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ABSTRACT 

AC power supply is critical for modern electrical systems, providing efficient energy transmission 

over long distances and powering a wide range of residential, commercial, and industrial 

applications. Its reliability and quality are essential for ensuring the optimal performance of 

connected devices and systems. Noise in real-time AC signals is generated due to factors like 

sudden load changes, switching operations in power systems, and external electromagnetic 

interference. Understanding and mitigating noise-induced deviations in AC signals is crucial for 

improving energy efficiency and system stability. This Work explores the challenges and solutions 

related to AC power quality, emphasizing the reconstruction of AC signals with embedded noise. 

Deviations from ideal sinusoidal waveforms, caused by noise components such as harmonic 

distortion, flicker, transients, and thermal noise, significantly impact energy efficiency and system 

reliability. Using data from a 230 V, 50 Hz AC supply, this study characterizes noise sources and 

employs machine learning models- Ridge Regression, K-Nearest Neighbors (KNN), and Random 

Forest for signal reconstruction. Random Forest achieved superior accuracy (R² = 0.98), 

effectively capturing linear and non-linear noise patterns. Preprocessing techniques like baseline 

normalization proved essential for enhancing model accuracy. Reconstructed signals demonstrated 

practical applications in smart grids, IoT devices, and diagnostic systems. The study sets a 

benchmark for signal reconstruction, offering insights for scalable, real-time solutions in power 

quality management and beyond.  Research in this domain has explored the use of synthetic 

training datasets for grid stability analysis, which proved instrumental in improving the reliability 

of real-time power systems. 

Keywords: AC signal reconstruction, power quality(PQ) , Machine learning(ML), K-Nearest 

Neighbors(KNN), Ridge Regression, Random Forest. 

 

1. INTRODUCTION 

In contemporary electrical and electronic systems, signal and power quality are pivotal to ensuring 

system dependability, efficiency, and performance. Signal quality pertains to the ability of an 

electrical signal, whether voltage or current, to retain its intended properties free from distortion 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

PAGE NO: 220

mailto:praveentaurean02@gmail.com
mailto:g.ezhilarasan@jainuniversity.ac.in
mailto:mahendra.bm@vidyashilp.edu.in
mailto:gouthambb.ec21@rvce.edu.in,vishwasrb.ec21@rvce.edu.in
mailto:naveens.ec21@rvce.edu.in
Tanoy
Textbox



or interference. With the increase in the addition of non-linear loads to electrical systems, it has 

become necessary to ensure that voltage degradation does not occur at the transmission or 

distribution stage. Although quality problems in DC power systems are frequently less 

complicated, they are nonetheless quite important. However, because of the sinusoidal shape of 

the voltage and current waveforms, AC power systems are more complicated and dominate 

contemporary electrical grids.Various practical problems associated with Power Quality namely 

Harmonic Distortions, Sags/Swells, Under/Over Voltages and Transients are major reasons for 

low quality power signals[3]. Various solutions exist to safeguard sensitive loads from the 

consequences of voltage disturbances. Among these solutions, power electronic devices serve as 

highly efficient and adaptable compensators, including series, parallel, and series-parallel 

compensators commonly referred to as custom power devices[1]. The growing use of electronic 

devices in Various applications has made the creation of dependable and effective voltage 

regulation systems necessary[2] along with that   Maintaining high signal quality is also essential 

for accurate information transmission and the reliable operation of devices. Complementarily, 

power quality evaluates the suitability of an electrical power source to facilitate the smooth 

operation of connected systems. Poor power quality can result in system inefficiencies, equipment 

malfunctions, or even catastrophic failures.  

Traditionally, probabilistic approach has been used for time varying signals in a power quality 

analysis assuming that the power line disturbance components vary too slowly to affect the 

accuracy of the analytical process[4]. Furthermore, a different investigations utilizes Wavelet 

Transform combined with optimized Artificial Neural Networks (ANN) [5] and Hilbert-Huang 

Transform along with feedforward neural networks[6] to classify power quality disturbances, 

indicating advancements in analytical techniques.there is a discussion on techniques for evaluating 

generative models, providing insights into assessing the performance of models used in power 

quality analysis and highlighting the relevance of generative approaches in this context 

[7].Addressing challenges related to signal and power quality requires sophisticated techniques 

that leverage advancements in signal processing, machine learning, and computational 

intelligence. 

Synthetic data generation has also emerged as a promising solution to enhance the performance of 

machine learning models in small-signal stability assessments. Research in this domain has 

explored the use of synthetic training datasets for grid stability analysis, which proved instrumental 

in improving the reliability of real-time power systems [8][9]. Enhanced machine learning models 

have been utilized to assess voltage stability and improve predictive accuracy in complex power 
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systems [10].Recent advances have expanded into the application of generative models for signal 

reconstruction and data augmentation. Diffusion models have been employed to generate synthetic 

data aimed at enhancing noise resilience in digital VLSI circuits [11]. Additionally, generative 

models have been shown to reconstruct high-fidelity signals with embedded noise, demonstrating 

the importance of model optimization for improving signal quality in data generation pipelines 

[12]. 

This paper builds upon these foundational works by focusing on synthetic voltage data generation 

and its utility in reconstructing AC signals affected by noise. The proposed methodologies, 

including Ridge Regression, K-Nearest Neighbors, and Random Forest algorithms, are evaluated 

for their performance in identifying and mitigating noise patterns in synthetic voltage data. These 

techniques aim to address challenges in smart grid applications, IoT devices, and low-power VLSI 

systems, where maintaining signal integrity is critical. By integrating machine learning techniques 

with robust noise characterization, this work seeks to set a benchmark for further innovation in 

power and signal quality enhancement. 

2. METHODOLOGY 

This section details the actual processes required to record data to assess the noise characteristics, 

preprocess the data, and employ machine learning models to construct the AC signal. Realisation 

of  the AC signal  waveform in the actual environment while keeping its inherent noise patterns is 

the key aim. 

2.1 Data Logging 

The VRMS values of a standard 230 V, 50 Hz AC power supply are recorded using the Fluke 434 

II Energy Analyzer, a high-accuracy equipment for power quality assessment. The analyzer 

acquired VRMS measurements at 1-second intervals, yielding a dataset of 10,000 data points 

collected over a period of time. These measurements offered exceptional granularity, ensuring 

even slight fluctuations in the signal are noticed. 

Analysis of the collected data indicated the presence of voltage fluctuations within a range of 

roughly ±5 V from the baseline. These oscillations are linked to noise created by elements like 

load changes, circuit disruptions, and external interference, making the signal non-ideal for 

practical applications without adequate modeling. 

2.2 Signal Characterization 
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The recorded signal is analyzed to identify and quantify its noise components. Given that the noise 

is 3% compared to the original signal, this value is normalized to represent 100% of the overall 

noise for characterization purposes. The noise breakdown is as follows: 

A. Damping Noise (40%): Caused by the dissipation of energy in resistive and capacitive 

components, resulting in a drop in oscillation amplitude over time. 

B. Flicker Noise (30%): Low-frequency oscillations in voltage owing to load changes, 

occasionally noticeable as flickering in electrical equipment. 

C. Harmonic Distortion (15%): Arising from non-linear loads, harmonic distortion provides 

additional frequencies deviating from the pure sinusoidal waveform. 

D. Transient Noise (10%): Short-lived voltage spikes or dips generated by events like switching 

operations or electrical failures. 

E. Thermal Noise (5%): Random high-frequency oscillations attributable to the thermal mobility 

of charge carriers in components. 

This classification of noise is vital to exactly replicate its influence in the reconstructed signal, 

ensuring the final waveform matches the real-world ac signal scenario. 

2.3 Data Preprocessing 

The preprocessing procedure involved removing the noise component from the baseline voltage. 

The baseline is computed as the mean of all VRMS values: 

To extract the noise, each VRMS reading is altered by removing this baseline: 

N[i]=VRMS[i]−Vbaseline                                                                                              1.1 

This phase converted the dataset into a form where the noise is centered around zero, allowing 

machine learning models to focus exclusively on learning the noise patterns. By normalizing the 

signal in this manner, computational stability and model correctness are strengthened. 

 2.4 Signal Generation Using Machine Learning 

The recovered noise is modeled using three machine learning algorithms: Ridge Regression, K-

Nearest Neighbors (KNN), and Random Forest. The purpose is to forecast the noise levels for each 
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time point, which, when added back to the baseline, rebuilt the original VRMS signal. Each type 

had unique strengths: 

A. Ridge Regression: A linear model with regularization to prevent overfitting. It sought to 

represent model the overall trend in noise using a simple linear equation: 

                                                            N[i]=αx+βN[i]                                                                   1.2 

While fast and interpretable, Ridge Regression struggled to capture the non-linear 

components of the noise 

B. K-Nearest Neighbors (KNN): This model assessed noise based on the average values of 

the 5 closest data points in the training set. By utilizing local patterns, KNN effectively 

simulated smaller-scale oscillations but needed considerable processing resources for big 

datasets. 

C. Random Forest Regressor: This is a robust ensemble approach that integrated many 

decision trees. Each tree is trained on a subset of the data, and their outputs are averaged 

to create the final noise prediction. This method succeeded in capturing complicated non-

linear interactions, making it the most successful model for this purpose. 

 The reconstructed signal is created by adding the baseline voltage and the expected noise: 

                                                                 VRMS[i] = Vbaseline + N[i]                                                1.3 

Random Forest exhibited the best accuracy, with an R2 score of 0.98, indicating that the 

reconstructed signal closely matched the original waveform, including its noise characteristics. 

3. IMPLEMENTATION 

The implementation step required the combination of data preparation, machine learning models, 

and signal reconstruction into a cohesive workflow. This facilitated the continuous creation of a 

genuine AC signal. 

3.1 Data Preprocessing 

The raw VRMS values are imported from the dataset, and the baseline voltage is computed as the 

mean of all observations. By deleting this baseline, the noise component is isolated, making the 

data more acceptable for machine learning systems. This preprocessing approach not only centered 

the noise around zero but also enhanced computation efficiency by decreasing the data 

structure.The following figure 1 depicts the input signal obtained. 
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Figure 1: The input Voltage waveform  

3.2 Model Training and Evaluation 

As discussed in section 2.4 three models are considered for training and evaluation. 

A. Ridge Regression: 

 Ridge Regression is a linear model that incorporates a regularization parameter to prevent 

overfitting. The model approximates the link between the noise and its time indices using 

a simple linear equation: 

                                                           N[i]=αx+βN[i]                                                        1.4 

Here, α signifies the slope, and β the intercept. While computationally efficient and easy 

to grasp, this model struggled to capture non-linear noise patterns inherent in the data 

B. K-Nearest Neighbors (KNN): 

KNN is a non-parametric approach that predicts the noise at a given time point by 

averaging the values of its k-nearest neighbors. With k=5k = 5k=5, the model efficiently 

detected local noise patterns, especially those with periodic characteristics. However, the 

computational cost of identifying nearest neighbors escalated with the dataset size, making 

KNN less practical for large-scale real-time applications. 

C. Random Forest Regressor: 

Random Forest is an ensemble learning strategy that builds several decision trees during 

training and averages their predictions to increase accuracy. Each tree is trained on a 
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random sample of the data, allowing the model to capture both linear and non-linear 

correlations in the noise. This resilience made Random Forest the most realistic model for 

reproducing the noise characteristics of the original signal. 

The training step entailed fitting each model to the noisy data acquired from the training 

subset and assessing their performance using the testing subset 

The R2 score is chosen as the primary criterion to determine how well each model could 

predict the noise. 

 3.3 Signal Reconstruction 

The estimated noise levels from each model are fed back to the baseline voltage to recreate the 

VRMS signal. The Random Forest model is identified as the optimum answer thanks to its superior 

capabilities in maintaining both linear and non-linear noise patterns. 

                                                            VRMS[i]=Vbaseline+NRF[i]                                                       1.5 

This reconstructed signal is therefore available for real-time applications, where it may imitate 

real-world AC waveforms for low-power settings. The following figure 2 refers to the learning 

rate of various machine learning model used 

The following figure 2 represent the reconstructed waveform with the original waveform which is 

completely aligned. 

4. RESULT ANALYSIS 

The results demonstrate that the suggested methodology is effective for reconstructing AC signals 

with embedded noise characteristics, with three machine learning models performing particularly 

well: Ridge Regression, K-Nearest Neighbors (KNN), and Random Forest. Each model is trained 

and evaluated using a dataset of over 10,000 real-world VRMS measurements from a 230 V, 50 Hz 

AC power supply, which includes noise components like damping, flicker, harmonic distortion, 

transients, and thermal noise. Figure 3 depicts achieving ridge Regression of R² value of 0.75, 

demonstrating computational efficiency but struggling with nonlinear noise patterns. KNN, with 

an R² value of 0.86, efficiently captures localized oscillations but faces scalability issues. Overall 

noise found in the signal is 3% which is categorized into various noise components revealing 

a detailed characterization as shown in Table 1. 
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Figure 2. The original and reconstructed waveform 

 

                     TABLE 1 : Categories of Noise with their respective values 

Sl.no Noise type Amount of Noise present 

1. Damping Noise 40% 

3. Flicker Noise 30% 

4. Harmonic Distortion 15% 

5. Transient Noise 10% 

6. Thermal Noise 5% 

 

The various types of noise include damping noise, which demonstrates gradual amplitude decay; 

flicker noise, which reflects load change-induced variations; harmonic distortion, which highlights 

frequency deviations; transient noise, which captures abrupt spikes; and thermal noise, which 

reconstructs random high-frequency patterns. Preprocessing approaches, such as baseline voltage 

normalization and noise isolation, are critical to the models' success, demonstrating the durability 

of the machine learning-driven methodology. 
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Figure 3: R2 score of various models which includes KNN,Ridge regression,Random forest 

 TABLE 2 : MODEL PERFORMANCES ( R2 Scores ) 

Model R2 (Noise Prediction) R2( Reconstructed VRMS) 

Ridge Regression 0.945 0.953 

K- Nearest Neighbors 0.811 0.838 

Random Forest 0.968 0.976 

                               

When compared to traditional signal processing methods, the machine learning-based 

methodology proves superior, as it adjusts dynamically to data-driven noise patterns rather than 

relying on predefined parameters. This adaptability leads to improved real-time noise modeling, 

accuracy, and scalability. The reconstructed signals closely match real-world waveforms, 

indicating practical applications across multiple domains. For instance, in smart grids, precise 

signal reconstruction improves diagnostics and performance monitoring. The method is 

appropriate for low-power devices in IoT and embedded systems due to its scalability and excellent 

input fidelity. Additionally, reconstructed signals serve as benchmarks for evaluating and 

optimizing electrical and electronic equipment. These findings emphasize the potential of 

combining powerful machine learning models with well-defined preprocessing pipelines for 
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practical applications in current electrical systems, thereby establishing a high standard for signal 

reconstruction and power quality management. 

 

Despite the optimistic findings, the study reveals limitations and opportunities for further 

improvement. While Random Forest outperforms the other models, its computing requirements 

may limit its usefulness in resource-constrained settings. To address this, lightweight neural 

network designs or hybrid models that combine Random Forest and deep learning can improve 

efficiency. Furthermore, incorporating other noise sources, such as electromagnetic interference 

and environmental perturbations, increases the methodology's usefulness. In a nutshell, the 

analysis demonstrates the impact of the novel approach on the advancement of power quality 

analysis and confirms its significance. The knowledge gathered not only validates the applicability 

of the methodology but also opens the door for further study and commercial applications aimed 

at ensuring the reliability and effectiveness of electrical systems. 

 

5. CONCLUSION 

This study offers a thorough investigation of AC power quality problems, emphasising their 

origins, consequences, and creative fixes via signal reconstruction. The study underlines the 

complexity brought about by departures from ideal sinusoidal waveforms and stresses how 

important it is to preserve signal and power quality for the effective operation of contemporary 

electrical systems. A thorough framework for comprehending the complex nature of power quality 

interruptions was provided by the careful characterisation of factors like flicker, transients, 

damping, harmonic distortions, and thermal noise. The technique used connects theoretical 

understanding with real-world application. The study showed how well these models could 

describe and recreate real-world noise patterns hidden in AC signals by utilising cutting-edge 

machine learning approaches like Ridge Regression, K-Nearest Neighbours (KNN), and Random 

Forest. With an astounding R2 score of 0.98—indicating an almost flawless alignment between 

the reconstructed and original signals—the Random Forest model was the most successful of them. 

This result emphasises how well ensemble approaches capture the linear and non-linear properties 

of noise components. 

 

The study also emphasises how useful data preparation methods are for separating and normalising 

noise components so that machine learning models can only concentrate on the variability of the 

signal. In addition to enhancing computational stability, this preprocessing step guaranteed the 

accuracy of model predictions. This study offers a strong basis for enhancing the functionality and 

dependability of electrical systems by methodically tackling the problems of signal creation and 
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noise reconstruction.In summary, by fusing cutting-edge analytics with workable solutions, this 

study significantly advances the fields of signal processing and power quality control. It creates a 

thorough framework for examining and reassembling AC signals, establishing a standard for 

further research in this area. In addition to advancing the state of the art, the approaches and results 

reported here open the door to more accurate, scalable, and efficient applications in electrical 

engineering and related domains. 

 

6. FUTURE SCOPE 

The research provides a robust foundation for advancing power quality analysis and AC signal 

reconstruction, opening avenues for further exploration. Optimizing machine learning models for 

scalability and real-time applications is critical for handling larger datasets in dynamic grids and 

industrial systems. Advanced architectures like CNNs and RNNs can enhance noise pattern 

predictions for complex, time-sensitive data. Hybrid approaches combining deep learning and 

ensemble techniques may balance computational efficiency with accuracy. Adaptive models using 

reinforcement learning could improve resilience to real-time noise fluctuations. 

Practical implementation via FPGA-based systems can enable integration into industrial 

automation, smart grids, and portable tools. Expanding the methods to address electromagnetic 

interference and environmental disturbances will enhance applicability. Cross-disciplinary 

applications include telecommunications, medical electronics (e.g., ECG, EEG), and renewable 

energy systems for analyzing power quality. Signal reconstruction supports predictive 

maintenance, reducing downtime and boosting system reliability. Integration with smart grid 

technology allows real-time diagnostics, improved energy distribution, and reduced losses. 

Future directions also include environmental impact assessments, energy efficiency evaluations, 

and participation in international standardization to ensure reconstruction accuracy and diagnostic 

reliability. These advancements will make AC signal reconstruction more scalable, accurate, and 

relevant, driving innovation in energy management and sustainable power systems globally. 
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