Temporal Features

Three time-dependent weight metrics complete the feature set as it is depicted in table [ The weight
loss rate (kg/hr) and its acceleration (kg/hr?) provide safety monitoring, with thresholds triggering
alerts when exceeding or showing positive acceleration. Session duration plays a quality control measure,
identifying prematurely terminated treatments. Together, these features create a comprehensive safety
that addresses the most critical risks in dialysis management.

Table 4: Weight dynamics and time-dependent metrics

‘ Feature ‘ Formula Purpose
Session_Duration max(Hour)per session Total treatment duration
. Werght_Before—Weight_After . .
Weight_Loss_Rate S— LHOM Hourly weight loss velocity
Weight_Loss_Acceleration (Wm%:;n;ssjate) Non-linear weight change detection

These engineered features capture hemodynamic stability, fluid kinetics, and patient-specific treat-
ment responses, enabling robust modeling of post-dialysis outcomes.

3 Proposed Algorithms

The methodlogy process is described in Figure It shows the extensive machine learning process for
dialysis weight prediction.

Initially, the framework evaluates essential physiological variables. The feature importance analysis
reveals that baseline weight, normalized ultrafiltration rates, and cumulative fluid removal metrics are
the most significant predictors of patient outcomes.
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Figure 1: Methodology Schema

The process then employs a multi-model comparative approach, assessing both classic machine learn-
ing algorithms (Gradient Boosting, MLP, and SVR) and specific deep learning architectures (LSTM and
Bi-LSTM) built to capture temporal relationships during dialysis sessions. The final prediction stage
validates the model’s therapeutic value through rigorous validation, revealing a good connection between
anticipated and real post-dialysis weights across patient samples, allowing for accurate weight forecasting
throughout therapy.

This integrated analytical approach gives medical practitioners a dependable tool for forecasting patient
responses to dialysis procedures, which could improve clinical decision-making and therapy personaliza-
tion.

The models are categorized into two groups: traditional machine learning-based and deep learning-based
approaches.
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3.1 Machine Learning Models

The Gradient Boosting Regressor (GBR): The GBR model combines 300 decision trees of maxi-
mum depth 5, using mean squared error (MSE) as the splitting criteria as it is showed in table [5} GBR
uses a learning rate of 0.05 for each split. Regularization requires a minimum of two leaf samples and
five split samples.

Training includes 10 boosting rounds with little progress.

Table 5: Gradient Boosting Regression (GBR) Specifications

] Category Description

Architecture

e 300 decision trees
e Maximum depth: 5 levels
e Splitting criterion: MSE

Learning
e Learning rate: 0.05
e Feature subsampling (,/p) at each split
e Minimum 5 samples per split
Regularization

e min_samples_leaf=2
e Stopping after 10 iterations without improvement

Support Vector Regression (SVR): The radial basis function (RBF) kernel is implemented with
penalty parameter C=10 and epsilon=0.1. This configuration provides robust performance against the
moderate noise levels expected in dialysis monitoring data. The RBF kernel’s non-linear transforma-
tion enables effective modeling of complex physiological relationships while maintaining computational
efficiency through the kernel trick. The carefully tuned epsilon-insensitive band creates an appropriate
tolerance for typical measurement variations in blood pressure and ultrafiltration rates. Table [ summa-
rizes all the parameters of the SVR algorithm.

Table 6: Support Vector Regression (SVR) Specifications

\ Category Description

Kernel

Radial Basis Function (RBF):
v =1/(n-features x Var(X))
Regularization parameter C' = 10

Loss Function

e c-insensitive (¢ = 0.1) with soft margin

Implementation

scikit-learn (SVR kernel="rbf”)
e Memory cache limited to 4GB

The Multilayer Perceptron (MLP): The MLP model (Table [7)) uses a three-layer feedforward
neural network (256-128-64 neurons) with ReLU activation in the hidden layers and linear output for
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regression. The Adam optimizer is used for training, with an initial learning rate of 0.001 and dynamic
adjustments based on plateau detection (reduction factor 0.5 after 5 stationary epochs). Regularization
uses L2 weight decay (A=0.0001), 20% dropout before the output layer, and batch normalization between
layers. The model processes data in 64-sample batches with an early halt triggered after 15 epochs.

Table 7: Multilayer Perceptron (MLP) Specifications
] Category Description

Architecture

3 fully-connected layers (256-128-64 neurons)
e ReLU activation for hidden layers
e No activation function for output (regression)

Hyperparameters
e Initial learning rate: 0.001 (adaptive)
e L2 regularization (A = 0.0001)
e Dropout rate: 20% before output layer
Optimization

e Adam optimizer (81 = 0.9, B2 = 0.999)
e Batch size: 64
e FEarly stopping after 15 epochs without improvement

3.2 Deep Learning Models

Figure [2| represents the developed two deep learning architectures: the standard Long Short-Term Mem-
ory (LSTM) network and the Bidirectional LSTM (Bi-LSTM) model.

LSTM Model Bi-LSTM Model
[ Input layer ] [ Input layer ]
] i
Bidirectional LSTM
LSTM [ 128 units, return_sequences. true J
I v
Dropout [ Dropout ]
L 0,3 7
- ! ~ Bidirectional LSTM
Dense 64 units
128 units, A = 001) | 1
¥ =
[ Dropout ] [ BatchNormaization ]
v
Dense:no
[ BatchNormallzahon ] [ 128 units, A= 0,01) ’
¥
[ Dense ] { Dropout
! i
[ Output layer ] Output layer

Figure 2: Architecture of models LSTM and BiLSTM.

Long short-term memory: The standard LSTM contains 256 memory units followed by dropout
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and batch normalization layers, capturing temporal dependencies in treatment progression. The bidirec-
tional variant stacks two LSTM layers (128—64 units) processing sequences in both directions, proving
particularly effective for detecting subtle physiological trends that may manifest differently in forward
versus backward analysis. Both architectures use tanh/sigmoid activation gates and Adam optimization
for stable gradient flow during backpropagation through time.

Bi-directional Long short-term memory: The Bi-LSTM model, in contrast, is designed to leverage
information from both past and future time steps by using bidirectional LSTM layers. It begins with
a Bidirectional wrapper around an LSTM layer with 128 units and 'tanh’ activation, configured to re-
turn sequences. A second Bidirectional LSTM layer with 64 units follows to extract deeper contextual
features. Similar to the LSTM model, it includes a 128-unit dense layer with 'ReLU’ activation and
L2 regularization, batch normalization, dropout, and an additional 64-unit dense layer before the final
regression output.

Both models are optimized using the Adam optimizer with a learning rate of 0.0005 to minimize error.
The key difference lies in the use of bidirectionality in the Bi-LSTM model, which enables it to model
sequences more comprehensively, albeit at a higher computational cost.

The comparative evaluation uses four metrics which are calculated on an independent test set. This quan-
titative analysis is complemented by clinically relevant visualizations: learning curves to diagnose model
convergence, correlation matrices to identify variable dependencies, and prediction-versus-actuality plots
to validate physiological coherence.

4 Results and Discussions

To evaluate the performance of the models, several criteria were computed. This section provides a
detailed presentation of the simulation results with analyses and discussion. Performance is assessed
through standard regression metrics (MSE, MAE, R?) and comparative error analysis, with additional
insights provided by learning curve visualizations and prediction plots.

4.1 Machine Learning Results

The results of simulations using different machine learning models are described in depth in the section
that follows.

4.1.1 Machine Learning Prediction

A comparison of prediction models for post-hemodialysis weight estimate is shown in the three graphs.
With the lowest Mean Absolute Error (0.2743 kg) and the greatest correlation coefficient (0.9995), the
MLP (Figure [3)) model performs exceptionally well, showing a close clustering of data points along the
optimal prediction line.

The SVR (Figure 4) model, which retains strong accuracy but exhibits somewhat greater dispersion at
higher weight ranges (90-110 kg), comes next with a correlation of 0.9984 and an MAE of 0.3256 kg.
The GradientBoosting (Figure [5)) model shows the highest prediction variation across all weight ranges,
yet maintaining a high level of accuracy (correlation 0.9979, MAE 0.5749 kg). Although all three models
exhibit good performance throughout the whole range of patient weights (40-110 kg), the MLP model
appears to have the most accurate clinical predictions for post-dialysis weight due to its much reduced
error rate, which might lead to better fluid management choices.
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Figure 5: GBR Correlation
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4.1.2 Error Curves Index

A time-series display of actual vs predicted post-hemodialysis weights demonstrates significant varia-
tions in model performance when tracking patient weight chronologically. The MLP model (Figure @
has excellent temporal prediction accuracy, with projected values (blue dashed line) closely matching the
actual weight trajectory (continuous red line) across the full sample range. This temporal alignment is
most visible in the model’s capacity to properly represent both slow weight transitions and rapid weight
swings, with very little variance around sample point 30.

In contrast, the GradientBoosting model (Figure @exhibits more frequent oscillations around the real
values, especially in the lower weight ranges (samples 0-20) and upper ranges (samples 80-100), where it
tends to slightly overestimate and then underestimate the actual weights.

The SVR model (Figure |8) performs well in the middle of the samples but makes significant prediction
errors at the extremes, with significant overestimation around samples 1-15 and a significant underesti-
mation of the sharp weight increase at the end of the series (samples 95-100), where it fails to capture
the full magnitude of the weight change.

Each of the models can effectively track the general weight pattern, but the SVR’s inability to accurately
predict sudden weight increases, as well as the Gradient Boosting’s frequent oscillations, highlight the
MLP’s superior capability for precise weight prediction across various patient scenarios, confirming the
lower MAE observed in the previous plots.
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Figure 7: GR Error

9
PAGE NO: 328



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

Actual_vs_Predicted - SVR

—e— Real Values
=== Predicted Values

%0

Weight(kg)

70

Samples

Figure 8: SVR Error

4.2 DL Performance

The results of simulations using different deep learning models are described in depth in the section that
follows.

4.2.1 Deep Learning Correlation

The LSTM and Bi-LSTM models have high predictive performance for post-hemodialysis weight esti-
mates, but with differing error profiles.

The LSTM model has a high correlation (0.9952) but a greater Mean Absolute Error (0.8962 kg), indi-
cating steady but less exact predictions across the weight spectrum. Plot as it it is depicted in Figure [9]
reveal a distinct pattern in which the LSTM overestimates weights in some areas (as shown in the blue
data points above the reference line), with distributed prediction deviation .

In comparison, the Bi-LSTM model has a slightly higher correlation coefficient (0.9970) and a signifi-
cantly lower MAE (0.6879 kg), indicating better prediction accuracy. The Bi-LSTM’s data points are
more consistent with the ideal prediction line, but there is still some systematic underestimate of weights,
as shown in Figure [I0] where the curve fall slightly below the reference line in the mid-range weights.
These temporal models perform well, but have higher error margins than the previously analyzed MLP
model (MAE: 0.2743 kg), implying that, despite their ability to capture sequential patterns in dialysis
data, simpler architectures may provide superior precision for this specific weight prediction task.

Predictions vs True - LSTM
Corr: 0.9952 | MAE: 0.8962 kg
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Figure 9: LSTM Correlation
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Predictions vs True - Bi-LSTM
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Figure 10: Bi LSTM Correlation

4.2.2 Deep Learning Error Curves

The time-series comparison of the LSTM and Bi-LSTM models reveals distinct prediction behaviors for
post-hemodialysis weight estimation. The LSTM model (Figure exhibits notable oscillatory patterns
throughout the sample sequence, with frequent fluctuations around the actual weight values. Particu-
larly visible deviations occur around samples 40-45, where the LSTM significantly overshoots the actual
weight, and in the 60-85 range, where the predictions oscillate more substantially around the true values.
Despite these fluctuations, the LSTM generally tracks the overall weight trend but consistently fails to
smoothly follow gradual transitions.

The Bi-LSTM model (Figure demonstrates markedly improved performance, with predictions adher-
ing more closely to the actual weight trajectory throughout most of the sample range. The bidirectional
architecture appears to reduce the prediction variance, though some notable deviations still occur, par-
ticularly a prominent spike around sample 80 and slight oscillations in the 85-95 range.
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Figure 11: LSTM Error
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Figure 12: Bi LSTM Error

Both models adequately capture the final sharp weight increase at the end of the sequence, though
neither achieves the precision demonstrated by the MLP model in previous visualizations. The Bi-
LSTM’s improved temporal stability compared to the standard LSTM suggests that incorporating both
forward and backward temporal information enhances prediction accuracy, though the sequential models
still underperform compared to the MLP’s consistent tracking behavior across the entire patient weight
range.

A Long Short-Term Memory (LSTM) model’s learning curves are depicted in Figure which show

Mean Absolute Error (MAE) and Mean Squared Error (MSE) throughout a sequence of training epochs.
Early in the training phase, the MAE graph on the left exhibits a sharp fall, suggesting that as the
model gains knowledge from the training data, error will rapidly decrease. After around 20 epochs, the
training (solid line) and validation (dashed line) curves settle, indicating that the model is generalizing
effectively without experiencing substantial overfitting. This is supported by the validation error, which
is comparatively flat.
On the other hand, the MSE chart on the right shows a similar pattern, starting with a steep decline
and then stabilizing. Because the MSE measure is squared and penalizes greater mistakes more severely,
the MSE values are consistently higher than the MAE values. Both indicators show that with the LSTM
model learning is effective in reducing error.

Learning Curves - MAE (LSTM) Learning Curves - MSE (LSTM)
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Figure 13: LSTM Train Curves

The Bi-LSTM model’s learning curves (Figure show the Mean Absolute Error (MAE) and Mean
Squared Error (MSE) performance metrics over training and validation at different epochs. Effective
learning and convergence are demonstrated by the significant decrease in error for both the training (solid
blue line) and validation (dashed green line) datasets in the left graph illustrating MAE, especially in
the early epochs. But at a given period, the validation error stabilizes at a larger value than the training
error, indicating possible overfitting.

Similar to the MAE pattern, the MSE trends on the right graph show a considerable decrease in both
training and validation errors during the early training stages. Although the model has successfully
reduced error rates during the training process, the MSE values, which are more sensitive to big errors,
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also raise concerns about overfitting as training goes on. These learning curves highlight the significance
of tracking validation measures to guarantee reliable performance while offering insightful information
about the model’s training dynamics.

Learning Curves - MAE (Bi-LSTM) Learning Curves - MSE (Bi-LSTM)
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Figure 14: Bi LSTM Train Curves

4.3 Comparative Analysis

With R? scores near of 1, the machine learning models (MLP, SVR, and Gradient Boosting) show good
overall performance and a good fit to the data. With the lowest MSE (0.146) and the greatest R (0.9989),
the Multilayer Perceptron (MLP) is clearly the best-performing model. SVR (Support Vector Regres-
sion), which exhibits a fair balance between accuracy (MSE = 0.480) and robustness, comes in second.
Although Gradient Boosting shows a higher MAE (0.574), indicating somewhat bigger mistakes in some
predictions, it performs marginally worse (MSE = 0.607) but is still competitive. These models are very
effective at the task, with MLP being the best option in terms of accuracy and stability (Table .

The Deep Learning models (Bi-LSTM and LSTM) presented in same Table |8 demonstrate decreased
performance compared to the Machine Learning techniques, while they still produce acceptable results
(R? > 0.99). The Bi-LSTM outperforms the normal LSTM, with an MSE of 0.818 compared to 1.357 for
LSTM, demonstrating that bidirectional processing increases the model’s capacity to capture temporal
relationships. But compared to the Machine Learning models, their mean absolute errors (MAE) are
significantly higher (0.688 and 0.896, respectively), which may indicate underfitting or the need for archi-
tectural adjustments. These findings indicate that, despite their complexity, Deep Learning techniques
do not outperform conventional methods for this application.

With the lowest error rates across all measures and the best correlation coefficient, the MLP model
performs noticeably better than any other design. Compared to Gradient Boosting, which exhibits much
greater error values, the SVR model performs significantly better and comes second in efficacy with
moderate error metrics. Although both sequential models, the Bi-LSTM architecture performs better
than the regular LSTM, with reduced error metrics for all algorithms.

The MLP architecture offers significantly higher precision for clinical weight prediction following hemodial-
ysis, with error rates less than half those of the sequential models and significantly lower than other
conventional machine learning techniques.

The Root Mean Square Error (RMSE) values for ML and DL models employed in a comparison are
displayed in Figure [T5]

With an RMSE of around 0.4 kg, MLP performs the best, and SVR, at about 0.5 kg, follows. While
Bi-LSTM and LSTM exhibit greater error rates with RMSE values approaching 0.8 kg and 1.0 kg, re-
spectively, Gradient Boosting performs decently with an RMSE of around 0.6 kg. While LSTM and
Bi-LSTM need more tweaking to increase their prediction accuracy, this investigation also shows how
successful MLP and SVR are.

Error distribution, in kilos, for models, such as Gradient Boosting, Support Vector Regression (SVR),
Multi-layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Bidirectional LSTM, is shown
in Figure . Although there are notable outliers, the median error for the majority of models is close
to zero, as seen by the y-axis, which displays the error values. While the MLP, LSTM, and Bi-LSTM
models indicate possibly more stable performance with less extreme values, Gradient Boosting and SVR
exhibit significant volatility in their error distributions.
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Figure 16: Error Distribution

Table [8| presents a comparative evaluation of different machine learning (ML) and deep learning (DL)
models applied to dry weight (DW) prediction, including both the proposed methods and those from
related studies. The performance is assessed using standard regression metrics such as Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of
determination (R2).

In the study by Bi et al. (2019), traditional time-series models (ARIMA) and ensemble methods (Ran-
dom Forest) achieved low MSE and MAE values, with ARIMA reaching an MSE of 0.1693 and a notably
low MAE of 0.0178. However, their LSTM model reported a slightly higher MAE of 0.0314, indicating
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limitations in capturing temporal dependencies compared to statistical and tree-based methods in their
dataset.

Kim et al. (2021) focused exclusively on MAE as the evaluation metric, where Light GBM outperformed
XGBoost and Random Forest, achieving an MAE of 0.2358. These values reflect solid predictive capa-
bility but are still dependent on careful feature engineering and parameter tuning.

In comparison, the proposed models demonstrate competitive performance, especially the MLP model,
which achieved the best overall performance across multiple metrics: the lowest MSE (0.1466), a relatively
low RMSE (0.3829), and an MAE of 0.2743, with a high R? of 0.9989, indicating strong generalization
and accurate predictions. The SVR and Gradient Boosting models also performed well, though their
MAE values were slightly higher.

’ Reference \ Models \ MSE \ RMSE \ MAE \ R?
Bi, et al. [6] (2019) ARIMA 0.1693 - 0.0178 -
RF 0.2044 - 0.0167 -

LSTM 0.168 - 0.0314 -

Kim, et al. [I1] (2021) LightGBM - - 0.2358 -
XGBoost - - 0.2845 -

Random Forest - - 0.3082 -

Proposed MLP | 0.146597 | 0.382879 | 0.274269 | 0.998932
SVR | 0.480570 | 0.693232 | 0.325633 | 0.996499

Gradient Boosting | 0.607439 | 0.779384 | 0.574930 | 0.995575

Bi-LSTM | 0.817975 | 0.904420 | 0.687907 | 0.994041

LSTM | 1.357143 | 1.164965 | 0.896207 | 0.990113

Table 8: Comparative Table of the Results of ML, and DL Techniques, with Reference to Related Works

While deep learning models such as Bi-LSTM and LSTM were less effective in this set up with higher
MAEs (0.6879 and 0.8962, respectively) and MSEs exceeding 0.8—their inclusion demonstrates the po-
tential challenges of training complex temporal models on smaller or noisy datasets without sufficient
regularization or data preprocessing.

The proposed MLP model outperforms not only other traditional ML and DL models within the same
experiment, but also most models from previous studies in terms of MSE and R2. Although some of the
methods referenced (e.g., ARIMA and RF of Bi et al.) achieved exceptionally low MAESs, these could
reflect different experimental conditions, feature sets, or evaluation frameworks. Overall, this compar-
ison highlights the effectiveness and robustness of the proposed approach in DW prediction tasks, and
it underlines the importance of choosing appropriate models tailored to the characteristics of the dataset.

5 Conclusion

A comparative analysis involving several popular architectures is performed in order to assess the efficacy
of different machine learning models for post-hemodialysis weight prediction, including multi-layer per-
ceptron (MLP), support vector regression (SVR), gradient boost, long-short-term memory (LSTM) and
bidirectional LSTM (Bi-LSTM). A data set of time series clinical parameters collected during hemodial-
ysis sessions was used to train and evaluate the models.

This thorough analysis has shown that the MLP model performs noticeably better than other designs.
When compared to other models, the MLP’s significantly reduced error rates (MAE: 0.274 kg) imply
that sophisticated sequential models may not always offer benefits for this particular clinical prediction
job. Although the Bi-LSTM model outperformed the conventional LSTM architecture, neither sequential
model was able to achieve the MLP approach’s easier prediction accuracy. This conclusion highlights the
significance of choosing models based on actual performance rather than theoretical benefits and calls
into question the notion that temporal models are fundamentally superior for time-series health data.
The application of this predictive approach in clinical settings could offer nephrologists useful deci-
sion support and improve outcomes for hemodialysis patients. Future research should concentrate on
prospective validation of the MLLP model in a variety of patient populations and investigation of feature
importance to further optimize prediction accuracy.
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