
 

 

V 

∞

∞

∞

{ } { } 
{ } 

 

Determining the NP-Hardness Boundary for Virtual Network 

Embedding Considering Constraints on Node Locations 
 Sandeep Kumar Mishra 

College of Engineering Bhubaneswar 

 
 

 

 
Abstract— The optimization challenge of determining the least 

expensive mapping between virtual and substrate networks is 
known as virtual network embedding, or VNE. While the 
majority of VNE variants are NP-hard, several are not. If the 
substrate network allows splittable routing and each virtual node 
has just one possible substrate node because of location 
restrictions, then VNE is polynomially solvable. The extent to 
which this polynomial region can be expanded is uncertain, 
though. This letter explains the barrier by demonstrating that 
the polynomial region cannot be expanded unless P = NP. Even 
in the case when each virtual node has exactly two possible 
substrate nodes, VNE is NP-hard. 

 

I. INTRODUCTION 

IRTUAL network embedding (VNE) [1] is an 

optimization problem, in which a network operator 

attempts to find a minimum cost mapping between a 

requested virtual network and its substrate network (Fig. 1). 

This embedding process is indispensable in network vir- 

tualization [2] and is essential in utilizing the substrate 

infrastructure effectively [3]. 

Little attention has been paid to the computational com- 

plexity [4] aspect of VNE, despite of its long history [1]. 

This is because proof of the NP-hardness of VNE is trivial 

since it contains many NP-hard graph problems such as the 

multi-commodity flow problem [5], the subgraph isomorphism 

problem [6], and the maximum clique problem [7]. 

A few existing studies [8]–[10] aim to provide NP-hardness 

proofs of VNE variants that are believed to be NP-hard. As far 

as we know, there are only two published papers [9], [10] that 

discuss and prove the NP-hardness of VNE. These two works 

formally show that many VNE variants are NP-hard and also 

difficult to approximate. 

Although most variants of VNE are NP-hard as shown by 

previous studies, some are polynomially solvable. For exam- 

ple, VNE is polynomially solvable if node mapping is fixed 

and the substrate network supports splittable routing (i.e., a 

virtual edge can be split and mapped to multiple substrate 

paths) [11]. Splittable routing is available technology and 

 

 

 
 

Fig. 1. An example of embedding a virtual network (left) on a substrate 

network (right). Given location constraints of l(u) = a, b (i.e., u can be 

mapped to a or b), l(v )  = b , and l(w )  = a, d , this example has a 
feasible embedding (middle); capacity constraints are ignored for simplicity. 
The dashed lines are node embedding, the dotted lines are link embedding, 
and the colors indicate the embedding relationship. This instance belongs to k-

locality of k ≥ 2, because |l(v )| ≤ 2, ∀v ∈ VV in this example. 

 
improves resources utilization [12]. However, it is not clear 

how large the polynomially-solvable region is. 

This letter aims to establish a clear boundary between poly- 

nomially solvable VNE and NP-hard VNE with regard to the 

degree of freedom in node mapping. The existing studies on 

computational complexity [9], [10] consider the node location 

constraints, wherein the mapping from a virtual node is limited 

to only a subset of substrate nodes (the subsets are gener- 

ally different for each virtual node). These location constraints 

reflect geographical node placement and functional require- 

ments (FPGA, GPU, SmartNIC, etc.). However, the degree of 

freedom has yet to be related to computational complexity. To 

rectify this omission, this letter introduces an upper bound, k, 

on subset size in location constraints and reformulates VNE 

using parameter k. k-locality VNE means the subset set size 

is at most k (Fig. 1). For example, 1-locality means that the 

node location is fixed, while 2-locality means that every virtual 

node has up to two candidate substrate nodes. 

Table I summarizes existing results, trivial results, and our 

contributions regarding the following three aspects. (i) the 

degree of freedom of node location constraints, that is, k-

locality, (ii) splittable routing or unsplittable routing, and 

(iii) presence of the edge capacity constraint. The existing 

results [9], [10] correspond to -locality VNE with unsplit- 

table routing and edge capacity (the bottom right corner of 

the table). Section II explains these existing studies. Trivial 

results correspond to 1-locality and -locality VNE. All the 

variants of    -locality VNE are NP-hard (the bottom row 

of the table). 1-locality VNE with unsplittable routing and 

edge capacity is NP-hard (the top right corner of the table). 

This result also implies that k-locality VNE with unsplit- 

table routing and edge capacity for k > 1 is also NP-hard 

(the rightmost column of the table) because (k + 1)-locality 
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TABLE I 
COMPUTATIONAL  COMPLEXITY  OF  VNE  PROBLEMS 

 

 

 
 

 

VNE encompasses k-locality VNE. Other 1-locality VNEs are 

P (the top row of the table except for the rightmost entry). 

However, it is unknown to what extent these P regions can be 

enlarged. Section III explains these trivial results after defining 

the problem. 

Our results, bold in Table I, unveil unknown cases of 1 < 

k <   that are NP-hard. Section IV shows that VNE is NP- 

hard even if each virtual node has up to two candidate substrate 

nodes, the substrate network supports splittable routing, and 

all edges have infinite capacity. Our result prevents the waste 

in trying to construct polynomial-time algorithms of k-locality 

VNE for k > 1 unless P = NP. 

 
II. RELATED   WORKS 

To the best of our knowledge, only two published 

works [9], [10] discuss and prove the NP-hardness of VNE. 

Amaldi et al. [9] focus on the VNE with unsplittable routing 

and multiple virtual networks, in which a network operator 

simultaneously embeds multiple requested virtual networks 

onto a physical network. It is shown that, (i) multiple request 

VNE is NP-hard; (ii) the proof of NP-hardness is also pro- 

vided for single request VNE with edge capacity, which only 

corresponds to the case of k = . Rost and Schmid [10] 

deal with single-request VNE variants with unsplittable routing 

under various combinations of constraints, including location 

constraints (or the node placement restriction in their termi- 

nology). Other notable constraints are routing restriction and 

latency restriction. They show that many VNE variants are 

NP-hard and also difficult to approximate. They also con- 

sider the location constraint with edge capacity, which merely 

corresponds to the case of k = . In spite of these stud- 

ies [9], [10] and trivial results, the computational complexity 

 
in terms of the node location constraints, [15] studies this 

problem in terms of the number of virtual nodes; SFC place- 

ment can be solved in polynomial time if the upper bound of 

the number of virtual nodes (VNFs) is three. 

 
III. PROBLEM    DEFINITION 

We first define a very basic version of VNE. Then, we define 

the variants of VNE. Finally, we summarize trivial results in 

terms of the computational complexity. 

 
A. Basic Problem Definition 

A substrate network is represented  as  directed  graph 
(VS , ES ). Each node and link has available capacity a : VS 

ES R 0 and cost per unit capacity c : VS ES R 0. 

Thus, we write the substrate network as S = (VS , ES , a, c). 
A   virtual   network   is   represented   as   directed   graph 

(VV , EV ). Each virtual node and link has a capacity require- 

ment r  : VV      EV R 0. Let l(v ) VS be the set of 

substrate nodes on which the virtual node v can be mapped. 

We refer to this constraint l as the location constraint. Thus, 

we write the virtual network as R = (VV , EV , r, l). In 

Section III-B, we will introduce k-locality as a VNE problem 

in which the size of the location constraint subset l(v ) is at 

most k, i.e.,    v     VV , l(v )     k . Since the location con- 

straint is often imposed by the virtual network construction of 

SFC placement, as noted in Section II, our results can also be 

applied to the embedding operation. 

An embedding consists of node mapping mN  : VV   VS 

and edge mapping mE   : EV        ES [0, 1]. Virtual node 

v     VV    is embedded in substrate node mN (v )      VS . 

Edge mapping mE takes 2 forms: unsplittable and splittable. 
If the substrate network does not support splittable rout- 
ing, i.e., edge mapping mE is unsplittable, then virtual edge 

e = (u, v )    EV   is embedded in a single substrate path 

P (e) ES that connects substrate nodes mN (u) and mN (v ). 
Unsplittable edge mapping mE represents this mapping as fol- 

lows: mE (e, f ) = 1  f P (e). If the substrate network 

supports splittable routing, then virtual edge e EV is embed- 

ded in substrate paths and mE (e, f ) is the proportion of virtual 

link e that is embedded to substrate link f ES . Unless 
otherwise noted, edge mapping follows splittable routing. 

In VNE, our task is to find the minimum cost embedding 

(mN , mE ) that satisfies both capacity and location constraints. 

The cost of embedding c(mN , mE ) is the sum of all substrate 
resource costs 

for 1 < k < with splittable routing or ignoring edge capac- 

ity are still unknown (Table I). Our contribution is to establish 

a clear boundary for the unknown range of k. 

The placement problem of Service Function Chaining 

c(mN , mE ) = r (v )c(mN 

v ∈VV 

(v )) + 

e∈EV ,f ∈ES 

r (e)c(f )mE (e, f ). 

 

(1) 

(SFC) [13] with Virtual Network Function (VNF) is an exten- 

sion of VNE [14]. In SFC placement, given the partial orders 

of VNFs for each flow, the task consists of two parts: vir- 

The capacity constraints guarantee that substrate resources 

are sufficient to provision the virtual resource requirements. 

These constraints are represented as follows: 

tual network construction and its embedding. The virtual 

network constructs a network that connects VNFs to satisfy 

the requested partial orders, and the embedding is the VNE 
v ∈VV :

Σ

mN (v )=u 
r (v ) ≤ a(u) ∀u ∈ VS , (2) 

problem. Thus SFC placement can be considered as an exten- 

sion of VNE. While this letter discusses the condition of P/NP 
e

Σ

∈EV 

r (e)mE (e, f ) ≤ a(f ) ∀f ∈ ES . (3) 
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The location constraints guarantee that node mapping mN 

complies with l; i.e., mN (v )   l(v )  v    VV . 
Here we define splittable and unsplittable VNE problems. 

Definition 1 (Splittable VNE): Given substrate network 

(VS , ES , a, c) and virtual network (VV , EV , r, l). The task 

is to find the minimum cost embedding (mN , mE ) that satis- 

fies both capacity and location constraints, following splittable 

routing. 

For the sake of readability, we write splittable VNE as VNE. 

Definition 2 (Unsplittable VNE): Given substrate network 

(VS , ES , a, c) and virtual network (VV , EV , r, l), the task 

is to find the minimum cost embedding (mN , mE ) that satis- 

fies both capacity and location constraints, assuming that edge 
mapping mE does not use splittable routing. 

 
B. Variants of VNE 

To discuss NP-completeness in Section IV, this subsection 

defines the decision variants of VNE. 

Definition 3 (Decision VNE): Given substrate network 

(VS , ES , a, c), virtual network (VV , EV , r, l) and real num- 

ber C R, the task is to determine whether there is an 

embedding (mN , mE ) such that its cost c(mN , mE ) is less 

than or equal to C and that satisfies both capacity and location 
constraints. 

To discuss whether polynomially solvable VNE variants 

exist, we introduce the k-locality VNE problem. 

Definition 4 (k-Locality VNE): k-locality VNE is the 
Decision VNE in which the size of the location constraint 

subset |l(v )| is limited to at most k, i.e., ∀v  ∈ VV , |l(v )| ≤ k . 

C. Computational Complexity of Variants 

Although the computation complexities of 1-locality and 

 

 
 

Fig. 2.   An example of virtual network (VV , EV ) of      φ where the number 
of Boolean variables, n, is 5. 

 

 
unit cost and unit capacity requirement, i.e., c 1 and r 1, 
substrate graph (VS , ES ) contains a subgraph that is isomor- 

phic to request graph (VV , EV ) if and only if the minimum 

embedding cost is |VV | + |EV |. 

IV. COMPLEXITY   BOUNDARY 

To prove the NP-completeness of VNE, we use the NP-

completeness of MAX-2SAT [17]. We convert an instance of 

decision MAX-2SAT into an instance of decision 2-locality 

VNE such that the answer of MAX-2SAT is yes if and only if 

the answer of VNE is yes. Section IV-A defines MAX-2SAT, 

while Section IV-B defines a conversion from MAX-2SAT to 

2-locality VNE; Section IV-C proves that MAX-2SAT is yes 

if and only if 2-locality VNE is yes. 

 
A. MAX-2SAT 

The decision version of MAX-2SAT is defined as follows. 

Definition 5 (Decision MAX-2SAT): Assume the set of 

∞-locality VNE are trivial as we will briefly explain, the clauses C = {Ci }
m over Boolean variables X = 

computational complexity of variants lying between those 

two extreme points is unknown. Like the well-known SAT 

problem, where 2SAT is P [16] while 3SAT is NP [7], we aim 

to clarify the P/NP boundary of VNE, and show that only a 

part of 1-locality VNE is P while 2-locality VNE is NP. 

Here, we explain the complexity of 1-locality VNE vari- 

ants (k = 1 in Table I). Since node mapping mN is fixed in 1-

locality, we discuss the complexity of the remaining edge 

mapping problem mE . 

• If splittable routing is supported, the edge mapping 

problem is P, because it can be reduced to the multi- 

commodity flow problem [11]. The problem is P if flows 

can be arbitrarily split; otherwise, it is NP [5]. 

• If splittable routing is unsupported but edge capacity can 

be ignored, it can be simply solved with the shortest path 

algorithm, which is P. This is because no mapping of a 

virtual edge interferes with other mappings. 

• If splittable routing is unsupported and edge capacity 

must be considered, the problem is NP-complete, because 

it encompasses the multi-commodity flow problem with- 

out splittable routing. 

Regarding the ∞-locality VNE variants (k = ∞ in Table I), 

x1, x2 , . . . , xn   and positive integer k. Each clause Ci takes 

the form of (li,1 li,2) where li,j is either one of X or the 
negation of it. The task is to determine whether there is a truth 

assignment to X that satisfies k or more clauses. 

Note that a clause containing only one Boolean variable 

can be represented by setting li,1 = li,2. We also assume that 

there is no (x x ) since these clauses are always satisfied 

regardless of the truth assignment. 

Decision MAX-2SAT is NP-complete [17]. 

 
B. Conversion From 2SAT to VNE 

This subsection describes the conversion of an instance of 

2SAT into an instance of VNE. 

We define an instance of VNE φ based on an instance 

of 2SAT φ = ( , X ) in the following. Virtual nodes VV and 

edges EV are defined as follows (Fig. 2): 

VV   = {vx |x  ∈ X } ∪ {wx |x  ∈ X }, (4) 

EV   =   (vx , vy )|x , y  ∈ X    ∪ {(vx , wx )|x  ∈ X }. (5) 

Substrate nodes VS and edges ES are defined as follows 

(Fig. 3): 

all of the variants reduce to NP. This NP-hardness can be 
 V    = 

,
u0|x  ∈ X 

, 
∪ 
,

u1|x  ∈ X 

, 
∪ {u  |x  ∈ X }, (6) deduced from the subgraph isomorphism problem [6]; by using 
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Fig. 3. An example of substrate network (VS , ES ) of φ where the 
number of Boolean variables, n, is 5. 

 

 
Fig. 4.    Enlargement Fig. 3 for nodes related to Boolean variables x or y. 

clauses of φ is k if and only if the minimum embedding cost 

of VNE φ is n2(m + 1)+ m k . 

Theorem 1 is sufficient to show the NP-completeness of 

2-locality VNE. Because any MAX-2SAT instance (φ, k ) pro- 

duces 2-locality VNE φ and if we have a polynomial-time 

algorithm that can solve 2-locality VNE then we can also solve 

MAX-2SAT in polynomial-time. 

To prove Theorem 1, we transform a truth assignment into 
an embedding and vice versa. Conversion between a truth 
assignment and node mapping is trivial since each virtual node 

of vx   has 2-locality (i.e., x = ix mN (vx )  = uix ). 

However, such conversion is not possible for edge mapping 

since splittable routing generates countless candidates. Here, 

we use the edge mapping that minimizes the cost. Lemma 1 

guarantees the existence and the uniqueness of such embed- 

ding, and Lemma 2 evaluates its cost. Lemma 3 describes the 

transformation from a truth assignment to an embedding, and 

Lemma 4 describes the reverse. After proving these lemmas, 

we give the proof of Theorem 1. Note that these four lemmas 

hold for both splittable and unsplittable VNE. 

Lemma 1: If we fix node mapping mN : vx         u
ix   in     φ, 

the following edge mapping, mE , is the unique edge map- 

ping that minimizes cost, c(mN , mE ) : mE maps virtual edge 
(vx , vy ) to substrate edge (uix , u

iy ) and virtual edge (vx , wx ) 

We draw edges only between these nodes and add their cost near the edge in 
blue. The other parts are omitted for the sake of visibility. 

to substrate edge 
x y 

(uix , ux ). 

Proof: Proof by contradiction. Let us assume that there 
exists  another  edge  mapping  mE

J     /= mE   that  minimizes  the 

ES  = 
, 

u i , uj 
 

|x , y  ∈ X , i , j  ∈ {0, 1}
,
 embedding cost. Let a be the average length of the substrate 

 

∪
,   

i
  

| ∈ 
∈{ }

,
 

(7) 
E 

If average length a 

  
To define edge cost c, we define t 00 as the number of because the substrate graph (VS , ES ) has no parallel edges. 

times clause (x ∨ y) occurs for each pair of Boolean vari- However this contradicts the assumption that mE
J mE . 

ables x, y ∈ X . We also define t 10, t 01, t 11 as that of clause 

(¬x ∨ y), (x ∨ ¬y), (¬x ∨ ¬y), respectively. We also define 

t 0, t 1 as that of clause (x ∨ x ), (¬x ∨ ¬x ), respectively. We 
use the following cost, c, for substrate edge e ∈ ES (Fig. 4): 

Hence average length a is greater than 1. Thus there exists 

at least one virtual edge, e EV , such that the corresponding 

substrate path set P(e) contains at least one substrate path, Q, 

that has two or more substrate edges. The cost of this path, 
Q, is at least 2 (m + 1) since the cost of any substrate edge is 

i j 
   

c u , ux 

t 
ij 

 
 

2 

= m +1+ t i . (9) 

more than m + 1. This cost is larger than any substrate edge, 

m + 1 +  txy   or m + 1 +  tx , since txy       m and tx        m. 

Thus, instead of using path Q, using the substrate edge that 

directly connects the starting node and terminal node of path Q 

Node cost is set to 0, that is, we set c(w) = 0 for all substrate gives us edge mapping mE
∗   which has a smaller cost than mE

J  . 

nodes w ∈ VS . All virtual nodes and links require one unit 

resource, that is, r ≡ 1. All substrate nodes and links have 

However, this contradicts the assumption that mE
J 

the embedding cost. 

minimizes 

infinite resource capacity, that is, a ≡ ∞. We use the following 
location constraints l : l(vx ) = {u0, u1} and l(wx ) = {ux }. 

Thus,   no   other   edge   mapping   minimizes   embedding 
cost. x x 

Lemma 2: If we fix node mapping m : v   ›→ uix   in V , 
Thus virtual node wx is always mapped to the same substrate 

node, ux . Note that the locality of VNE instance Vφ is 2. 

N x x φ 

then the minimum embedding cost is 
ix iy 

n2(m + 1)+  
Σ txy      

+ 
Σ 

t ix . (10) 

C. NP-Completeness 
To show the NP-completeness of 2-locality VNE, we prove 

2 
x,y∈X 

x 

x ∈X 

the following theorem. 

Theorem 1: Let φ = ( , X ) be an instance of 2SAT,  φ 

be an instance of VNE constructed from φ, m be the number 

of clauses C, and n be the number of Boolean variables X, that 

Proof: Due to Lemma 1, the minimum embedding cost is 

c(mN , mE ) = r (e)c(f )mE (e, f ) (11) 
e  E  ,f   E 

= 
Σ 

c

     

u
ix , u

iy  

      

+ 
Σ 

c

     

u
ix , ux  

       

(12) 

is, m = |C| and n = |X |. The maximum number of satisfiable 
x y 

x,y∈X 

x 

x ∈X 

 

= mE . This is to the same substrate edge as mE . That is, mE
J 

paths that are mapped to a virtual edge in edge mapping mJ . 

ux , ux X, i . 

equals 1 then a virtual edge is mapped 

c

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 31 ISSUE 1 2021

PAGE NO: 184



 

 

− 

V 

∈

A 
A 

A 

x 

V − 

xy 

x 

− 

V 
− 

— V 
− 

A 

V − 

xy t 

x 

A 

xy t ∼

− 

V − 

V − 

V − 

=  
Σ  

m + 1+  t
ix iy /2

  
+ 

Σ 

m + 1+  t
ix 

 

 
 

of φ. We prove this by contradiction. Suppose that there exists 

x,y∈X 

xy 

 

 

t
ix iy 

x ∈X 

x 

 

(13) 

a truth assignment that satisfies more than k clauses. Then, due 

to Lemma 3, there exists an embedding of Vφ whose cost is 
less than n2(m + 1)+ m − k . However this contradicts the 

= n
2
(m + 1)+  

Σ xy     
+ 
Σ 

t
ix . (14) assumption that the minimum embedding cost is n2(m + 1)+  

 

2 
x,y∈X 

x 

x ∈X 

m − k . 

Lemma 3: If 2SAT φ is k satisfiable, then VNE φ has an 
embedding whose cost is n2(m + 1)+ m k . 

Proof: We assume that 2SAT φ is k satisfiable and show that 

VNE φ has an embedding whose cost is n2(m +1)+m k . 

Since 2SAT φ is k satisfiable there exists truth assignment 

that satisfies exactly k clauses. Based on truth assignment  , 

we define ix   such that ix   = 1 if x is true in , otherwise 

ix =0 for all Boolean variables x X . We also define node 

mapping mN such that mN (vx )=  uix . Due to Lemma 2, there 
is edge mapping mE   such that c(mN , mE ) = n2(m + 1)+  

V. CONCLUSION 

Splittable 1-locality VNE is one example of a polynomially solvable 

version of VNE, despite the fact that the majority of variants are 

thought to be NP-hard. It was unclear how much more of this 

polynomial region could be expanded, but this letter dispelled that 

doubt by demonstrating that k-locality VNE for k > 1 is NP-hard. 

Because of this, future research into creating polynomial-time k-

locality VNE algorithms for k > 1 is no longer necessary, unless P = 

NP.

Σ
x,y∈X t 

ix iy /2+ 
Σ

 x ∈X t ix . By their definition, the latter 
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