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Abstract— High-Efficiency Video Coding (HEVC) represents 

a significant advancement in video compression, offering 

improved coding efficiency compared to earlier standards. Intra 

prediction, a key aspect of HEVC, is critical for achieving high 

compression efficiency but often faces challenges related to 

computational complexity, particularly in real-time 

applications. To overcome these limitations, deep learning 

approaches have been increasingly utilized to expedite the intra 

coding process. This review provides an extensive survey of 

recent advancements in Fast CTU-Based Intra Coding for 

HEVC, focusing on deep learning techniques such as 

Convolutional Neural Networks (CNNs) and other 

architectures that enhance intra prediction. By evaluating 

various methodologies, we identify significant contributions, 

challenges, and potential opportunities within this field. The 

paper underscores the importance of rapid intra coding for 

HEVC, particularly in bandwidth-constrained and real-time 

scenarios, and discusses the trade-offs associated with deep 

learning approaches in terms of complexity, memory usage, and 

encoding efficiency. This review aims to offer a comprehensive 

overview of cutting-edge techniques and guide future research 

toward more efficient and effective video compression 

solutions. 

Keywords: Convolutional Neural network (CNN), Deep learning, High 
Efficiency Video Coding (HEVC), Intra-coding, Rate-Distortion 

Trade-offs. 

1. INTRODUCTION 

Video coding is a fundamental technology that plays a 

crucial role in the efficient compression and transmission 

of multimedia content. It enables the representation of 

video sequences by exploiting temporal and spatial 

redundancies, thereby reducing the amount of data 

required for storage and transmission. One of the key 

components of video coding is "intra coding," which 

focuses on encoding individual frames in a video 

sequence independently of each other. Sze et al. [1] 

present an overview of the High Efficiency Video Coding 

(HEVC) standard and its intra coding techniques. The 

HEVC standard [2], also known as H.265, is a state-of-

the-art video coding standard that significantly improves 

compression efficiency compared to its predecessors. 

Intra coding is particularly essential in the HEVC 

standard because it deals with static or low-motion 

regions within a frame. These regions cannot benefit 

from motion estimation, which is used in inter coding, as 

there is no temporal correlation between neighboring 

frames. The efficiency of intra coding has a significant 

impact on overall compression performance, especially 

for videos with scenes containing little or no motion. The 

computational complexity of traditional HEVC intra 

coding methods is highlighted as a challenge, motivating 

researchers to turn to deep learning approaches [3, 4]. 

In recent years, the field of deep learning has witnessed 

remarkable advancements in various domains. It has 

proven to be a transformative technique in computer 

vision, natural language processing, and other areas, 

achieving state-of-the-art results in numerous tasks. The 

growing success of deep learning approaches has also 

attracted attention in the domain of video coding, 

including intra coding in the HEVC standard. 

Chen et al. [5] propose a fast intra mode decision 

algorithm for HEVC using Convolutional Neural 

Networks (CNNs). Zhang et al. [6] introduce an intra 

coding method for HEVC based on CNNs, and Wang et 

al. [7] present a two-stage CNN-based intra prediction 

approach for HEVC. Kim and Lee [8] explore 

hierarchical CNNs for HEVC intra prediction. Liu et al. 

[9] design a joint intra mode decision and reconstruction 

network for HEVC intra coding. Zhang et al. [10] 

propose a learning-to-filter approach for intra prediction 

in video coding. Tai et al. [11] present a CNN-based intra 

prediction method for HEVC. Liu et al. [12] enhance 

intra coding for HEVC using deep convolutional neural 

networks. The motivation for utilizing deep learning 

techniques in intra coding stems from the potential to 

exploit complex spatial patterns and contextual 

information within the frames. Traditional intra coding 

algorithms, though effective, often face limitations in 

capturing intricate details and fine-grained features 

within an image. Deep learning models, particularly 

convolutional neural networks (CNNs), have shown 

great promise in image understanding and feature 

extraction tasks. Their ability to learn hierarchical 

representations and adapt to diverse data distributions 

makes them suitable candidates for enhancing intra 

coding efficiency. 
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This review paper aims to comprehensively survey the 

state-of-the-art approaches that leverage deep learning 

techniques for fast CTU-based (Coding Tree Unit) intra 

coding in the HEVC standard. By focusing on CTU-

based methods, we center our investigation on a 

fundamental coding unit used in HEVC, which allows for 

a granular analysis of intra coding efficiency 

improvements. The review will cover a wide range of 

methodologies, including but not limited to CNN-based 

approaches, optimization algorithms, and hybrid 

schemes that incorporate conventional coding techniques 

with deep learning strategies. 

Objectives and Scope of the Review Paper 

The primary objective of this review paper is to provide 

a comprehensive analysis of the advancements made in 

leveraging deep learning for fast CTU-based intra coding 

in HEVC. By summarizing the latest research 

developments, we aim to identify the key challenges, 

opportunities, and potential areas of improvement in this 

field. 

The scope of the review paper includes, but is not limited 

to: 

• An overview of the HEVC standard and its intra 

coding techniques. 

• A survey of traditional fast intra coding algorithms 

and their limitations. 

• In-depth analysis of various deep learning 

approaches for enhancing intra coding efficiency. 

• Comparative evaluation of different methods in 

terms of coding performance and computational 

complexity. 

• Discussion on the challenges and open research 

questions in the intersection of deep learning and 

video coding. 

• Potential applications and future directions for 

integrating deep learning into the HEVC standard. 

In conclusion, this review paper aims to contribute to the 

existing body of knowledge on video coding by 

highlighting the advancements, potential, and limitations 

of utilizing deep learning techniques for fast CTU-based 

intra coding in the HEVC standard. It is hoped that this 

work will serve as a valuable resource for researchers, 

practitioners, and engineers in the field, fostering further 

innovation and progress in video coding technologies. 

2. BACKGROUND 

2.1 Overview of the HEVC Standard and Intra Coding 

Process 

The High-Efficiency Video Coding (HEVC) standard, 

also known as H.265, is a widely adopted video 

compression standard developed by the Joint 

Collaborative Team on Video Coding (JCT-VC) [13]. It 

was designed to succeed its predecessor, 

H.264/Advanced Video Coding (AVC), and provides 

significant improvements in video compression 

efficiency. 

 

HEVC achieves higher compression by utilizing various 

advanced coding tools and techniques. One of the key 

components of HEVC is its intra coding process. Intra 

coding is responsible for compressing individual video 

frames (also known as I-frames or keyframes) without 

reference to any other frames. This process aims to 

exploit the spatial redundancies within each frame to 

reduce the bit rate required for transmission and storage. 

 

In the intra coding process, Coding Tree Units (CTUs) 

are used to partition the video frame into smaller blocks. 

These CTUs can be further divided into smaller blocks, 

such as Prediction Units (PUs) and Transform Units 

(TUs), depending on the coding structure. Each CTU is 

processed independently during intra coding, and the 

encoded information includes intra prediction modes, 

residual data, and transform coefficients. 

 

2.2 Challenges and Complexities of Traditional CTU-

Based Intra Coding 

While HEVC significantly improves video compression 

efficiency compared to its predecessor, traditional CTU-

based intra coding still faces several challenges and 

complexities [14]: 

 

• High computational complexity: CTU-based intra 

coding involves a large number of possible intra 

prediction modes for each CTU, leading to increased 

computational complexity during the encoding 

process. This results in longer encoding times, which 

can be impractical for real-time applications or high-

resolution videos. 

 

• Rate-Distortion Optimization (RDO): HEVC 

employs RDO to find the optimal coding mode for 

each CTU by evaluating the trade-off between 

compression efficiency and distortion. RDO requires 

evaluating multiple encoding options for each CTU, 

leading to further computational burden and 

increased encoding time. 
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• Limited parallelism: Traditional CTU-based intra 

coding lacks substantial parallelism [17], as the 

coding of each CTU is largely dependent on the 

previously encoded CTUs. This limits the potential 

for efficient parallel processing and makes it 

challenging to fully utilize modern multi-core 

processors and hardware accelerators. 

 

• Quality limitations: Despite the improvements in 

compression efficiency provided by HEVC, there 

are still cases where high compression ratios lead to 

visible artifacts and reduced video quality, especially 

in complex video scenes or at lower bit rates. 

 

To address these challenges and improve the overall 

efficiency of intra coding in HEVC, researchers have 

explored the use of deep learning approaches. 

 

2.3 Introducing Deep Learning and Its Relevance in 

Video Coding Applications 

Deep learning is a subset of machine learning that utilizes 

artificial neural networks to learn hierarchical 

representations of data [16]. This technology has 

demonstrated remarkable success in various fields, 

including computer vision, natural language processing, 

and speech recognition. 

 

In the context of video coding, deep learning techniques 

offer promising solutions to enhance compression 

efficiency and overcome the challenges of traditional 

CTU-based intra coding [16]. By leveraging the power of 

deep neural networks, researchers can design models 

capable of learning complex spatial patterns, 

correlations, and contextual information from video 

frames. 

 

Deep learning can be applied to video coding in several 

ways: 

 

• Intra Prediction: Deep learning models can be 

trained to predict the most suitable intra prediction 

mode for each CTU based on its spatial context. 

These learned prediction modes can potentially lead 

to more accurate predictions and improved 

compression efficiency [14]. 

• Rate-Distortion Optimization: Deep learning can 

aid in approximating the RDO process by learning to 

estimate the rate and distortion characteristics of 

different coding options. This can accelerate the 

coding process by reducing the number of candidate 

modes that need to be evaluated [15]. 

• Post-processing and Artifact Reduction: Deep 

learning techniques can be employed to perform 

post-processing on decoded frames, reducing 

compression artifacts and improving overall visual 

quality [16]. 

 

In this review paper, we will explore the recent 

advancements in fast CTU-based intra coding using deep 

learning approaches. By examining various research 

works and methodologies, we aim to provide a 

comprehensive understanding of the potential benefits 

and challenges associated with integrating deep learning 

into HEVC's intra coding process. 

3. RELATED WORK 

In this section, we review the existing literature on fast 

CTU-based intra coding methods for High Efficiency 

Video Coding (HEVC). We categorize the approaches 

into different groups based on their techniques, namely 

handcrafted features, machine learning-based, and deep 

learning-based methods. For each approach, we highlight 

their strengths and weaknesses.  

3.1 Handcrafted Features based Methods 

Handcrafted feature-based methods are traditional 

approaches that rely on manually designed features to 

improve the speed of CTU-based intra coding in HEVC. 

These methods often focus on reducing computational 

complexity by exploiting spatial and temporal 

correlations within the video frames. Common 

techniques include block partitioning algorithms [18], 

transform coefficient pruning [19], and mode decision 

simplification [20]. Some studies have also explored 

edge detection and texture analysis to guide the encoding 

process efficiently. 

Strengths: 

• Handcrafted features can be interpretable, allowing 

researchers to understand the underlying 

mechanisms behind their effectiveness. 

• These methods often require lower computational 

resources compared to more complex machine 

learning and deep learning approaches. 

Weaknesses: 

• Designing effective handcrafted features is a 

challenging task that requires domain expertise and 

may not capture all relevant information effectively. 

• The performance of handcrafted feature-based 

methods can be limited due to the inherent 

complexity of video content and the diversity of intra 

coding scenarios. 
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3.2 Machine Learning-Based Methods 

Machine learning-based approaches utilize various 

supervised and unsupervised learning techniques to 

develop models that can predict and optimize the CTU-

based intra coding process. These methods typically 

involve feature extraction and selection steps, followed 

by training algorithms such as Support Vector Machines 

(SVM) [22], Random Forests [21], or Gradient Boosting 

[23]. By learning from a large set of data, these models 

can make informed decisions on the coding modes for 

CTUs, thus speeding up the overall encoding process. 

Strengths: 

• Machine learning-based methods can adapt to 

various content characteristics and improve their 

performance with large and diverse training datasets. 

• They have the potential to achieve higher coding 

efficiency compared to handcrafted feature-based 

methods. 

Weaknesses: 

• The success of machine learning-based methods 

heavily relies on the quality and representativeness 

of the training data, which can be challenging to 

obtain for specific scenarios. 

• The process of feature extraction and selection can 

be computationally intensive, and the final 

performance is limited by the quality of the chosen 

features. 

 

3.3 Deep Learning-Based Methods 

Deep learning-based approaches represent the state-of-

the-art methods for fast CTU-based intra coding in 

HEVC [26]. By leveraging convolutional neural 

networks (CNNs) [24] and recurrent neural networks 

(RNNs) [25], deep learning models can automatically 

learn hierarchical representations from raw video data 

and capture complex spatial dependencies between 

neighboring blocks. These models have shown promising 

results in various video coding tasks. 

Strengths: 

• Deep learning-based methods can handle large-scale 

data and learn intricate patterns, leading to superior 

coding performance compared to handcrafted and 

traditional machine learning-based approaches. 

• They offer the potential for end-to-end optimization, 

reducing the need for manual feature engineering 

and simplifying the encoding pipeline. 

Weaknesses: 

• Deep learning-based methods require substantial 

computational resources during training and 

inference, which may limit their practical 

applicability in real-time scenarios or resource-

constrained devices. 

• An extensive amount of data is often necessary to 

train deep learning models effectively, which can be 

challenging to acquire and curate for video coding 

applications. 

In conclusion, the existing literature on fast CTU-based 

intra coding for HEVC covers a range of approaches 

using handcrafted features, machine learning, and deep 

learning techniques. Each approach has its own strengths 

and weaknesses, and the choice of method depends on 

the specific requirements and constraints of the 

application. Future research could focus on hybrid 

approaches [27, 28] that combine the strengths of 

different techniques or on optimizing deep learning 

models for more efficient and resource-friendly 

implementations. 

4. DEEP LEARNING IN FAST CTU-BASED 

INTRA CODING 

Deep learning has emerged as a powerful technique for 

various video coding applications, including fast CTU-

based intra coding in High-Efficiency Video Coding 

(HEVC). In this section, we will explore the 

fundamentals of deep learning algorithms relevant to 

video coding, discuss the architecture and design of deep 

learning models used for fast CTU-based intra coding, 

and highlight the advantages of employing deep learning 

in this context. 

 

4.1 Fundamentals of Deep Learning Algorithms in Video 

Coding 

Deep learning algorithms are a subset of machine 

learning techniques that use neural networks to learn and 

represent data in hierarchical layers. They have shown 

significant success in various computer vision tasks [29, 

30], including image and video compression, denoising, 

and enhancement. For video coding applications, deep 

learning models exploit the temporal and spatial 

redundancies present in consecutive video frames to 

achieve higher compression efficiency and faster 

processing [31, 32]. 

 

Convolutional Neural Networks (CNNs) are the 

foundation of most deep learning architectures used in 

video coding. CNNs use convolutional layers to learn 

spatial features from the input frames, followed by 

pooling layers to reduce the spatial dimensions while 

retaining important information. Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 32 ISSUE 1 2022

PAGE NO: 4



(LSTM) networks are also employed to capture temporal 

dependencies across video frames, improving the coding 

efficiency further. 

 

4.2 Architecture and Design of Deep Learning Models for 

Fast CTU-Based Intra Coding 

Fast CTU-based intra coding aims to reduce the 

computational complexity of the Intra mode decision 

process in HEVC. Deep learning models are introduced 

to efficiently select the best coding mode for Coding Tree 

Units (CTUs) in intra frames, improving encoding speed 

without sacrificing coding performance [33, 34]. 

• Data Preparation: To train deep learning models, a 

large dataset of CTUs and their corresponding 

optimal coding modes (ground truth) is required. The 

dataset is created by extracting CTUs from various 

intra frames and labeling them with their best coding 

modes obtained through HEVC's exhaustive mode 

search [31]. 

• Model Architecture: The typical architecture for 

deep learning-based CTU-based intra coding 

consists of multiple convolutional layers for spatial 

feature extraction, followed by recurrent layers for 

capturing temporal dependencies [29]. The model 

takes a CTU patch as input and outputs the best 

coding mode. 

• Training Process: The model is trained using a 

combination of supervised and reinforcement 

learning techniques. Initially, it learns from the 

ground truth coding modes using supervised 

learning. Then, it undergoes reinforcement learning, 

where it interacts with the HEVC encoder to receive 

rewards (coding efficiency) based on the selected 

coding modes [30]. This reinforcement learning 

phase helps fine-tune the model and adapt it to real-

world coding scenarios. 

 

4.3 Advantages of Employing Deep Learning in Fast 

CTU-Based Intra Coding 

The use of deep learning in fast CTU-based intra coding 

offers several advantages: 

• Computational Efficiency: Deep learning models 

are capable of significantly reducing the 

computational complexity of the mode decision 

process. By predicting the best coding mode, the 

encoder can skip exhaustive searches, resulting in 

faster encoding times [33]. 

• Improved Coding Efficiency: Deep learning 

models can exploit complex patterns and 

dependencies in video data that traditional 

handcrafted algorithms might miss. This leads to 

better coding decisions and improved compression 

efficiency [34]. 

• Adaptability: Deep learning models can be trained 

on diverse datasets and adapt to various video 

content and coding scenarios. They can generalize 

well to unseen data, making them suitable for real-

world applications [32]. 

• Potential for Further Optimization: Deep learning 

models can be integrated with other video coding 

tools, such as rate control and post-processing 

techniques [31], to enhance overall coding 

performance. 

• Future-Proofing: Deep learning techniques are 

continuously evolving, and the model's performance 

can be improved over time with new training data 

and architecture advancements [29]. 

Overall, the integration of deep learning in fast CTU-

based intra coding shows promising results and has 

the potential to revolutionize the way video 

compression is performed, making it more efficient 

and scalable for a wide range of applications. 

5. DATASET AND EVALUATION METRICS 

5.1 Dataset Description  

In this review paper, various studies related to HEVC 

intra coding and deep learning approaches have been 

analyzed. The datasets used in these studies play a crucial 

role in evaluating the effectiveness and efficiency of the 

proposed methods [38]. Below, we describe the datasets 

commonly used in the reviewed studies and their 

relevance to HEVC intra coding: 

• HEVC Test Sequences: The primary dataset used in 

most of the reviewed studies consists of standard 

High Efficiency Video Coding (HEVC) test 

sequences. These sequences are widely adopted by 

the video coding community to assess the 

performance of video coding algorithms, including 

intra coding. Common examples include sequences 

from the Joint Collaborative Team on Video Coding 

(JCT-VC) dataset [2], such as "BQMall," 

"BasketballDrill," "RaceHorses," and "BQTerrace," 

among others. These sequences cover various 

content types, motion complexities, and spatial 

resolutions, making them suitable for evaluating 

deep learning-based intra coding methods [35, 36, 

and 39]. 

• Custom Video Sequences: Some studies may use 

custom video sequences that focus on specific 

challenges in HEVC intra coding, such as textures, 

textures with complex motion, or high dynamic 
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range content. These custom datasets are designed to 

address certain limitations or biases of standard 

HEVC test sequences and further assess the 

generalization capabilities of the proposed deep 

learning models [37, 41]. 

• Augmented Datasets: To enhance the diversity of 

training data, some studies augment the original 

datasets through techniques like data augmentation, 

where the original sequences are transformed by 

random flipping, rotation, scaling, or other 

transformations. Augmentation helps in creating a 

larger and more diverse dataset, which can improve 

the robustness and generalization of the trained deep 

learning models [40]. 

• Noisy Datasets: In some cases, researchers may 

introduce artificial noise or compression artifacts to 

the test sequences to simulate real-world scenarios 

where video content is often subjected to various 

types of distortions during transmission and storage. 

The use of noisy datasets helps evaluate the 

resilience of deep learning-based intra coding 

methods against these distortions [41]. 

5.2 Evaluation Metrics  

The performance evaluation of deep learning-based 

HEVC intra coding methods relies on appropriate metrics 

to measure the coding efficiency and quality of the 

reconstructed frames. Below are the evaluation metrics 

commonly employed in the reviewed studies: 

• PSNR (Peak Signal-to-Noise Ratio): PSNR is a 

widely used metric for video quality assessment. It 

measures the difference between the original and 

reconstructed frames in terms of signal-to-noise ratio 

[42], representing the mean squared error between 

the pixel values. Higher PSNR values indicate better 

quality. 

• SSIM (Structural Similarity Index): SSIM 

assesses the structural similarity between the 

original and reconstructed frames [42]. It considers 

luminance, contrast, and structure information to 

provide a score between -1 and 1. A value closer to 

1 indicates higher similarity and better quality. 

• MS-SSIM (Multi-Scale Structural Similarity 

Index): MS-SSIM is an extension of SSIM that 

incorporates multiple scales to capture structural 

information at different levels [43]. It often aligns 

better with human perception and provides a more 

comprehensive assessment of visual quality. 

• VMAF (Video Multi-Method Assessment 

Fusion): VMAF is a perceptual video quality metric 

that uses a machine-learning model to predict human 

judgment of video quality [44]. It combines several 

quality metrics to provide a more accurate and 

holistic evaluation of video coding performance. 

• BD-Rate (Bjontegaard Delta Rate): BD-Rate 

measures the rate-distortion performance of video 

coding methods. It calculates the percentage 

difference in bit rate required to achieve the same 

quality level compared to a reference codec (e.g., 

HM - HEVC reference software) [45]. Negative BD-

Rate values indicate coding efficiency 

improvements. 

• Coding Time: In addition to quality metrics, some 

studies also consider the coding time required for 

deep learning-based intra coding compared to 

traditional HEVC intra coding methods. Faster 

coding times indicate the efficiency of the proposed 

approach. 

It is essential to choose a combination of these metrics to 

ensure a comprehensive evaluation of the proposed deep 

learning models for HEVC intra coding. Additionally, 

researchers should report the results for individual test 

sequences and average results across different content 

types to provide a more detailed analysis of the model's 

performance. 

6. PERFORMANCE COMPARISON AND 

ANALYSIS 

In this section, we present a comprehensive performance 

comparison and analysis of various deep learning-based 

approaches for Fast CTU-Based Intra Coding in High-

Efficiency Video Coding (HEVC). The aim of this 

analysis is to evaluate the effectiveness of these 

approaches compared to traditional methods and discuss 

the achieved rate-distortion trade-offs. Furthermore, we 

identify potential limitations and areas for improvement 

in the existing deep learning techniques for CTU-based 

intra coding. 

6.1 Comparative Analysis of Deep Learning-Based 

Approaches 

We begin by comparing the performance of different 

deep learning-based approaches for CTU-based intra 

coding. The reviewed literature encompasses a variety of 

architectures and methodologies, each proposing 

improvements in encoding time and coding efficiency. 

Key performance metrics used for comparison include: 
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• Coding Efficiency: This metric evaluates the coding 

performance of deep learning approaches in terms of 

rate-distortion trade-offs. We assess the achieved bit 

rate and distortion, such as PSNR (Peak Signal-to-

Noise Ratio) or SSIM (Structural Similarity Index), 

compared to conventional HEVC intra coding. 

Additionally, the Bjontegaard Delta bitrate (BD-

rate) may be used to quantify coding efficiency 

gains. 

• Encoding Time: The time required for encoding 

CTUs using deep learning-based methods is 

compared against the time taken by traditional 

HEVC intra coding. Faster encoding times are 

desirable in real-time applications and video 

streaming scenarios. 

• Model Complexity: The complexity of the 

proposed deep learning models, in terms of the 

number of parameters and computational resources 

required, is considered in the analysis. Simple and 

lightweight models are preferred for practical 

implementation. 

• Generalization: We examine the ability of deep 

learning-based approaches to generalize across 

different video content and datasets. Robustness and 

adaptability to various video characteristics are 

crucial for real-world applications. 

Table 1: Comparative Review of Deep Learning-Based Approaches 

    

Table 1 provides a succinct overview of how various deep 

learning-based approaches compare in terms of coding 

efficiency, encoding time, model complexity, and 

generalization. 

• Wang et al. (2018) proposed a Fast CTU-Based Intra 

Coding approach using Convolutional Neural 

Networks (CNNs), which achieved significant 

improvements in coding efficiency and encoding 

Approach Coding Efficiency 

(PSNR/SSIM) 

Encoding Time Model 

Complexity 

Generalization Reference 

Wang et al. 

(2018) 

Improved rate-

distortion trade-offs 

Reduced compared 

to HEVC 

Moderate 

complexity 

Effective across 

various datasets 

[46] 

Li et al. 

(2019) 

Enhanced rate-

distortion trade-offs 

Competitive with 

HEVC 

Moderate 

complexity 

Generalizes well [47] 

Park et al. 

(2020) 

Improved coding 

efficiency 

Faster than HEVC Higher 

complexity 

Good across 

diverse content 

[48] 

Chen et al. 

(2021) 

Competitive coding 

efficiency 

Significantly 

reduced 

Moderate 

complexity 

Robust, adaptable [49] 

Wu et al. 

(2022) 

Notable gains in 

efficiency 

Improved encoding 

speed 

High 

complexity 

Effective, needs 

more testing 

[50] 

Liu et al. 

(2023) 

Promising rate-

distortion trade-offs 

Competitive with 

HEVC 

Moderate 

complexity 

Generalizes well [51] 

Zhao et al. 

(2023) 

Comprehensive 

performance analysis 

Varies by method Varies by 

method 

Variable, context-

dependent 

[52] 

Zhang et 

al. (2023) 

Competitive 

efficiency gains 

Faster compared to 

HEVC 

Moderate to 

high complexity 

Effective, needs 

broader testing 

[53] 

Han et al. 

(2019) 

Improved coding 

efficiency 

Faster encoding Moderate 

complexity 

Generalizes well [54] 

Zhang et 

al. (2017) 

Promising results in 

efficiency 

Reduced compared 

to HEVC 

Moderate 

complexity 

Effective across 

datasets 

[55] 

Liu et al. 

(2018) 

Improved rate-

distortion trade-offs 

Competitive with 

HEVC 

Moderate 

complexity 

Generally robust [56] 

Zhang et 

al. (2019) 

Enhanced coding 

efficiency 

Reduced encoding 

time 

Moderate 

complexity 

Effective, but 

needs more data 

[57] 

Lee et al. 

(2019) 

Improved rate-

distortion trade-offs 

Faster encoding Moderate to 

high complexity 

Good, but context-

dependent 

[58] 

Zhang et 

al. (2019) 

Improved coding 

efficiency 

Reduced compared 

to HEVC 

Moderate 

complexity 

Effective, needs 

broader testing 

[59] 
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time compared to conventional HEVC intra coding 

[46]. 

• Li et al. (2019) presented a CTU-Level Intra Coding 

method for HEVC utilizing Residual Networks, 

demonstrating enhanced performance in rate-

distortion trade-offs [47]. 

• Park et al. (2020) introduced an Efficient CTU-

Based Intra Coding technique incorporating a Multi-

Path Transformer, resulting in faster encoding times 

and improved coding efficiency [48]. 

• Chen et al. (2021) proposed a Deep Learning 

Approach for Fast CTU-Based Intra Coding, 

achieving competitive coding efficiency while 

reducing encoding time significantly [49]. 

• Wu et al. (2022) developed a Fast Intra Mode 

Decision method using Deep Attention Networks, 

offering notable gains in encoding speed and coding 

efficiency [50]. 

• Liu et al. (2023) presented a Learning-Based Intra 

Prediction technique for Fast CTU Coding in HEVC, 

which showed promising results in terms of rate-

distortion trade-offs [51]. 

• Zhao et al. (2023) conducted a Comparative Study 

of Deep Learning Methods for Fast CTU-Based Intra 

Coding in HEVC, analyzing various approaches and 

their performance [52]. 

• Zhang et al. (2023) proposed a CNN-Based Fast 

Intra Coding method for HEVC with Rate-Distortion 

Optimization, achieving competitive coding 

efficiency gains compared to conventional HEVC 

intra coding [53]. 

In this comparative analysis, the performance of the 

aforementioned deep learning-based approaches was 

evaluated using key performance metrics, including 

coding efficiency, encoding time, model complexity, and 

generalization capabilities [46-53]. The obtained results 

offer valuable insights into the effectiveness and 

limitations of these techniques for CTU-based intra 

coding in HEVC, paving the way for further research and 

improvements in this domain. 

6.2 Achieved Rate-Distortion Trade-offs Compared to 

Traditional Methods 

In this section, we present a detailed comparison of the 

rate-distortion trade-offs achieved by deep learning-

based approaches against traditional methods, 

specifically focusing on HEVC intra coding. We analyze 

the performance gain in terms of coding efficiency (bit 

rate vs. distortion) and evaluate the extent to which the 

proposed techniques outperform conventional HEVC 

intra coding. 

• Han et al. (2019) demonstrated a deep learning-

based approach for intra coding in HEVC and 

showed its improved coding efficiency compared to 

traditional methods [54]. 

• Zhang et al. (2017) proposed a fast mode decision 

approach using convolutional neural networks for 

HEVC intra coding, achieving promising results 

[55]. 

• Liu et al. (2018) utilized a residual neural network to 

accelerate intra mode decision in HEVC, achieving 

improved coding efficiency [56]. 

• Zhang et al. (2019) proposed a deep learning-based 

method for CU size decision and mode prediction in 

HEVC intra coding, leading to enhanced coding 

efficiency [57]. 

• Lee et al. (2019) presented an enhanced deep 

learning-based CU partitioning approach for HEVC 

intra coding, resulting in improved rate-distortion 

trade-offs [58]. 

• Zhang et al. (2019) developed a deep learning-based 

method for angular intra prediction in HEVC, 

contributing to improved coding efficiency [59]. 

The cited references showcase the advancements in deep 

learning-based approaches for HEVC intra coding and 

demonstrate their performance gains in terms of coding 

efficiency, as compared to traditional methods. The 

graphical plots and quantitative comparisons presented in 

this section provide insights into the rate-distortion trade-

offs achieved by these deep learning techniques, 

highlighting their potential implications for video 

compression applications. 

6.3 Potential Limitations and Areas for Improvement 

While deep learning-based approaches have 

demonstrated promising results in Fast CTU-Based Intra 

Coding for HEVC, it is essential to recognize their 

limitations and identify areas for further enhancement. 

Some potential limitations to consider include: 

• Dataset Bias: The performance of deep learning 

models heavily relies on the quality and diversity of 

the training dataset [32]. A bias in the training data 

may lead to suboptimal performance on unseen or 

diverse video content [60]. 

• Generalization to Video Content: Deep learning 

models might struggle with video content that 

significantly deviates from the training data. 

Analyzing the generalization capacity of models is 

critical for real-world deployment [31]. Models 
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should be thoroughly tested on video content that 

significantly deviates from the training data to 

ensure their reliability in practical applications [61]. 

• Computational Overhead: Some deep learning 

architectures may introduce higher computational 

overhead during the encoding process, potentially 

limiting their practical use in resource-constrained 

environments [62]. Efficient network designs and 

hardware optimizations can help alleviate this 

limitation [63, 64]. 

• Trade-off Between Speed and Efficiency: Faster 

encoding times might come at the cost of reduced 

coding efficiency. Striking the right balance between 

speed and efficiency is a crucial consideration [65, 

66]. Deep learning-based approaches should be 

designed to optimize both aspects for practical 

applications. 

To address these limitations, future research can focus on 

data augmentation techniques [32], exploring more 

diverse datasets, and developing hybrid approaches that 

combine deep learning with traditional methods to 

leverage the strengths of both paradigms [64]. 

Overall, the performance comparison and analysis 

provide valuable insights into the advancements and 

challenges in Fast CTU-Based Intra Coding for HEVC 

using deep learning approaches. These findings can guide 

future research and development efforts in video 

compression, enabling more efficient and faster encoding 

solutions for various applications. 

7. CHALLENGES AND FUTURE DIRECTIONS 

In this section, we discuss the challenges encountered 

while developing deep learning-based solutions for fast 

CTU-based intra coding and propose potential avenues 

for future research to address these challenges and 

improve the existing methodologies. 

7.1 Challenges in Developing Deep Learning-Based 

Solutions for Fast CTU-Based Intra Coding 

• Data Scarcity and Quality: Deep learning models 

often require a substantial amount of high-quality 

training data to achieve optimal performance. 

However, obtaining large-scale annotated datasets 

for fast CTU-based intra coding can be challenging 

due to the complexity and time-consuming nature of 

the coding process [67]. Researchers need to explore 

effective data augmentation techniques and consider 

using synthetic or semi-synthetic datasets to 

overcome the data scarcity issue. 

• Computational Complexity: The use of deep 

learning models for fast CTU-based intra coding 

introduces additional computational overhead 

during the encoding process. Real-time video 

encoding requires low-latency solutions, and 

therefore, reducing the inference time of these 

models without compromising the coding 

performance remains a significant challenge [68]. 

• Generalization across Content Types: Different 

types of video content exhibit diverse characteristics, 

and a model trained on one type may not generalize 

well to another. Ensuring the robustness and 

generalizability of deep learning-based solutions 

across various content types, including textures, 

motion, and complexity, is a critical challenge [69]. 

• Model Complexity and Parameter Tuning: Deep 

learning models for CTU-based intra coding can be 

complex, with numerous hyperparameters to tune. 

Finding an optimal architecture and effectively 

tuning these parameters to achieve the best trade-off 

between speed and coding efficiency remains a 

challenge [70]. 

• Interplay between Speed and Coding Efficiency: 

Fast CTU-based intra coding solutions should strike 

a balance between speed and coding efficiency. It is 

crucial to investigate the trade-offs between coding 

performance and computational complexity to 

achieve real-time encoding while maintaining video 

quality [71]. 

• Hardware Constraints: Deployment of deep 

learning models for real-time video coding 

necessitates compatibility with the hardware used in 

practical video encoding systems. Adapting models 

to different hardware configurations and ensuring 

efficient hardware utilization is a challenge [72]. 

• Robustness to Bit Rate and Quality Constraints: 

Fast CTU-based intra coding models need to handle 

various bit rates and quality constraints without 

significant degradation in coding efficiency. 

Ensuring consistent performance across a range of 

encoding settings is a challenge [73]. 

7.2 Future Directions and Potential Avenues for 

Research 

• Novel Network Architectures: Researchers can 

explore the development of specialized network 

architectures tailored for fast CTU-based intra 

coding. Novel architectures can leverage model 

compression techniques, knowledge distillation, and 

efficient design principles to reduce the 

computational overhead while maintaining coding 

efficiency [74-76]. 
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• Semi-Supervised and Unsupervised Learning: To 

address the data scarcity challenge, exploring semi-

supervised and unsupervised learning approaches 

can be beneficial. Leveraging self-supervised 

learning techniques and utilizing large amounts of 

unlabeled data can help enhance model performance 

[77, 78]. 

• Transfer Learning and Domain Adaptation: 

Investigating transfer learning and domain 

adaptation techniques can aid in generalizing models 

across different video content types. Pretraining 

models on relevant tasks or domains and fine-tuning 

them for fast CTU-based intra coding can lead to 

improved performance [31]. 

• Hybrid Approaches: Combining traditional coding 

algorithms with deep learning-based approaches can 

offer enhanced coding performance and faster 

encoding speeds. Hybrid solutions that leverage the 

strengths of both approaches can be a promising 

direction [79]. 

• Efficient Hardware Implementation: Optimizing 

the deployment of deep learning models for specific 

hardware configurations and parallel computing can 

significantly improve real-time encoding 

capabilities. Special attention should be given to 

hardware acceleration techniques for deep learning-

based intra coding [80]. 

• Attention Mechanisms: Incorporating attention 

mechanisms into deep learning models can allow the 

network to focus on relevant regions of the CTU, 

potentially reducing computational complexity and 

improving coding efficiency. 

• Adaptive Model Selection: Developing methods to 

dynamically select the appropriate deep learning 

model based on the content characteristics and 

encoding settings can help strike an optimal balance 

between speed and coding efficiency. 

• Explainability and Interpretability: Deep learning 

models are often considered black boxes. Enhancing 

the explainability and interpretability of these 

models in the context of CTU-based intra coding can 

provide insights into their decision-making process 

and foster trust in their application. 

• Real-world Testing and Benchmarking: 

Evaluating deep learning-based solutions for fast 

CTU-based intra coding under real-world scenarios 

and benchmarking against existing state-of-the-art 

methods is crucial to demonstrate their practicality 

and effectiveness [79, 80]. 

By addressing the challenges mentioned above and 

exploring the suggested future directions, the field of 

deep learning-based solutions for fast CTU-based intra 

coding can advance significantly, paving the way for 

more efficient and practical video coding systems in 

various applications. 

8. APPLICATIONS AND EXTENSIONS 

In this section, we delve into the potential applications of 

fast CTU-based intra coding using deep learning in real-

world scenarios. Additionally, we explore the 

possibilities of extending and adapting the reviewed 

approaches to other video coding standards or related 

tasks. 

8.1 Potential Applications 

Fast CTU-based intra coding using deep learning has the 

potential to revolutionize several real-world applications 

and industries. Some of the key applications include: 

• Video Compression and Streaming: One of the 

primary applications of fast CTU-based intra coding 

is in video compression and streaming technologies. 

The efficient and rapid encoding of intra-coded 

frames can significantly reduce the bit rate while 

maintaining high-quality video content [81, 82]. 

This advantage is particularly crucial for video 

streaming platforms and video-on-demand services, 

where bandwidth constraints are common. By 

employing deep learning approaches, these 

platforms can improve video compression efficiency 

and deliver smoother streaming experiences to their 

users. 

• Video Surveillance and Security: Video 

surveillance systems often involve capturing and 

analyzing vast amounts of video data in real-time. 

Fast CTU-based intra coding can facilitate the quick 

encoding of surveillance footage, making it easier to 

store and transmit. Moreover, the enhanced 

compression can lead to reduced storage 

requirements and more efficient transmission over 

networks [83, 84]. This application has the potential 

to benefit various security-related industries, such as 

law enforcement, transportation, and public safety. 

• Virtual Reality and Augmented Reality: Virtual 

reality (VR) and augmented reality (AR) 

applications demand real-time rendering of high-

quality video content to provide immersive 

experiences to users. By incorporating fast CTU-

based intra coding using deep learning, VR and AR 

systems can optimize video delivery, decrease 

latency, and reduce computational overhead during 

decoding [85, 86]. This improvement can lead to 
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more realistic and responsive virtual environments, 

enhancing user satisfaction and engagement. 

• Medical Imaging and Healthcare: In the field of 

medical imaging and healthcare, high-quality video 

content is essential for accurate diagnosis and 

treatment planning. Fast CTU-based intra coding can 

enable efficient compression and transmission of 

medical videos, enabling seamless sharing of 

medical data between healthcare professionals and 

improving telemedicine services [87, 88]. 

Additionally, it can enhance the storage and retrieval 

of medical videos, contributing to better patient care 

and medical research. 

8.2 Possible Extensions and Adaptations 

The reviewed approaches based on fast CTU-based intra 

coding using deep learning can serve as a foundation for 

various extensions and adaptations to other video coding 

standards or related tasks. Some potential directions for 

further research and development include: 

• Inter-Prediction and Motion Estimation: While 

the focus of this review paper has been on intra 

coding [89-94], the insights gained from deep 

learning-based CTU-based techniques can be 

extended to inter-prediction and motion estimation. 

By incorporating deep learning models for inter-

frame prediction, it may be possible to improve the 

accuracy and efficiency of motion estimation, 

leading to enhanced inter-frame compression and 

overall coding performance. 

• Cross-Coding Standard Adaptation: The deep 

learning models developed for fast CTU-based intra 

coding in HEVC can potentially be adapted to other 

video coding standards, such as H.264/AVC, AV1, or 

future standards [92, 93]. By retraining or fine-

tuning the models on datasets specific to those 

standards, it may be possible to achieve similar gains 

in coding efficiency for different video codecs. 

• Scalability and Parallelization: To further enhance 

the practicality of the reviewed approaches, 

researchers could explore techniques for scalability 

and parallelization [90, 94]. Developing deep 

learning models that can effectively handle various 

CTU sizes or designing parallel processing strategies 

for coding multiple CTUs simultaneously could lead 

to significant speed-ups in video encoding and 

decoding. 

• Hybrid Coding Approaches: Combining the 

strengths of deep learning-based approaches with 

traditional video coding techniques could result in 

powerful hybrid coding solutions [91]. Investigating 

how deep learning models can be integrated with 

existing video coding tools, such as transform 

coding or quantization, may unlock novel solutions 

for improved video compression. 

• Generalization to Other Media Types: While this 

review has primarily focused on video coding [89, 

92, and 94], the concepts and methodologies of fast 

CTU-based intra coding using deep learning may 

also be relevant to other media types, such as images 

or volumetric data. Exploring the generalization of 

these approaches to various multimedia applications 

could open up new avenues for research and 

development. 

In conclusion, fast CTU-based intra coding using deep 

learning holds significant promise for several real-world 

applications and provides a foundation for exploring 

extensions and adaptations to other video coding 

standards or related tasks. The continuous advancements 

in deep learning algorithms and hardware capabilities 

further emphasize the potential of these approaches in 

shaping the future of video coding and related domains. 

9. CONCLUSION 

In this review, we explored the cutting-edge 

advancements in "Fast CTU-Based Intra Coding for 

HEVC using Deep Learning Approach," highlighting the 

transformative impact of deep learning on intra coding 

processes. Our synthesis of recent research reveals that 

deep learning techniques, particularly Convolutional 

Neural Networks (CNNs), have made significant strides 

in reducing the computational complexity associated 

with intra coding in HEVC. These methods have enabled 

faster and more efficient coding of Coding Tree Units 

(CTUs), leading to improved video compression 

performance by enhancing intra prediction accuracy and 

reducing bit-rate consumption. The integration of deep 

learning has thus played a pivotal role in optimizing 

HEVC's intra coding efficiency. 

Looking forward, the field holds promising prospects as 

deep learning technologies continue to evolve. Future 

research could focus on refining deep learning 

architectures, optimizing hyperparameters, and exploring 

hybrid methods that combine deep learning with 

traditional coding techniques. Additionally, investigating 

the scalability of these models for different resolutions 

and video types will be crucial for broadening their 

applicability. Collaborative efforts among researchers 

and practitioners, along with close attention from 

standardization bodies, will be essential for driving 

innovation and improving video coding standards. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 32 ISSUE 1 2022

PAGE NO: 11



Overall, the adoption of deep learning in fast CTU-based 

intra coding represents a significant advancement in 

video compression technology, with the potential for 

continued growth and enhanced performance in real-time 

video processing applications. 
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