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Abstract:

A technique to realize dead-beat second order and higher order time invariant linear control system without any
restriction of system parameters is investigated. There are certain systems, such as biological control systems, where
it may not be feasible to incorporate a controller within the system or to process the system's input directly. In such
cases, it would be useful to compensate for the system's behaviour by applying a suitable electrical signal that can
supplement the normal input. This method of introducing an additional signal to achieve dead-beat transient
performance in a control system is referred to as the 'Signal Correction Technique (SCT).' The specific nature of the
additional signal varies depending on the type of input to the system, such as a step input, ramp input, parabolic
input, or polynomial input. In this work the proposed SCT is developed for the linear continuous time invariant
system with the reference input as step input. Here the additional signal is a pulse of appropriate duration and
applied at a suitable time and having a specified amplitude with the same rise time as non-compensated system. The
parameters of the added pulse to the uncompensated system i.e the start time (t;), end time (t,) and the required
amplitude (b) are determined without any restriction on system parameters.

Keywords: Dead-beat control, Signal Correction Technique (SCT), Higher-order control systems, Pulse-based
compensation, Step input response

1 Introduction

The idea of deadbeat control can easily be visualized by considering the application of a step,
ramp or any type of input to a control system. If the response of the system, under this situation,
is that it reaches to reference in the minimum time without undergoing any overshoot or
undershoots, then the system is defined as a deadbeat one.

In discrete time Control Theory, the deadbeat regulator control problem consists of finding what
input signal must be applied to a system in order to bring the output to zero in the smallest
number of time steps. For an N-th order linear system it has been shown that this minimum
number of steps will be N, provided that the system is null controllable, that is, can be brought to
state zero by some input. The solution is to apply feedback such that all poles of the closed-loop
transfer function are at the origin of the z-plane. By extension, a closed loop transfer function
which has all poles of the transfer function at the origin is sometimes called a deadbeat transfer
function. For the discrete tracking problem, the same idea as explained in the above paragraph
can be extended. It should be noted that the concept of minimum time is implicitly associated
with the dead beat concept. Though in many deadbeat control implementations, the minimum
time optimization requirement is not introduced explicitly.

Deadbeat controllers for linear systems have long been investigated, and successful applications
have been reported in many literatures [1-7]. Various techniques have been adopted in the past
for realizing (compensating) deadbeat transient response of linear control systems [8-16].

Firstly, a suitable deadbeat controller can be designed and put in the forward path of the control
loop. The basic idea behind the technique is to cancel some (sometime all) of the plant or process
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poles by incorporating corresponding zeros and to introduce some desired poles. The difficulties
associated with this technique are as follows. The pole-zero cancellations must be perfect,
otherwise, not only some zeros will be introduced but also the order of the system will increase
giving rise to the problem of system instability. Further, the design of the deadbeat controller is
based on the system or plant model. As modeling involves many approximations including
linearization, system order reduction by neglecting far poles and zeros of the plant, the deadbeat
controller designed on such a model may not produce the desired result when the controller is
used with the real plant. It is necessary to study the robustness of the designed deadbeat
controller regarding the imperfection of pole-zero cancellation and the imperfection of the
model. Such a robust controller design may be turned out to be very tricky. Hopefully, if such a
robust controller can be designed, it will alleviate the problem of ageing too. Again, in some
applications, such as biological control systems, it may not be possible to incorporate a controller
within the system.

Secondly, the input shaping technique is introduced to attain deadbeat control of process with or
without dead time. The stability of the closed-loop system need to be guaranteed by the PI
controller which may be designed with Nyquist criterion, and the input shaping controller is
employed to shape the command input to get deadbeat control. With selecting only two
parameters, the sampling period and the proportional gain which can be analytically computed
according to the phase margin, the closed-loop system may be designed easily. Unfortunately,
the introduction of the PI controller in the system will give rise to all the problems as mentioned
in the previous paragraph. Further, in many biological applications, it may not be possible to
incorporate the mechanism (input shaping controller) to shape the input command.

Thirdly, there is the signal correction technique (SCT) where a suitable signal is generated by an
algorithm using the states of the system and added with the command signal to implement the
deadbeat response. The advantage of this system is not that no controller has to be incorporated
in the control loop nor is any signal shaping controller required. In some publications, though a
general formulation for SCT for deadbeat response of linear systems of any order has been
suggested [1,2], but an algorithm for the implementation has been reported only for a second
order system with some parameter restriction and it has been developed using some experimental
data.

In all the sections of this article, the SCT is applied, where a suitable signal is applied along with
reference input to achieve the deadbeat response. In case of deadbeat realization of higher order
system, the equivalent second order system is obtained first and then a suitable signal is added to
the system without any restriction of system parameters for deadbeat responses. The same signal
to be added to original higher order system for the deadbeat output.

2 Discussions of Previous Techniques for Realizing Deadbeat Response

In certain methods for continuous-time linear systems, a dead-beat controller is designed and
placed in the forward path of the control loop. The goal of this approach is to cancel out some or
all of the system's poles by adding corresponding zeros, and then to introduce the desired poles.
However, this technique has significant implications. The pole-zero cancellation must be exact;
otherwise, not only can unwanted zeros be introduced, but the system’s order may increase,
potentially causing instability. Additionally, the dead-beat controller design relies heavily on the
plant model, which involves approximations. These approximations mean that the robustness of
the dead-beat controller must be evaluated to account for both imperfections in pole-zero
cancellation and inaccuracies in the model. Designing a robust controller with minimal
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sensitivity can be challenging, but if successfully implemented, it may also help mitigate issues
related to system aging. The pole placement problem in both discrete and continuous-time
systems has been shown to reduce from an infinite-dimensional to a finite-dimensional problem,
even in the presence of feedback delay. Dead-beat control (DB) was first introduced over forty
years ago and has since been extensively researched in both continuous and discrete-time control
theory [17]. Despite this, it has often been avoided by designers due to concerns with physical
reliability and incomplete pole-zero cancellation. However, with the advent of digital signal
processing (DSP) systems, many of these issues can now be addressed. In discrete-time systems,
dead-beat control ensures zero error at the sampling instants after a finite settling time, regardless
of the inter-sample response. Yet, for certain classes of continuous-time systems, dead-beat
control can still be problematic due to remaining inter-sample effects, which are generally
undesirable.

In certain applications, such as biological control systems, it may not always be feasible to
integrate a controller directly into the system. To achieve dead-beat control, even in systems with
or without dead time, the input shaping technique is employed. In this approach, a PI controller,
designed using the Nyquist criterion, is positioned in the forward path to ensure overall system
stability. The input shaping controller is then used to modify the command input in order to
produce the desired dead-beat response. While the closed-loop system can be designed relatively
easily, introducing the PI controller into the system introduces the same issues mentioned earlier.

3 Proposed Scheme of Deadbeat Realization for Step Input

The signal correction technique (SCT) involves generating an appropriate signal through an
algorithm using the system’s states, which is then added to the command signal to achieve a
dead-beat response. No controller is required in the control loop, nor is signal shaping necessary.
A general formulation for SCT, aimed at achieving a dead-beat response in linear systems of any
order, has been proposed in [1,2]. However, the algorithm has only been implemented for
second-order systems with certain parameter restrictions. Recent research on RF-DB control
systems has led to various proposals for applying modern techniques to control widely used
plants [3-8].

In this work, a dead-beat control scheme based on SCT is proposed for second-order time-
invariant systems, and an almost dead-beat response for higher-order linear systems, without the
need for parameter restrictions or experimental data. The signal for SCT can either represent the
state variables within the system or be a pulse. When using an additional pulse input, the pulse's
start time is selected to ensure that the rise time remains unchanged, meaning both the
compensated and uncompensated systems will have the same rise time (i.e., the time it takes for
the output to reach 90% of its steady-state value). In the proposed method, the dead-beat
controller design focuses on reducing overshoots to zero by ensuring that the compensated
system always reaches the reference input at the pulse’s end time. This novel approach leads to a
more effective dead-beat controller design. Theorem 9.1.1 shows that any nth order linear control
system can be represented as second-order linear system by minimizing the mean square error of
their output responses. Examples are included for obtaining the dead-beat response of higher
systems. The simulation results are given in table 9.1..
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4 Background and Problem Formulation

In reference [1,2], it was demonstrated that the response of a linear system to a given input can
be altered to achieve any desired output by introducing an appropriate signal at the input.
However, it was noted that finding such a signal using traditional continuous data control
methods would be challenging. The authors proposed a computer simulation approach to address
this issue and demonstrated it using a lightly damped linear second-order system. The desired
output was chosen so that, after the switch, the system's responses would follow a straight-line
trajectory in the phase plane. The additional signal they identified was a single pulse with
duration of T, corresponding to the sampling period in digital simulations, applied only at the
switching instant. The authors did not provide a method for determining the correct (desired)
value of T, and achieving a dead-beat response for a system with arbitrary damping & and natural
frequency w, would require an endless search for the appropriate T. Thus, the proposed method
faces practical implementation challenges. Based on experimental results, the authors presented
plots of & versus T and & versus the pulse amplitude. For a given system, by knowing &, they
were able to determine the values of T and pulse amplitude using these plots. However, they also
mentioned that the product of w, and T should be 10.425, indicating that the plots and the cited
relationship are useful only for implementing the dead-beat response in systems with specific
values of & and w,. Furthermore, the performance of the compensated system concerning T and
pulse amplitude had not been analyzed. This limitation motivated the current work, which
proposes two new approaches that do not impose any restrictions on system parameters.
Additionally, a detailed performance analysis of the compensated system concerning the required
pulse parameters has been thoroughly conducted. In the proposed method, it is assumed that the
dead-beat response is achieved by adding a signal to the reference input. This additional signal is
generated through a proper simulation using the relationship between the state-space variables
within the system and the desired output. Another approach to obtaining the dead-beat response
is discussed, which involves adding a pulse to the input along with the reference signal when the
output reaches 90% of its steady-state value. This approach ensures that the rise time for both the
compensated and uncompensated systems remains the same. The duration and amplitude of the
pulse are derived in Theorem 6.1.1 using Theorem 5.2, with the rationale for this criterion
provided in the next section.

4.1 Deadbeat Representations through Injection of Pulse

The objective of this method is to achieve a dead-beat response by injecting a suitable pulse at an
appropriate time in a time-invariant linear continuous system. The required pulse is generated
using the system's state variables. The start time t; is chosen at the point when the system
response reaches 90% of its final value. The choice of start time influences the rise time of the
compensated system. If start time is chosen too early, the rise time will be longer than that of the
uncompensated system, which is undesirable; hence, the specific selection of t;. The end time t;
is determined by the relationship with ty, as outlined in Theorem 5.2. Once t; and t, are known,
the pulse amplitude can be determined using the values of damping ratio & and natural frequency
on, as stated in Theorem 6.1.1. The input-output behaviour of a linear second-order system, as
shown in Figure 4.1, is described by its transfer function, where R(s) and C(s) are the Laplace
transforms of the input and output, respectively.
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Let the representation of G(s)= { K } and H(s)=1,

s(s+ p)
[0
TE)=— K = n 5 where k = 2,
ST+ ps+Kk 32+2§a)ns+a)n n
Consider an input x(t) as the sum of a step of amplitude ‘a’ applied at t=0 and a pulse of

amplitude ‘b’ applied for the duration from t; to t,. Using Inverse Laplace Transform, the output
is obtained as
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To obtain the pulse parameters few theorems to be established that can ensure the actual
parameters to achieve the dead-beat response.
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Figure 4.2: Simulation Diagram of Dead Beat System with pulse signal
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5 Theorems Related to Dead Beat Realization

Theorem 5.1: The time to reach the reference input (t t) of the second order

ref _inpu
compensated system after the addition of pulse is

1 -0 +tan™ Kz

T (4)
ef input
_Inp k3 (Z_klj

k1 = (e1 cos k3t1_e2 cos k3t2 ) (5)

ICIUII- )

e

1 v
where kg = @ 1- &2 ®)
Proof:

IftO be the time to reach the reference input after the addition of pulse, from (3)
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or klsln(k3 ot o)+ k2 cos(k t +0) = asm(k3t0 +0) 24)
or bkl tan(k3 ot o)+ bk = atan(k?,t0 + 6’) 15)
bk2
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Hence proved.

Remark 5.1: The result obtained in theorem 5.1 is used in developing theorem 5.2.

Theorem 5.2: The necessary condition of a second order linear system to be a dead-beat system
in the SCT scheme is that, the output response of the compensated system must reaches to
reference input at the time t, (the end time of the applied pulse) under the particular case, k,=0

where k, is defined in theorem 5.1.
Remark 5.2:

It is obvious that other necessary conditions can also be obtained. The following necessary
condition is obtained using theorem 5.2.

Proof:

It is assumed that there exist an overshoot after the time  lrer i and occurs at t=t ¢ ., +h

From (16),

bk2 cos(k3tref _input +0+h)-(a- bkl)sm(k ref _input +0+h)=c 29)
bk2 c

or tan(k3 ref _input +0+h)= (a_ bkl) — (a Dbk )sec(k3 ref _input +0+h) (23)

or (a— bkl)sm(k3 ref _input +6+h)-— bk2 cos(kgtre]c _input +6+h)+c=0 (20)

or (a—bk )sm(k3 ref _input + 60 +h)=bk cos(k?’tref _input +0+h)—c (21

or (a— bkl)tan(k3 ref _input +0+h)= bk —C. sec(k3 ref _input +0+h) (22)

or tan(kstref _input +0+h)= a_ bkl) - (a_ bkl) sec(k3tref _input +0+h) (23)
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or tanY:X—;\/lﬂanzY (24)

(a—bkl)
bk
where X = —=— (25)
(a- bkl)
or (tanY — X) = —01\/1+ tan?y (26)
C
where ¢, = ——— 27
1 (a—bky) @7
or (tanY—X)2 =c12(1+tan2Y) (28)
or tan2yY —2X tanY + X 2 =012(1+tan2Y) (29)
or (012 —1)tan2Y+2X tanyY +(012—X2)=0 (30)

In particular case by comparing the LHS with RHS it can be said (c,” — X?)=0 .From the
middle term of L.H.S if X=0 is considered, thencq =0. From (3.46) tanY =X =0. As

¢, =0,it implies c =0 i.e. there should not be any overshoot after tref input .By same way it

can be proved also that there is no overshoot before t and aftert,.That means the

ref _input
output response of the compensated system always reach to reference input at the time t, and no
overshoot occurs aftert,. That implies t =t, .under the particular case, X=0, i.e. k, =0

2
Remark 5.3:
The main implication of theorem 5.2 is that the applied pulse parameter t, can be selected as

time to reach the reference input. In the subsequent development use this value of t, can be used.

ref _input

6 Determination of Pulse Parameters
6.1. Choice of Pulse Parameters in Linear Second Order System:

It is assumed that the start time of the required pulse is the time where original uncompensated
output response attains 90% of its reference input. If it is applied before this time the rise time of
the output response of the system will be increased and IE (Integral Error) of the dead-beat

system will be increased. With this choice of t, the other two parameters t, and b can be
obtained as given in theorem 6.1.1.

Theorem 6.1.1: The pulse parameters i.e. start time(t, ), end time (t,) and amplitude (b) of the

applied additional pulse to get the dead-beat response of the second order linear system, can be
obtained as

H—sin_l{o.l 1—52 egwntl}—e
t, = (31)

t o \1-&2
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t, = é[ﬂ—sin “Hexp(log(sin kqty)) + Eonty — Eont,} (32)
a

o () >

Proof:

As the start time t; is selected at the instant when the system response attains 90% of its final
value the value of t; can be obtained as

o t
n
c(t) = [a - = sin{wnt\/1—§2 L0} =09aatt=t (34)
1-¢2
i} t i
H—sin_l{o.l 1—52 ega)n 1}—0
Y= (35)

1=
o \1-£2
The initial value of t, can be started with the value zero i.e. from (35) t, can be written as

H—sin_l(o.l 1—52)—9
t = (36)
0] 1—§2

Now the iteration will be continued by putting the value of t, in (35) until the successive two
values of t,in (35) will be same, i.e. the value of t, converges in (35).

From theorem 5.2 it is already known that tof input:tZ'BUt to obtain the value oft,, the

amplitude of the added pulse (b) must to be known. Hence to get the value oft,, it is desirable to
think in some other way, so that it is dependent on t, only.
From theorem 5.2, ko =01i..epsink3tp —esinkst; =0

§a)nt2 + Iog(sin(kgtz)) = §a)nt1+ Iog(sin(k3t1)) (37)
or Iog(sin(k3t2)) = Sonty+ Iog(sin(kstl)) —Sont, (38)

or t,= é [1-sin _1{exp(log(sin(k3t1)) +&onty - éa)ntz}] (39)

Ast, >t , Itis assumed that the initial solution of t, is t,. The first iterated value of t,

from (39) can be considered as t, = ki[l_[ —sin*(sin kstl)] (40)
3
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Now the iteration will be continued by putting the value of t, (40) in (39) until the successive
two values of t, in (39) will be same, i.e. the value of t, converges in (39). From the theorem

5.1 and theorem 5.2, it is understood that to make the second order linear System into dead-beat
system through the injection of additional pulse input it can be made

k, = 0 that implies (a —bk,)sin(k,t, + &) =0 theorem 5.2. (41)

a
orb=— 42
" (42)

1

Hence proved.

Remark 6.1.1: The theorem 6.1.1 is the most important theorem that gives the necessary pulse
parameters (t,,t,,b) for the dead-beat realization of second order linear system. The transient
behaviour of the dead-beat system is very important. It is preferable that the transient response
should be non-oscillating. This is guaranteed for the proposed dead-beat system as given in
theorem 6.2.1.

6.2  Verification of Dead beat Response with Addition of Pulse Signal:

Theorem 6.2.1: The output response c(t) of the second order dead-beat system must follow the

following conditions
1. c(t) is monotonically increasing for 0<t <tjand t] <t <ty

2. c(t)=u(t) fort >ty , where u(t) is the step input.

Remark 6.2.1:

It can be proved that the output response of the compensated dead-beat system from (1), (2) and
(3) are non decreasing in time domain using the help of theorem 5.1 and theorem 5.2. The
function defined in (1) is always non decreasing function as the start time t; is selected at the
instant when the system response attains 90% of its final value. The function defined in (3) is
also non-decreasing as it is proved in theorem 5.2. It is necessary to prove the transient response
represented in (2) is a non decreasing function of t.

Proof:
The first order derivative of function defined in (2) can be written as

cl(t)=a\/%sin[a)n\/l—§2t}—b 1a_)n§2 sin{a)nyll—gz(t—tl)} fort <t<t, (43)

we haveto prove c'(t) >0

fa)nt

ieto prove a.sin (k3t)— be” N1sin [k3(t —tl)]z 0 (44)

The above exp ression is > 0
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sin [k3tJ e1
- .~ \ > (45)
sin [k3 (t _ tl)J e Coskat, —e, Coskat,

or if e, sin k3tcosk3t1 —&,sin k3tcosk3t2 > el(sm k3t cos k3t1 - cosk3t3|n k3t1) (46)

or if — e, sin k3t cosk3t2 > —€, COS k3t5|n k3t1 (47)
or if €, Cos k3tsm k3t1 > e, sin k3tcos k3t2 (48)
if asin(kyt) > be, sinfk,(t -t ) (49)
] be1
or if > —= (50)
a
sin [k3t € a
or if — >-—= (since b =— fromtheorem 3) (51)
S|n|k3(t —t1 ’| k1 kl
sin|k,t e
or if —T 5! 9> 1 (52)

sin [kS(t —tl)J B e cosk3t1 -e, cosk3t2

or if e, sink,tcosk,t, —e,sink_tcosk,t, >e (sink tcosk,t, —cosk,tsink,t ) (53)

1 3 31 72 3 3271 3 31 3 31
or if — €, Sin k3tcosk3t2 > —€, COs k3t3|n k3t1 (54)
or if €, Cos k3t5|n k3t1 > e, sin k3tcos k3t2 (55)

e, sink,tcosk,t
or if Lz—_8__32 (56)

e, coskstsinkat,

& sin k3tcosk3t2
or if —2> (from theorem 5.1and theorem 5.2) (57)

e e

2 "2 |

coskgt( 3 Jsm k3t2

or if tan k3t2 > tan k3t (58)

sinkt sink,,t
or if k32 - k3 >0 (59)

cos 3t2 cos 3t
or if sin kg(tE ~t)>0 (60)
or if H2k3t2—t20 (62)
or if t<t, <.+ (62)

k3

Which is always true from (2).
Hence it is proved.
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7 Simulation Results

The simulation diagram of dead-beat system is shown in figure 4.2. In the figure 4.2, it is shown
that how the additional pulse has been obtained in the feedback loop of the uncompensated
system to make the resultant output with dead-beat response. The parameters of the additional
pulse, i.e. the start time (t,), end time (t,) and amplitude (b ) are derived using theorem 6.1.1.
The table 9.1 shows that using theorem 6.1.1, the pulse parameters are obtained for different
systems. The resultant output responses of dead-beat systems are shown in figure 7.2 to figure
7.7 respectively for different systems of table 9.1.

Transient Responses of Different Second Order Systems with deadbeat realization
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Figure 7.5. k=9. p=1.8, £=0.30
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Figure 7.6. k=100, p=5, £=0.25 Figure 7.7. k=4.4324. p=0.2316, £=0.0550
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8 Dead-beat Control Scheme for Higher Order Control System

This above technique of dead-beat realization can be applied to the higher order linear control
system by converting the higher order system to the equivalent second order system and
obtaining the pulse parameter values (ti, t, b). This pulse, then, can be applied to the original
higher order system (nth order system) for the almost dead-beat implementation. In this work the
nth order linear control system are represented as second order linear system through section 9,
by minimizing their square of error response with respect to two unknown residues of second
order system (real or imaginary) by unchanging their corresponding poles.

8.1  Representation of Higher order Linear Continuous System in terms of Poles and
Residues.

Theorem 8.1.1: Any higher order linear control system can be represented as

n n At
cty=— X a |+ ae 1 (63)
i1 ') i=l
B.|l+Xael +2 Ye J(ﬂ.cosD.t—;/.sinD.t) (64)
i=1 J—l J i1 | le J J J J

=

where n=m+2p

m P
or c(t)—[_z a; +2_Z

or c(t):—ZZﬂj+2 >e J (ﬂj cosDjt—yjsin Djt), where n=2p (65)

=1 J =1
where
A, (i=1,2.....m)are the distinct real poles, o, be the residue of the poles at s = A,
¢, be the real part of complex poles, D; be the imaginary part of complex poles.

B;and y; be the real and imaginary residues of the complex poles.

Proof:

Both the poles are real poles

Both the poles are complex poles.

Case 1 : The output signal of second order linear system can be written as

o n a, (a1 + az) (66)
s—-A Ss-A S
Taking the inverse Laplace of (66) it can be written as
e B B B (al + 0‘2) (67)
s—A s—A, S
=a eA1t+a eAzt—(a +a ) (68)
1 2 1 72
2 2 At
:—Zai+ Zaie ! (69)
i=1 i=1
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Case 2: The output signal of second order linear system can be written as

ﬂl"‘i?/l ,31 |71 2181

~—+ (70)
s—(Cl+|D1) s—(C1 |D1) S
Taking inverse Laplace of (3.90)
1 ,BJ_"‘i?’l 1 ﬂl_i7’1 _ _1ﬁ
L ——+L : L (7D
s—(C1+|D1) s—(Cl—lDl) S
_ Z(Sﬂl ~Cih -7 1D1) ~ L‘{ﬁ} (72)
2 2 S
(s —cl) + D1
S C,B, +7,D 2P
_ ol 51 T 1A i " L |- ,_—1{ 1 } (73)
(s—cl) +Dy (s—cl) +Dy S
Clt C1 Clt ( 1 Clt )
= 2,81 cos Dlt +— Dl e -2 Cl,Bl + 7/1D1 D—le sin Dlt — 2,6'1 (74)
C,t p,C, C.t B,C, C.t C. t
__ it 171 .1 171 .71 _ 1t
= Zﬂl + Zﬂle cos Dlt +2—= Dl e + sin Dlt 2—= Dl e + sin Dlt 2;/1e sin Dlt (75)
C,t
=-2p +2 1 (,51 cosDyt -, sin Dlt) (76)

Similarly for the 3 order system of all the poles of the system are real, the output c(t) of the
system is defined as

3 3 At
==X o+ X ae ! (77)
i=1 =1

For one real pole and two complex poles the output signal of 3 order linear system can be
defined as

4, Atin o AT oy +25) (78)

s—Al s—(C1+iD1) s—(Cl—iDl) S

Taking the inverse Laplace of (78) we can get

a +i =i a, +20
Sl A At AT g ey +2,) (79)
s—Al s—(C1+|D1) s—(Cl—lDl) S
From (3.89) and (3.96)
_ At L Gt -

c(t) = —(al + 2,6'1)+ e -+ 2e (ﬂl cos Dlt —7,8in Dlt) (80)
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Hence for nth order system

At
C(t)=—(2aj+2ae | (81)
=1

Where all poles are real

or

mooat PGyt
c(t) =- Z a; +2 Z Pj|t T ae +2 e ! (ﬁ.cosD.t—y.sinD.tj (82)
i=1 J— i—1 ! J_ J J J J

where m number of real poles and 2p number of complex poles and (m+ 2p) is equal ton.

or

p C.t
c(t)——ZZ,B +2 ze J (ﬂj cosDt~; sin Djtj (83)

=1 J =
where all poles are complex and 2p=n
Hence proved.

Therefore, from (62) the nth order compensated linear control system can be represented as

) C.t
c(t):[ >« +2 Z B }L > aIeA't+2 >e (ﬁj cosDjt—yjsin Djt) (84)
=1 1= i=1 1=1 for0<t<t,

Za+22 f.l+Xae ! +2 Ze (,B.cosD.t—;/.sinD.t)
neRl U B M =1 R B R
i=1
m p m A.(t—t) p C-(t—t)
1 ] 1 .
_b{—[iglai+2iz ﬂ.}+_z a;e ! +2 Ye (ﬂj cosDj(t—tl)—)/jSIn Dj(t—tl)j (85)

fort, <t<t,

Il
[y
—

Il
[y

R ae "2 ye J (,Bj cosDjt—yjsin Djtj

Uy fsr o)

u “i+2_§ ﬂ_} u a.eAi(t_t2)+2 gecj (-t (ﬂj cosDj(t—tz)—yjsin Dj<t—t2))]

2
il
/_lﬁ
I ™M3
Q
+
N
I Mo
=
N——

t—

>
—
|
—
[Ey
~——
o
O
—
e

+b| -

[EEN
N
I
=

fort2 <t<oo (86)

PAGE NO: 247



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

8.2  Representation of Theorem 5.1, 5.2 and 6.1.1 in terms of Poles for Linear Second
Order System.

The time to reach the reference input (t input) of the second order compensated system

ref
(after the addition of pulse) stated in theorem 5.1 can be represented in terms of poles as follows.

1-ble, cosD,t, —e, cosD,t
7r0+tan_1{ ( 11 "2 12)}
b(e sin Dlt1 2sm Dltz)

t

ref _input ~ D, (87)

—C —C,t
where e =e 111, where e, =¢ 12 (88)

Proof:
IftO be the time to reach the reference input after the addition of pulse, from (76)

C,t C,t
—2ﬂ1+2e 1 (ﬂl cosD tO 7ls|n Dlto) {— 2,81 +2¢ 10 ([5’1 cosD tO 7ls|n Dlto)}

+b{ 28 +2¢ 10@ cosD;ty — 7, Sin Dyt } 2, =0 (89)

Tolg, il oo )y )
or2ze -0 cosDt0 ;/lstltO 2be 1cosD1t0—t1 —;/1S|nD1to—tl

N 2beC1 =1 {ﬁl cole(to —tz)— y,sin Dl(t0 —tz)}: 0 (90)

C t(ﬁl cosD tO —ylsin Dlto)— becl(to 1 {,Bl cos Dl(t0 —tl)— ylsin Dl(t0 —tl)}
+ be 1(0 B 2 {Hl cos Dl(t0 —tz)— ylsin Dl(t0 —tz)}: 0 (91
or

C.t C,lty-t)
£ nosin Dy 1020 soem - rsnosn oy o)
e cosecolet0 rsin @sin Dlt0 be r osecole(tO tl) rsin @sin Dl(tO tl)

+beCl(to _tz)r{cosecosD (t t )— rsin @'sin Dl(t0 —tz)}: 0 (92)

150 2)
or e ooty +0) 510 Voo b 1 e afeie %02 1 oo 0

or cos(DltO +0) be Cltl cos{Dl(t0 —tl)+ 9}— be_Clt2 cos{Dl(t0 —t2 )+ 0} (94)

or cos(Dlt0 +0) b[e1 cos{Dl(t0 —t1)+ 9}—e2 cos{Dl(tO —t2 )+ 9}] (95)
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e icosD (t -t )cos@—sinD (t -t )sinH}
):b —1e2 {colef(tO itz)cosﬁ—sinlD(i(to l—tz)sin 49}

or cos(DltO + 9)= be1 0S Dlt

or cos(D t.+6

1% (96)

0 cos Dlt1 +sin Dlt0 sin Dlt1 cosd

—belisin D,t.cosD,t, —cosD,t. sin D tlfsine

10 11 10 1
- be2 0S Dlt0 cos Dlt2 +5sin Dlt0 sin Dlt2 cosé
+ be2 in Dlt0 cos Dlt2 —COs Dlt0 sin D1t2 sin @ 97)
or cos(DltO + 6’): b(e1 cos D])t1 —8,¢0s D,)Lt2 )cos(Dlt0 + 0)
+ b(e1 cos Dltl —€,C0s Dlt2 Sin (Dlt0 +6 (98)

or b(e, sin D,t, —e, sin Dt, )sin(D,t, + @)= {L-b(e, cosD,t, —e, cosDit, )}cos(D,t, + &) (99)

or tan(Dyt, +6) = {L—b(e, cosDyt, —e, cosDit, )

100
b(e, sin D,t, —e, sin Dyt, ) (100)
|:72' —O+tan 1{1;?(5}1 -Cos)l:t)ltl — ez.COI:S) Ii:)lt)z )}}
e, sin —€,SIn
t, = 1 117 %2 12 (101)

Dl
Hence proved.

The necessary condition stated in theorem 5.2 for t =t, can be drawn as

ref _input
1-b(e,cosDt, —e,cosDt,)=0  (102)

where €, and e, are givenin (88)
Proof:
It is assumed that there exist an overshoot after the tref it time and occurs at t=t

From (100), it can be written as

b(e, sin D,t, —e, sin D,t, )sin(D,t + & +h)—cos(D,t + 8 +h)

+b(e, cosD,t, —e, cosD,t, )cos(D,t + & +h)=c (103)

or b(e, sin D;t, —e, sin D;t, )sin(D,t + @+ h)—cos(D,t + 6 + h)
)

+h

ref _input

+b(e, cosDt, —e, cosD,t, )cos(D,t +@+h)—c=0  (104)
or b(e, sin D,t, —e, sin D;t, )tanY =1+c.secY —b(e, cosD,t, —e, cosD,t,)  (105)

or tany = : t (& cos Dit, -, cos Dit,)
b(e,sinD,t, —e,sinD;t,) (e, sinDyt, —e,sin D, )

. { c.secY } (106)

b(e, sin D;t, —e, sin D;t,)
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b(e, sin Dt, —e, sin Dyt, ) b(e, sin Dt, —e,sin Dyt )
ortanY = X +clm (108)
or (tanY — X )=c,I+tan’Y  (109)
or tan’?Y —2X tanY +Y?2 = c12(1+tan2 y) (110)
(2 -1an?y+2X tany +(c2-x?)=0  @11)
In particular case by comparing the LHS with RHS it can be said (c,” — X?)=0 .From the

middle term of L.H.S if X=0 is considered, thenc, =0. From (109) tanY =X =0. As
c, =0,it implies ¢ =0 i.e. there should not be any overshoot after t .By same way it

or tany — {1— b(e, cosD,t, —e, cosDyt, )} .\ { c.secY } (107)

ref _input

can be proved also that there is no overshoot before t and aftert,.That means the

ref _input
output response of the compensated system always reach to reference input at the time t, and no
overshoot occurs aftert, . That implies t =t, .under the particular case, X=0, i.e.

1—b(eg cosDyty —ep cosDyto ) =0

The pulse parameters i.e. start time (t, ), end time (t,) and amplitude (b) of the applied additional

pulse to get the dead-beat response of the second order linear system stated in theorem 6.1.1 can
be represented in terms of poles as

ref _input

{cos*(0.1cos0e )0}

t, = (112)

Dl
il B .

(, = S [exp{c,t, —c,t,+log(sin D,t, )] 113)

1 P
= (114)
e, cosD;t, —e, cosDit,

From theorem5.2,k, =01i.e.e,sink,t, —e sink,t, =0 (115)

or (e,sin D;t, —e,sin Dt,)=0 (116)

or g sinDt, =e,sin Dit, (117)

or log e, +log(sin D;t,) = log e, + log(sin D,t, )—c,t, + log(sin D;t, )

= —c,t, +log(sinD;t,) (118)

or log(sin Djt,)=ct, —c,t,+log(sin D,t,)  (119)

or sin Dit, = exp{c,t, —c,t,+log(sin D,t,)}  (120)

7 —sin*[exp{c,t, —c,t,+log(sin D,t, )}]
D,

if the initial solution of t,ist;

(121)

ort, =

7 —sin(sin Dyt, )
Dl

thent, = (222)
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Now the iteration will be continued by putting the value of (122) in (121) until the successive
two values of in (121) will be same, i.e. the value of converges in (121). From the theorem 5.1
and theorem 5.2, it is understood that to make the second order linear system into dead-beat
system through the injection of additional pulse signal, the following equation can be obtained.

1 _ (e,cosDyt, —e, cosDit,) _ 0 )
b(e,sin Dt, —e,sinDt,) (g sinDjt, —e,sinDit,)
orb = ! (124)

e, cosD;t, —e, cosDyt,
Here a following lemma can be proposed, which will be used in theorem 9.1.1.

Lemma 8.2.1: For any output response of any second order linear system in the form of with the

Y(s)= { K jl step input the following conditions hold.
1+2%Zeta*Tw*s+ Tw2 *s2 S

(i) B.C, =y, D, (125)

or (ii) o, Aj=—a, A, (126)

Proof (i): It is assumed that both the poles are complex.

T(s) =) _ ( K ] (127)

- u(s) T+ 2* Zeta*Tw*s + (Tw*s)"2

Y (s) = { K J (128)

1+2*Zeta*Tw*s+ (Tw™*s)"2

Y(s)= —y+ - (129)
s—(C1+|D) s—(Cl—lDl) S
or ¥ (s) = ,Bls—,B1C1+|ﬂlD1 +|yls—|71C1— D1y1+ﬂls—ﬂlcl—|ﬂlDl —|7ls+|y1C1— Dlyl B 2,31
2 2 2 S
s —2scl+(c1 +D1j
130)
28.5-28.C,~2D,y, 28 (
orY(s) = A 12 1; - 81 (131)
s —2scl+(c:1 +Dlj
2 _ B 2 B 2 2
2,6’15 Zﬂlcls 2D1yls Zﬂls +4ﬂlcls 2,6’1 C1 +Dl
orY(s) = 5 5 5 (132)
s{s —2301+(C1 +D1 j}
2,C,5~2D,7,5 2 ﬂl(Clz ; Dlzj
orY(s) = (133)

2 2 2
s{s - Zs,C1 + (Cl + D1 )}
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2. 2
2@1c1 Dlyl)s—Zﬁl(Cl +D1)

2 2 2
s{s —25C1+(C1 +D1 j}

It is implied from (128) and (134)

(ﬂlcl _7/1D1): 0
or B,C, =y,D, proved

(134)

Again to prove condition (ii) let us consider both the poles are real.

o, a, o +ta,
Y(S)=S—A1+S—A2 S (135)
a8 - a1A2 +a, S— aZAl (a +a2)
Y (s) = 136
O AN A) s o
alsz—alAzs+a232—a2Ais—[s Als A23+A1A )(a +a )
ory(s)= f \ (137)
Sy e
or ¥ (s) = alAlS + aZ,AZS _\',A\lAZal - AlAZ 052 138)
(s — Alls — A
A A -A A
or Y(s) = (al s +a2 2)5 v 1 172% from (139)
b-A Jks p
from (89) and(100) (a,A, +a,A,)=0 (140)
or a,A =-a,A, proved (141)

9 Conversion of n™ Order System to Equivalent 2" Order System

Every physical system can be translated into mathematical model. The mathematical procedure
of system modeling often leads to comprehensive description of a process in the form of high-
order differential equations which are difficult to use either for analysis or controller synthesis. It
is, therefore, useful, and sometimes necessary, to find the possibility of finding some equations
of the same type but of lower order that may be considered to adequately reflect the dominant
characteristics of the system under consideration. Some of the reasons for using reduced-order

models of high order linear systems could be as follows:

To have a better understanding of the system,
To reduce computational complexity,

To reduce hardware complexity,

To make feasible controller design.
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Many control system applications, such as satellite altitude control, fighter aircraft control,
model-based predictive control, control of fuel injectors, automobile spark timer, possess a
mathematical model of the process with higher order, due to which the system defined becomes
complex. These higher order models are cumbersome to handle. As a result, lower order system
modeling can be performed, which helps in alleviating computational complexity and
implementation difficulties involved in the design of controllers and compensators for higher
order systems. Further, the development and usage of micro controllers and microprocessors in
the design and implementation of control system components has increased the importance of
lower order system modeling.

In recent decades, much effort has been made in the field of model order reduction for linear

dynamic systems and several methods like: Aggregation method [18], Pade approximation [19],
Routh approximation [20], Moment matching technique [21], Mihailov stability criterion [22],
and optimization technique [23], have been proposed. Among them Routh approximation and
Pade technique has been recognized as the powerful method. But the serious disadvantage of
Pade approximation is that sometimes it leads to an unstable reduced order system for a stable
original system. Further, numerous methods of order reduction are also available in the literature
[24-31], which are based on minimization of the ISE criterion. However, a familiar aspect in the
methods explained in [24-30] is that the denominator coefficients values of the low order system
(LOS) are selected arbitrarily by some stability preserving methods such as dominant pole,
Routh approximation methods, etc. and then the numerator coefficients of the LOS are
determined by minimization of the ISE. In [31], Howitt and Luss recommended a procedure, in
which both the numerator and denominator coefficients are considered to be free parameters and
are chosen to minimize the ISE in impulse or step responses.

9.1 Reduction to Second Order Linear System without Changing the Poles

Any nth order linear control system can be represented as second order linear system by
minimizing their mean square error of output responses with respect to two unknown residues of
second order system (real or imaginary) without changing their corresponding poles. In this
method, a complex conjugate pole, of the original higher order system, nearest to the origin is
considered. The residues of corresponding poles (B, y) are found by minimizing the mean square
error between the transient responses of the original higher system and the reduced second order
system. This method is discussed with the numerical examples along with the results using
theorem 9.1.1.

Theorem 9.1.1: Any nth order linear control system can be represented as second order linear
system by minimizing the mean square error of their output responses with respect to two
unknown residues of second order system (real or imaginary) without changing their
corresponding poles.

Proof:
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Case |: The equivalent second order system with two imaginary poles.

i Alt C.t 12
Za|+22 ﬁ +Zae +2 Ze J(ﬂ.cosD.t—y.sinD.tj
i=1 j=1 i=1 j=1 J J J J
MSEzj dt (142
0 , Cj'[ . ,
—{-2B.+2 : D.t—y. sinD.
/3]+ e (ﬂj oS Jt ;/J sin Jt)
m At C.t , C.t, ., 12
> aje *~ +2e ] (ﬁ.—ﬂ. )cosD.t+2e ] (7. —y.)sinD.t
Ooi=1 J J ] J J J
= p dt 143
(I)+2 > ('Bk cosDkt—yk sin Dkt) 143)
k=1
k] ]
of m Aﬂz % 2C .t 2 ©« 2t 2
=[| X ae dt+4 (e J (ﬁ.—ﬂ.j cos” D.tdt+4 e J (7. —7/.) sin” D . tdt
P I ) J I J
oli=1 0 0
o p o p P
. V) . .
+4] ¥ (ﬂk cosDkt—yk stkt) da+8] ¥ X (ﬂk cosDkt—yk sin DktXﬂl colet—yI sin Dlt)jt
0k =1 ok=1 1I=
k#j k1= j,k<lI
om At p o C. t
+4[ Y ae ' Y (ﬂ cosD t-y, sinD t)+8j ,B ﬁ cosD t Z (ﬁ cosD, t-y, sinD t}i
. [ k k™ 7k k k™ 7k k
0i=1 k=1 0 Fk=1
k#] k#j
00 Cjt ! . P .
+8fe (;/j —yjjsm Djt > (ﬁk cosDkt—yk sin Dkt)it
0 k=1
K+ ]
o0 m Alt C't 1
+4[| ¥ a.e J [ﬁ- - B )cosD-tdt
. i J J J
o\i=1
/Aj-t Ct 1
0 i=1
o 2C. t
+8fe (ﬂ -B. )( : JjcosDJtstJtdt (244)
0
A\ 200 2C .t , 200 2C .t
=2(ﬂj—ﬂj) f(l+cosZDjtje Jdt+2(7j —yj) j(l—cosZDjtje )t

0
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200 2C.t 200 2C .t 200 2C .t
o5 _5' Vgt _of 5. _ 5" J T j
_Z(ﬂj ﬁjj (j)e dt Z(ﬂj ,Bj) (j)e cosZDjtdt+2(yj yj) (f)e dt
, 200 2C .t ~o Cotlop
J J
_2(;/1. —;/J.j (j)e cosZDjtdt+4(ﬁj —,Bj j(j)e kzl ﬂk{cos(Dk+Dj)t+cos(Dk—Djjt} dt
k= j
. woC.tl p
J . .
+4(7j —7jj(j)e kzl ,Bk{sm(Dk + Dj)t+sm(Dj —Dk)t} dt
k= j
o C.t p . o C.t
+8(ﬂj—ﬁj )je Iy By cosDktcosD.tdt+8[;/- —y-jje Iy p, cosD, tsinD . tdt
~ j IS ~, 7k k ]
0 k=1 0 k=1
K# ] k=]
~o C.t p , oC.t p
—S(ﬂj—ﬁj)je Iy yksinDktcosD.tdt—S[;/j —yj)je Iy yksinDktsinD.tdt
0 k=1 J 0 k=1 .
k#j k#j
OO M (Ai+Cj)t ' o m (Ai+ijt
+4(,B. -pB. jj > ae cosD.tdt+4(;/. —7.)j > ae sinD . tdt
b= : I iz ‘
2C .t , , 00 00
+8 (ﬂ. .y )(}/ —y-)jcosD.tsinD.tdt+ [K, (t)dt (145)
J J J J ] J 1
0 0
where Kl(t) is a function, independent of B' and y'.
, o C.t| p
+4(;/- —y.jfe J > B {sin(D +D.)t+sin(D.—D jt} dt
| 0 k=1 k k™ 7] j Tk
k=] |
N0 Cjt P _ _
_4[ﬂj —ﬁj jée k§1 yk{sm(Dk + Dj)t+sm(Dk —Dj)t} dt
k=] ]
, o0 Cjt P
-4y - e cog D, —D. [t—cog D, +D. [t;|dt
) R C ) e CRL
k=] i
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A®© | m (Ai+C.jt , | m (Ai+C.)t
+4(ﬂj_ﬂj jf X ae J cosDjt dt+4(7j —yjjj Y ae J SinDjt dt
0i=1 0li=1

o0 e}
7| ) Jsin 2D jtdt + JK, ()t (146)

*462Cjt(ﬂi -5 )i 0 0

The above expression is integrable. Kl(t) is the function which is independent of 4, and y;
After the integration the two unknown residues A, and y, are obtained by minimizing the
obtained MSE with respect to ﬂj' (to do the partial derivative and equate to zero) after putting the

relation ﬂj'Cj: ;/J.'Dj from lemma 8.2.1. The additional pulse required for the dead-beat system

can be achieved using the theorem 6.1.1 and these pulse parameters are used to implement the
dead-beat realization for the original higher order system.

Case lI: The equivalent second order system with two real poles.

- 2
m p m At p Cjt
| Y a+2Y B. |+ X ae ! +2 Ye (ﬂ.cosD.t—y.sinD.tj
0 |_1 ! '_1 J '_l | '_1 J J J J
= = | = ] =
MSE = | dt  (147)
0 { Ajt Akt
—la.+a, |ta.e ' +ae
( j k) j k
2
ol m At N At N At p Ct
=/l ¥ ae! +la.—a.le ] +(a -a jeAk +2 >e '(ﬂcosDt—y sinDt) dt
. i J ] k 7k | I | I
0ji=1 =1
i=j,k
(248)
© m 2At  © N2 2At N2 2At o p 2Ct
=/ X a.%e ldt+ [|a.—a. | e Jdt+j a,—a je Akdt+4j e '(ﬂcosDt—y sinDt)zdt
. i k 7k I [ |
0i=1 0 0 ol=1
i,k
o Ajt m At © At N0 At
+2fe (a.—a ) > oo Ildt+2]e (ak—ak) z o I |dt
0 =1 0 i=1
i#j,k i#j,k
o m At| pCt _ 0 : NS (Aj+ )t
+4[| Y ae ! | e (ﬂcosDt—y SInDt) dt+2f|la.-a. (a -a jje dt
. i | | | | ] ] k 7k
oli=1 =1 0 0
i#jk
0 N (A +C)t © N (Ak+C
+2] (a -a jZe (,8 cosD,t—y, sinDt) dt+2[ (a -, jZe | (ﬂcosDt—y sinDt) dt (149)
0 I 71Ty | =7 I 0 k 'k 121 I [ |
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200 2A.t 200 27
:(a — ) [e ] dt+( —a ) dt+2( j
J 0 k 7%

0|i=1
i,k
]+ .
+2(aj—aj )j >e % cosDt—y, sin Dlt) dt
0ll=1
vl 2 la.o) : ®
+2(ak—ak )(j) Ei (ﬁl cosD,t— sin Dlt) dt + (j)Kz(t)dt (150)

The above expression is integrable. K»(t) is the function which is independent of aj'and o -
After the integration the two unknown residues aj',ak'are obtained by minimizing the obtained

MSE with respect to « j' (to do the partial derivative and equate to zero) after putting the relation

aj'Aj = —ak'Ak from lemma 8.2.1. The additional pulse required for the dead-beat system can

be achieved using the theorem 6.1.1 and these pulse parameters are used to implement the dead-
beat realization for the original higher order system.

Remark 9.1.1:

It is found from theorem 8.1.1 that output response of any nth order linear control system can be
written as
m p At C Jt .
c(t) =—(Zai +22,Bjj+ > ale "+ 2 Ze ('Bj cosDjt—yj sin Djtj (51)
i=1 j=1 _
i=1 I=

where m number of real poles and 2p number of complex poles (m+2p) is equal to n.

It is clear from the above equation as any real pole Ai is moved far away from origin the system
is equivalent to its next lower order system (since Ai is negative). Similarly the same is true for

the complex conjugate polesC ; + as the real part of complex conjugate poles C ;

| J J
the above equation is close to the next lower order system (since C j IS negative). This is the

is large
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reason where always anyone must have to remove the distant poles either real or complex to
obtain the equivalent lower order system for dead- beat realization. In theorem 9.1.1 it is
obtained the equivalent second order system by estimating the residues of the second order
system with the two poles keeping unchanged (either two real poles or two complex conjugate
poles).The poles which are kept unchanged are the nearest pole of the system.

But in case Il of theorem 9.1.1, when the equivalent second order system is obtained for higher
order system with two nearest real poles, the value of ¢ is always greater than equal to one, i.e.

the equivalent second order system as well as original higher order system is over damped in
nature and the output response of the system is free of oscillation. In the SCT scheme, there is no
need to consider this type of case for dead-beat realization. The case Il of theorem 9.1.1 is
mentioned here only for the theoretical interest of obtaining equivalent second order system from
given higher order system but not for the dead-beat implementation of the system.

Example 9.1.1: The 3 order linear control system is considered with G(s) = L To

s(s+1)s +6)
obtain the dead-beat response of the system with the addition of pulse, it is desirable to find out
the equivalent second order system and then to obtain the pulse parameters to implement into
original given system.

T(s) = G(s) _ 30 _ 30 (152)
1+G(s) s(s+1fs+6)+30 3,752 465430

Y (s) _ 30 (153)

u(s) §347s2 465430

orY(s)= 3 23 0 u(s) (154)
SY +7s“+6s5+30

orY(s)= 30 1 (155)
s3+7s2 465430 S

30

orY(s) = (156)

54 + 733 + 652 +30s + O.SO

Let [R, P, K] = RESIDUE (B, A), where RESIDUE (B, A) is the function which finds the
residues, poles and direct term of a partial fraction expansion of the ratio of two polynomials
B(s)/A(s). If there are no multiple roots,

B(s) R(1) R() R(n)

. T - + e + ot - + K(s) (157)

A(s) s-P(1) s-P(2) s-P(n)

Vectors B and A specify the coefficients of the numerator and denominator polynomials in
descending powers of s. The residues are returned in the column vector R, the pole locations in
column vector P, and the direct terms in row vector K.

-0.0911 -0.4545+0.1716i -0.4545-0.1716i 1

Vis)— = 158
(s) (s+6.7684) +(s+0.1158-2.1021i)+(s+0.1158+2.1021i)+s (156)
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Taking Laplace transformation and using theorem 8.1.1, the output response in time domain
o(t) =1+ (~0.0911)e(78-7684)t , 56 (FO-1158)t (¢ 4545) cos(2.1021)t — (0.1716)sin(2.1021)t}  (159)

The above 3 order system is having one real pole and two imaginary poles. As the poles to be
kept unchanged in this 3™ order system, the equivalent 2" order system can be obtained with
same two imaginary poles and their modified residues. The MSE between the above two systems
will be minimized to obtain the new residues of imaginary poles of the equivalent second order
system. The MSE can be represented as

MSE(t) = f(t) =
2
T l+a eAlt+2eclt(ﬁ cosD,t — sinDt) — 1+2eCl‘t ,B'cosD't— 'sinD, t dt
1 1 171> 1 1771 1

0

where C1 = C1 and D1 =D (160)

1

From lemma 8.2.1 the equivalent second order system can be written as
(e~ 2 2
- Zﬂl (Cl + D1 )
2 2 2
s{s - ZsC1 +(Cl + D1 j}

V(s) = 0943644322
552 +0.23165 + 4.4322

Y (s) = (161)

From theorem 9.1.1 ) (162)

The system given in (162) is the equivalent second order system which gives similar output
response with the same step input given in the original 3" order system. To achieve the dead-
beat response of the system given in (162) the value of start time (t,), end time (t,) and pulse

amplitude (b) can be obtained using theorem 6.1.1. It is noticed that t, and t, do not depend on
the reference input to the given system but depends on & and wp, only. The pulse amplitude (b)

depends  on §,a)n,tl,t2 and also the reference step  input.  Here

t,=0.7216,t, =0.8236 and b = 4.27557 . The same pulse parameters (t1,tp b) is applied to the
given 3" order system to obtain the deadbeat.

The figure 9.1(a) and 9.1(b) represents dead-beat realization of the given linear system and its
equivalent second order system respectively in example 9.1.1.The figure 9.1(c) represents the
mean square error of the output response between higher order system and equivalent second
order system in example 9.1.1.
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Figure 9.1 (a). Dead beat response of example 9.1.1
using same pulse parameters used in
reduced second order system of figure
figure 9.1(b)
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Figure 9.1 (b) Deadbeat response of

example 9.1.1 used in reduced second
order system of figure 9.1 (a)
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Figure 9.1(c). The mean square error of the output response
between higher order system and reduced second order
system of example 9.1.1

Example 9.1.2:

The 4th order linear control system is considered with G(s) =

40
s(s+10)s+2)(s+1)

To obtain the dead-beat response of the system with the addition of pulse, it is desirable to find
out the equivalent second order system and then to obtain the pulse parameters (tq,tp b) for this

equivalent system. The same pulse parameters are applied to the given 4" order system for the
deadbeat realization. Here t,=1.2915, t,=1.4732 and b=4.46788.
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Figure 9.2(a) and 9.2(b) represents dead-beat realization of the given linear system and its
equivalent second order system respectively in example 9.1.2. The figure 9.2(c) represents the
mean square error of the output response between higher order system and equivalent second

order system in example 9.1.2.
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Figure 9.2.(a). Dead beat response of
example 9.1.2 using same pulse
parameters used in
figure 9.2(b)
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Figure 9.2 (b) Deadbeat response of
reduced second order system of figure
9.2 (a)

0.2

0151

0.

o

Figure 9.2 (c). The mean square error of the output response between higher order system and equivalent second

B
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order system of example 9.1.2
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Table 9.1: The pulse parameters for the six different second order linear continuous systems

Srno k p & t, t, b

1 1 0.1 0.05 1.5147 1.7306 4.27863
2 1 0.01 0.005 1.4744 1.6772 4.9

3 4 0.5 0.1250 0.7949 0.9140 3.39194
4 9 1.8 0.30 0.5980 0.7108 1.586
5 100 5 0.25 0.1758 0.2006 247575
6 4.4324 0.2316 0.0550 0.7216 0.8236 427557

10 Conclusions

In this paper the dead-beat control has been achieved by signal correction technique (SCT),
which does not require any restriction on the system parameters. In this scheme of dead beat
control the additional signal is the pulse of appropriate duration and applied at a suitable time
and having a specified amplitude. The application is selected so that the non-dead-beat and the
corresponding dead-beat systems have the same rise time (when the system response attains 90%
of its final value). The pulse duration is selected so that it ends long before the first overshoot of
the uncompensated system. In this work it is decided to make zero overshoot or undershoot after
the exact rising time (the system response attains 100% of its final value) to find out the pulse
parameters (ti, t, b). This idea is a novel one and results in better deadbeat realization. The
proposed method is based on theoretical foundation given in theorem 5.1, theorem 5.2, theorem
6.1.1, and theorem 6.2.1 for second order linear continuous time systems. Theorem 8.1.1 and
theorem 9.1.1 extended the method for higher order linear continuous time systems. The
parameters of the added pulse to the uncompensated system i.e the start time (1), end time (t)
and the required amplitude (b) are determined without any restriction on system parameters The
implementation of the dead-beat system by adding pulse is straight forward and gives good
performance as has been seen in many simulations. In this scheme the generation of pulse is
quite easy in real time operation and it does not raise the hardware complexity unlike the other
scheme done in previous works. Whatever be the order of the system, the system components
will not increase in this scheme. But in the previous works of various researchers, the system
components will increase as the order of the system being increased, which leads to more
hardware and computation complexity. The dead beat control scheme discussed in section 4 to
section 6 can be applied to any higher order linear continuous time invariant system with any
type of reference input like ramp input, parabolic input or any polynomial type of input. Section
7 represents the simulation result of 2" order continuous system. Section 8 and section 9
demonstrate how the higher order linear continuous system can undergo deadbeat realization
using the same additional pulse signal of its equivalent second order system. In this work
deadbeat realization of linear time invariant system is done only for the step input. The other
type reference input such as ramp input, sinusoidal input can motivate the authors and other
researchers for the future scope of deadbeat realization. Still there are lot of future works left for
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implementing deadbeat controller over the nonlinear system and time varying system. The
Feedback linearization of nonlinear system can introduce locally asymptotically stable system.
The thoughts of feedback linearization must to be implemented for global stability and
robustness of the non-linear time varying system.
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