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Abstract:  

A technique to realize dead-beat second order and higher order time invariant linear control system without any 

restriction of system parameters is investigated. There are certain systems, such as biological control systems, where 

it may not be feasible to incorporate a controller within the system or to process the system's input directly. In such 

cases, it would be useful to compensate for the system's behaviour by applying a suitable electrical signal that can 

supplement the normal input. This method of introducing an additional signal to achieve dead-beat transient 

performance in a control system is referred to as the 'Signal Correction Technique (SCT).' The specific nature of the 

additional signal varies depending on the type of input to the system, such as a step input, ramp input, parabolic 

input, or polynomial input. In this work the proposed SCT is developed for the linear continuous time invariant 

system with the reference input as step input. Here the additional signal is a pulse of appropriate duration and 

applied at a suitable time and having a specified amplitude with the same rise time as non-compensated system. The 

parameters of the added pulse to the uncompensated system i.e the start time (t1), end time (t2) and the required 

amplitude (b) are determined without any restriction on system parameters.  

 

Keywords: Dead-beat control, Signal Correction Technique (SCT), Higher-order control systems, Pulse-based 

compensation, Step input response 
 

1 Introduction 

The idea of deadbeat control can easily be visualized by considering the application of a step, 

ramp or any type of input to a control system. If the response of the system, under this situation, 

is that it reaches to reference in the minimum time without undergoing any overshoot or 

undershoots, then the system is defined as a deadbeat one. 

In discrete time Control Theory, the deadbeat regulator control problem consists of finding what 

input signal must be applied to a system in order to bring the output to zero in the smallest 

number of time steps. For an N-th order linear system it has been shown that this minimum 

number of steps will be N, provided that the system is null controllable, that is, can be brought to 

state zero by some input. The solution is to apply feedback such that all poles of the closed-loop 

transfer function are at the origin of the z-plane. By extension, a closed loop transfer function 

which has all poles of the transfer function at the origin is sometimes called a deadbeat transfer 

function. For the discrete tracking problem, the same idea as explained in the above paragraph 

can be extended. It should be noted that the concept of minimum time is implicitly associated 

with the dead beat concept. Though in many deadbeat control implementations, the minimum 

time optimization requirement is not introduced explicitly. 

Deadbeat controllers for linear systems have long been investigated, and successful applications 

have been reported in many literatures [1-7]. Various techniques have been adopted in the past 

for realizing (compensating) deadbeat transient response of linear control systems [8-16].  

Firstly, a suitable deadbeat controller can be designed and put in the forward path of the control 

loop. The basic idea behind the technique is to cancel some (sometime all) of the plant or process 
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poles by incorporating corresponding zeros and to introduce some desired poles. The difficulties 

associated with this technique are as follows. The pole-zero cancellations must be perfect, 

otherwise, not only some zeros will be introduced but also the order of the system will increase 

giving rise to the problem of system instability. Further, the design of the deadbeat controller is 

based on the system or plant model. As modeling involves many approximations including 

linearization, system order reduction by neglecting far poles and zeros of the plant, the deadbeat 

controller designed on such a model may not produce the desired result when the controller is 

used with the real plant. It is necessary to study the robustness of the designed deadbeat 

controller regarding the imperfection of pole-zero cancellation and the imperfection of the 

model. Such a robust controller design may be turned out to be very tricky. Hopefully, if such a 

robust controller can be designed, it will alleviate the problem of ageing too. Again, in some 

applications, such as biological control systems, it may not be possible to incorporate a controller 

within the system. 

Secondly, the input shaping technique is introduced to attain deadbeat control of process with or 

without dead time. The stability of the closed-loop system need to be guaranteed by the PI 

controller which may be designed with Nyquist criterion, and the input shaping controller is 

employed to shape the command input to get deadbeat control. With selecting only two 

parameters, the sampling period and the proportional gain which can be analytically computed 

according to the phase margin, the closed-loop system may be designed easily. Unfortunately, 

the introduction of the PI controller in the system will give rise to all the problems as mentioned 

in the previous paragraph. Further, in many biological applications, it may not be possible to 

incorporate the mechanism (input shaping controller) to shape the input command. 

Thirdly, there is the signal correction technique (SCT) where a suitable signal is generated by an 

algorithm using the states of the system and added with the command signal to implement the 

deadbeat response. The advantage of this system is not that no controller has to be incorporated 

in the control loop nor is any signal shaping controller required. In some publications, though a 

general formulation for SCT for deadbeat response of linear systems of any order has been 

suggested [1,2], but an algorithm for the implementation has been reported only for a second 

order system with some parameter restriction and it has been developed using some experimental 

data.  

In all the sections of this article, the SCT is applied, where a suitable signal is applied along with 

reference input to achieve the deadbeat response. In case of deadbeat realization of higher order 

system, the equivalent second order system is obtained first and then a suitable signal is added to 

the system without any restriction of system parameters for deadbeat responses. The same signal 

to be added to original higher order system for the deadbeat output.  

 

2 Discussions of Previous Techniques for Realizing Deadbeat Response 
 

In certain methods for continuous-time linear systems, a dead-beat controller is designed and 

placed in the forward path of the control loop. The goal of this approach is to cancel out some or 

all of the system's poles by adding corresponding zeros, and then to introduce the desired poles. 

However, this technique has significant implications. The pole-zero cancellation must be exact; 

otherwise, not only can unwanted zeros be introduced, but the system‘s order may increase, 

potentially causing instability. Additionally, the dead-beat controller design relies heavily on the 

plant model, which involves approximations. These approximations mean that the robustness of 

the dead-beat controller must be evaluated to account for both imperfections in pole-zero 

cancellation and inaccuracies in the model. Designing a robust controller with minimal 
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sensitivity can be challenging, but if successfully implemented, it may also help mitigate issues 

related to system aging. The pole placement problem in both discrete and continuous-time 

systems has been shown to reduce from an infinite-dimensional to a finite-dimensional problem, 

even in the presence of feedback delay. Dead-beat control (DB) was first introduced over forty 

years ago and has since been extensively researched in both continuous and discrete-time control 

theory [17]. Despite this, it has often been avoided by designers due to concerns with physical 

reliability and incomplete pole-zero cancellation. However, with the advent of digital signal 

processing (DSP) systems, many of these issues can now be addressed. In discrete-time systems, 

dead-beat control ensures zero error at the sampling instants after a finite settling time, regardless 

of the inter-sample response. Yet, for certain classes of continuous-time systems, dead-beat 

control can still be problematic due to remaining inter-sample effects, which are generally 

undesirable. 

In certain applications, such as biological control systems, it may not always be feasible to 

integrate a controller directly into the system. To achieve dead-beat control, even in systems with 

or without dead time, the input shaping technique is employed. In this approach, a PI controller, 

designed using the Nyquist criterion, is positioned in the forward path to ensure overall system 

stability. The input shaping controller is then used to modify the command input in order to 

produce the desired dead-beat response. While the closed-loop system can be designed relatively 

easily, introducing the PI controller into the system introduces the same issues mentioned earlier. 

 

3 Proposed Scheme of Deadbeat Realization for Step Input 

The signal correction technique (SCT) involves generating an appropriate signal through an 

algorithm using the system‘s states, which is then added to the command signal to achieve a 

dead-beat response. No controller is required in the control loop, nor is signal shaping necessary. 

A general formulation for SCT, aimed at achieving a dead-beat response in linear systems of any 

order, has been proposed in [1,2]. However, the algorithm has only been implemented for 

second-order systems with certain parameter restrictions. Recent research on RF-DB control 

systems has led to various proposals for applying modern techniques to control widely used 

plants [3-8]. 

In this work, a dead-beat control scheme based on SCT is proposed for second-order time-

invariant systems, and an almost dead-beat response for higher-order linear systems, without the 

need for parameter restrictions or experimental data. The signal for SCT can either represent the 

state variables within the system or be a pulse. When using an additional pulse input, the pulse's 

start time is selected to ensure that the rise time remains unchanged, meaning both the 

compensated and uncompensated systems will have the same rise time (i.e., the time it takes for 

the output to reach 90% of its steady-state value). In the proposed method, the dead-beat 

controller design focuses on reducing overshoots to zero by ensuring that the compensated 

system always reaches the reference input at the pulse‘s end time. This novel approach leads to a 

more effective dead-beat controller design. Theorem 9.1.1 shows that any nth order linear control 

system can be represented as second-order linear system by minimizing the mean square error of 

their output responses. Examples are included for obtaining the dead-beat response of higher 

systems. The simulation results are given in table 9.1.. 
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4 Background and Problem Formulation 

In reference [1,2], it was demonstrated that the response of a linear system to a given input can 

be altered to achieve any desired output by introducing an appropriate signal at the input. 

However, it was noted that finding such a signal using traditional continuous data control 

methods would be challenging. The authors proposed a computer simulation approach to address 

this issue and demonstrated it using a lightly damped linear second-order system. The desired 

output was chosen so that, after the switch, the system's responses would follow a straight-line 

trajectory in the phase plane. The additional signal they identified was a single pulse with 

duration of T, corresponding to the sampling period in digital simulations, applied only at the 

switching instant. The authors did not provide a method for determining the correct (desired) 

value of T, and achieving a dead-beat response for a system with arbitrary damping ξ and natural 

frequency ωn would require an endless search for the appropriate T. Thus, the proposed method 

faces practical implementation challenges. Based on experimental results, the authors presented 

plots of ξ versus T and ξ versus the pulse amplitude. For a given system, by knowing ξ, they 

were able to determine the values of T and pulse amplitude using these plots. However, they also 

mentioned that the product of ωn and T should be 10.425, indicating that the plots and the cited 

relationship are useful only for implementing the dead-beat response in systems with specific 

values of ξ and ωn. Furthermore, the performance of the compensated system concerning T and 

pulse amplitude had not been analyzed. This limitation motivated the current work, which 

proposes two new approaches that do not impose any restrictions on system parameters. 

Additionally, a detailed performance analysis of the compensated system concerning the required 

pulse parameters has been thoroughly conducted. In the proposed method, it is assumed that the 

dead-beat response is achieved by adding a signal to the reference input. This additional signal is 

generated through a proper simulation using the relationship between the state-space variables 

within the system and the desired output. Another approach to obtaining the dead-beat response 

is discussed, which involves adding a pulse to the input along with the reference signal when the 

output reaches 90% of its steady-state value. This approach ensures that the rise time for both the 

compensated and uncompensated systems remains the same. The duration and amplitude of the 

pulse are derived in Theorem 6.1.1 using Theorem 5.2, with the rationale for this criterion 

provided in the next section.  

 

4.1 Deadbeat Representations through Injection of Pulse 

The objective of this method is to achieve a dead-beat response by injecting a suitable pulse at an 

appropriate time in a time-invariant linear continuous system. The required pulse is generated 

using the system's state variables. The start time t1 is chosen at the point when the system 

response reaches 90% of its final value. The choice of start time influences the rise time of the 

compensated system. If start time is chosen too early, the rise time will be longer than that of the 

uncompensated system, which is undesirable; hence, the specific selection of t1. The end time t2 

is determined by the relationship with t1, as outlined in Theorem 5.2. Once t1 and t2 are known, 

the pulse amplitude can be determined using the values of damping ratio ξ and natural frequency 

ωn, as stated in Theorem 6.1.1. The input-output behaviour of a linear second-order system, as 

shown in Figure 4.1, is described by its transfer function, where R(s) and C(s) are the Laplace 

transforms of the input and output, respectively. 
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Let the representation of G(s)=  and H(s)=1,  

 

Consider an input x(t) as the sum of a step of amplitude ‗a‘ applied at t=0 and a pulse of 

amplitude ‗b‘ applied for the duration from 21 ttot . Using Inverse Laplace Transform, the output 

is obtained as  

 

 

 

 

 

 

 

To obtain the pulse parameters few theorems to be established that can ensure the actual 

parameters to achieve the dead-beat response. 

 

 

 

 

 

Figure 4.1: The input-output behavior of closed loop linear continuous system 

 

 

 

 

 

 

 

Figure 4.2: Simulation Diagram of Dead Beat System with pulse signal 
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5 Theorems Related to Dead Beat Realization 
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Hence proved. 

Remark 5.1: The result obtained in theorem 5.1 is used in developing theorem 5.2. 

Theorem 5.2: The necessary condition of a second order linear system to be a dead-beat system 

in the SCT scheme is that, the output response of the compensated system must reaches to 

reference input at the time 2t  (the end time of the applied pulse) under the particular case, k2=0 

 

where 2k is defined in theorem 5.1.                                                                    

 

Remark 5.2: 

It is obvious that other necessary conditions can also be obtained. The following necessary 

condition is obtained using theorem 5.2. 
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Remark 5.3: 

The main implication of theorem 5.2 is that the applied pulse parameter 2t  can be selected as 

time to reach the reference input. In the subsequent development use this value of 2t can be used. 

 

6 Determination of Pulse Parameters 

6.1. Choice of Pulse Parameters in Linear Second Order System: 

It is assumed that the start time of the required pulse is the time where original uncompensated 

output response attains 90% of its reference input. If it is applied before this time the rise time of 

the output response of the system will be increased and IE (Integral Error) of the dead-beat 

system will be increased. With this choice of 1t  the other two parameters 2t  and b can be 

obtained as given in theorem 6.1.1. 
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Proof: 

As the start time t1 is selected at the instant when the system response attains 90% of its final 

value the value of t1 can be obtained as  
 

 

 

 

 

The initial value of 1t  can be started with the value zero i.e. from (35) 1t  can be written as 

 

 

 

 

Now the iteration will be continued by putting the value of 1t  in (35) until the successive two 

values of 1t in (35) will be same, i.e. the value of 1t converges in (35). 
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Now the iteration will be continued by putting the value of 2t  (40) in (39) until the successive 

two values of 
2t in (39) will be same, i.e. the value of 

2t converges in (39). From the theorem 

5.1 and theorem 5.2, it is understood that to make the second order linear System into dead-beat 

system through the injection of additional pulse input it can be made 

 

 

 

Hence proved. 

Remark 6.1.1: The theorem 6.1.1 is the most important theorem that gives the necessary pulse 

parameters ( btt ,, 21 ) for the dead-beat realization of second order linear system. The transient 

behaviour of the dead-beat system is very important. It is preferable that the transient response 

should be non-oscillating. This is guaranteed for the proposed dead-beat system as given in 

theorem 6.2.1.  

 

6.2 Verification of Dead beat Response with Addition of Pulse Signal: 

Theorem 6.2.1: The output response )(tc of the second order dead-beat system must follow the 

following conditions 

1. )(tc  is monotonically increasing for 2110 tttandtt   

2. 2)()( ttfortutc   , where )(tu  is the step input. 

Remark 6.2.1:  

It can be proved that the output response of the compensated dead-beat system from (1), (2) and 

(3) are non decreasing in time domain using the help of theorem 5.1 and theorem 5.2. The 

function defined in (1) is always non decreasing function as the start time t1 is selected at the 

instant when the system response attains 90% of its final value. The function defined in (3) is 

also non-decreasing as it is proved in theorem 5.2. It is necessary to prove the transient response 

represented in (2) is a non decreasing function of t. 

 
Proof: 
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Which is always true from (2). 

Hence it is proved. 
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        Figure 7.2. k=1. p=0.1, 0.05=ع 

 

 

 

        Figure 7.3. k=1. p=0.01, 0.005=ع 

 

 

 

        Figure 7.4. k=4. p=0.5,0.1250=ع 

 

 

 

     Figure 7.5. k=9. p=1.8, 0.30=ع 

 0.30=ع

 

 

 

        Figure 7.6. k=100. p=5, 0.25=ع 

 

 

 

  Figure 7.7. k=4.4324. p=0.2316, 0.0550=ع 

 

 

 

7 Simulation Results 

The simulation diagram of dead-beat system is shown in figure 4.2. In the figure 4.2, it is shown 

that how the additional pulse has been obtained in the feedback loop of the uncompensated 

system to make the resultant output with dead-beat response. The parameters of the additional 

pulse, i.e. the start time ( 1t ), end time ( 2t ) and amplitude ( b ) are derived using theorem 6.1.1. 

The table 9.1 shows that using theorem 6.1.1, the pulse parameters are obtained for different 

systems. The resultant output responses of dead-beat systems are shown in figure 7.2 to figure 

7.7 respectively for different systems of table 9.1. 

 
Transient Responses of Different Second Order Systems with deadbeat realization 
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8 Dead-beat Control Scheme for Higher Order Control System 

This above technique of dead-beat realization can be applied to the higher order linear control 

system by converting the higher order system to the equivalent second order system and 

obtaining the pulse parameter values (t1, t2, b). This pulse, then, can be applied to the original 

higher order system (nth order system) for the almost dead-beat implementation. In this work the 

nth order linear control system are represented as second order linear system through section 9, 

by minimizing their square of error response with respect to two unknown residues of second 

order system (real or imaginary) by unchanging their corresponding poles. 

 

8.1 Representation of Higher order Linear Continuous System in terms of Poles and 

Residues. 

Theorem 8.1.1: Any higher order linear control system can be represented as 

 

 

 

 

 

where 

 

 

Proof: 

1. Both the poles are real poles 

2. Both the poles are complex poles. 

Case 1 : The output signal of second order linear system can be written as  
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Case 2: The output signal of second order linear system can be written as  

 

 

 

 

 

 

 

 

 

 

 

Similarly for the 3
rd

 order system of all the poles of the system are real, the output c(t) of the 

system is defined as 

 

 

 

For one real pole and two complex poles the output signal of 3
rd

 order linear system can be 

defined as  
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Hence for nth order system 

    

 

Where all poles are real 

 

 

 

 

 

 

 

Hence proved. 

Therefore, from (62) the nth order compensated linear control system can be represented as  
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8.2 Representation of Theorem 5.1, 5.2 and 6.1.1 in terms of Poles for Linear Second 

Order System. 

The time to reach the reference input (
inputref

t
_

) of the second order compensated system 

(after the addition of pulse) stated in theorem 5.1 can be represented in terms of poles as follows. 

  

     

 

 

Proof: 

 If
0

t  be the time to reach the reference input after the addition of pulse, from (76) 
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Hence proved. 

 

The necessary condition stated in theorem 5.2 for 
inputref

t
_

= 2t can be drawn as  
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Proof: 
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In particular case by comparing the LHS with RHS it can be said 0)( 22

1  Xc  .From the 

middle term of L.H.S if X=0 is considered, then 0tan)109(From.01  XYc . As 

0,01  cimpliesitc  i.e. there should not be any overshoot after 
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t
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.By same way it 

can be proved also that there is no overshoot before 
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t
_

 and after 2t .That means the 

output response of the compensated system always reach to reference input at the time 2t  and no 

overshoot occurs after 2t . That implies 
inputref

t
_

= 2t .under the particular case, X=0, i.e.  

 

 

The pulse parameters i.e. start time  1t , end time  2t  and amplitude )(b  of the applied additional 

pulse to get the dead-beat response of the second order linear system stated in theorem 6.1.1 can 

be represented in terms of poles as   
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Now the iteration will be continued by putting the value of  (122) in (121) until the successive 

two values of  in (121) will be same, i.e. the value of  converges in (121). From the theorem 5.1 

and theorem 5.2, it is understood that to make the second order linear system into dead-beat 

system through the injection of additional pulse signal, the following equation can be obtained. 

 

 

 

 

 

 

Here a following lemma can be proposed, which will be used in theorem 9.1.1. 

Lemma 8.2.1: For any output response of any second order linear system in the form of with the 

step input the following conditions hold. 

 

 

Proof (i): It is assumed that both the poles are complex. 
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It is implied from (128) and (134) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 Conversion of n
th

 Order System to Equivalent 2
nd

 Order System 

Every physical system can be translated into mathematical model. The mathematical procedure 

of system modeling often leads to comprehensive description of a process in the form of high-

order differential equations which are difficult to use either for analysis or controller synthesis. It 

is, therefore, useful, and sometimes necessary, to find the possibility of finding some equations 

of the same type but of lower order that may be considered to adequately reflect the dominant 

characteristics of the system under consideration. Some of the reasons for using reduced-order 

models of high order linear systems could be as follows: 

 

 To have a better understanding of the system, 

 To reduce computational complexity, 

 To reduce hardware complexity, 

 To make feasible controller design. 
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Many control system applications, such as satellite altitude control, fighter aircraft control, 

model-based predictive control, control of fuel injectors, automobile spark timer, possess a 

mathematical model of the process with higher order, due to which the system defined becomes 

complex. These higher order models are cumbersome to handle. As a result, lower order system 

modeling can be performed, which helps in alleviating computational complexity and 

implementation difficulties involved in the design of controllers and compensators for higher 

order systems. Further, the development and usage of micro controllers and microprocessors in 

the design and implementation of control system components has increased the importance of 

lower order system modeling.  

In recent decades, much effort has been made in the field of model order reduction for linear 

dynamic systems and several methods like: Aggregation method [18], Pade approximation [19], 

Routh approximation [20], Moment matching technique [21], Mihailov stability criterion [22], 

and optimization technique [23], have been proposed. Among them Routh approximation and 

Pade technique has been recognized as the powerful method. But the serious disadvantage of 

Pade approximation is that sometimes it leads to an unstable reduced order system for a stable 

original system. Further, numerous methods of order reduction are also available in the literature 

[24-31], which are based on minimization of the ISE criterion. However, a familiar aspect in the 

methods explained in [24-30] is that the denominator coefficients values of the low order system 

(LOS) are selected arbitrarily by some stability preserving methods such as dominant pole, 

Routh approximation methods, etc. and then the numerator coefficients of the LOS are 

determined by minimization of the ISE. In [31], Howitt and Luss recommended a procedure, in 

which both the numerator and denominator coefficients are considered to be free parameters and 

are chosen to minimize the ISE in impulse or step responses. 

9.1 Reduction to Second Order Linear System without Changing the Poles  

Any nth order linear control system can be represented as second order linear system by 

minimizing their mean square error of output responses with respect to two unknown residues of 

second order system (real or imaginary) without changing their corresponding poles. In this 

method, a complex conjugate pole, of the original higher order system, nearest to the origin is 

considered. The residues of corresponding poles (β, γ) are found by minimizing the mean square 

error between the transient responses of the original higher system and the reduced second order 

system. This method is discussed with the numerical examples along with the results using 

theorem 9.1.1.  

Theorem 9.1.1: Any nth order linear control system can be represented as second order linear 

system by minimizing the mean square error of their output responses with respect to two 

unknown residues  of second order system (real or imaginary) without  changing their 

corresponding poles.  

Proof: 
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Case I: The equivalent second order system with two imaginary poles. 
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The above expression is integrable.  tK
1

 is the function which is independent of 
''

jj and 

After the integration the two unknown residues 
''

jj and  are obtained by minimizing the 

obtained MSE with respect to
'

j  (to do the partial derivative and equate to zero) after putting the 

relation 
jjjj DC

''
   from lemma 8.2.1. The additional pulse required for the dead-beat system 

can be achieved using the theorem 6.1.1 and these pulse parameters are used to implement the 

dead-beat realization for the original higher order system. 
 
Case II: The equivalent second order system with two real poles. 
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The above expression is integrable.  tK2  is the function which is independent of 
''

kj and  . 

After the integration the two unknown residues 
''

, kj  are obtained by minimizing the obtained 

MSE with respect to 
'

j  (to do the partial derivative and equate to zero) after putting the relation

k
A

kjAj
''

   from lemma 8.2.1. The additional pulse required for the dead-beat system can 

be achieved using the theorem 6.1.1 and these pulse parameters are used to implement the dead-

beat realization for the original higher order system. 

 

Remark 9.1.1: 

It is found from theorem 8.1.1 that output response of any nth order linear control system can be 

written as   

 

 

 

where m number of real poles and 2p number of complex poles (m+2p) is equal to n. 

 

It is clear from the above equation as any real pole 
i

A is moved far away from origin the system 

is equivalent to its next lower order system (since 
i

A is negative). Similarly the same is true for 

the complex conjugate poles jiDjC  , as the real part of complex conjugate poles jC  is large 

the above equation is close to the next lower order system (since jC  is negative). This is the 
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reason where always anyone must have to remove the distant poles either real or complex to 

obtain the equivalent lower order system for dead- beat realization. In theorem 9.1.1 it is 

obtained the equivalent second order system by estimating the residues of the second order 

system with the two poles keeping unchanged (either two real poles or two complex conjugate 

poles).The poles which are kept unchanged are the nearest pole of the system. 

But in case II of theorem 9.1.1, when the equivalent second order system is obtained for higher 

order system with two nearest real poles, the value of    is always greater than equal to one, i.e. 

the equivalent second order system as well as original higher order system is over damped in 

nature and the output response of the system is free of oscillation. In the SCT scheme, there is no 

need to consider this type of case for dead-beat realization. The case II of theorem 9.1.1 is 

mentioned here only for the theoretical interest of obtaining equivalent second order system from 

given higher order system but not for the dead-beat implementation of the system. 

 

Example 9.1.1: The 3
rd

 order linear control system is considered with
  61

30
)(




sss
sG . To 

obtain the dead-beat response of the system with the addition of pulse, it is desirable to find out 

the equivalent second order system and then to obtain the pulse parameters to implement into 

original given system. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Let [R, P, K] = RESIDUE (B, A), where RESIDUE (B, A) is the function which finds the 

residues, poles and direct term of a partial fraction expansion of the ratio of two polynomials 

B(s)/A(s). If there are no multiple roots, 

         B(s)       R(1)       R(2)             R(n) 

        ----  =  -------- + -------- + ... + -------- + K(s)           (157) 

         A(s)     s - P (1)   s - P (2)         s - P (n) 

 

Vectors B and A specify the coefficients of the numerator and denominator polynomials in 

descending powers of s.  The residues are returned in the column vector R, the pole locations in 

column vector P, and the direct terms in row vector K. 
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Taking Laplace transformation and using theorem 8.1.1, the output response in time domain 

       

(159) 

 

The above 3
rd

 order system is having one real pole and two imaginary poles. As the poles to be 

kept unchanged in this 3
rd

 order system, the equivalent 2
nd

 order system can be obtained with 

same two imaginary poles and their modified residues. The MSE between the above two systems 

will be minimized to obtain the new residues of imaginary poles of the equivalent second order 

system. The MSE can be represented as  

 

 

 

 

 

 

 

 

From lemma 8.2.1 the equivalent second order system can be written as 

 

 

 

 

 

From theorem 9.1.1 

              

The system given in (162) is the equivalent second order system which gives similar output 

response with the same step input given in the original 3
rd

 order system. To achieve the dead-

beat response of the system given in (162) the value of start time ( 1t ), end time ( 2t ) and pulse 

amplitude (b) can be obtained using theorem 6.1.1. It is noticed that 1t  and 2t  do not depend on 

the reference input to the given system but depends on nand only. The pulse amplitude (b) 

depends on  
2

,
1

,, ttn  and also the reference step input. Here

27557.48236.0,7216.0 21  bandtt . The same pulse parameters ( ),2,1 btt  is applied to the 

given 3
rd

 order system to obtain the deadbeat. 

 

The figure 9.1(a) and 9.1(b) represents dead-beat realization of the given linear system and its 

equivalent second order system respectively in example 9.1.1.The figure 9.1(c) represents the 

mean square error of the output response between higher order system and equivalent second 

order system in example 9.1.1. 
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Example 9.1.2:  

The 4th order linear control system is considered with
   )1(210

40
)(




ssss
sG .  

 

To obtain the dead-beat response of the system with the addition of pulse, it is desirable to find 

out the equivalent second order system and then to obtain the pulse parameters ( ),2,1 btt for this 

equivalent system. The same pulse parameters are applied to the given 4
th

 order system for the 

deadbeat realization. Here 1t =1.2915, 2t =1.4732 and b=4.46788.  

Figure 9.1(c). The mean square error of the output response 

between higher order system and reduced second order 

system of example 9.1.1 

Figure 9.1 (a). Dead beat response of example 9.1.1 

using same pulse parameters used in               

reduced second order system of figure                
                            figure 9.1(b)                                                                                    

Figure 9.1 (b) Deadbeat response of 

example 9.1.1 used in reduced second 

order system of figure 9.1 (a) 
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Figure 9.2.(a). Dead beat response of  

example 9.1.2  using same pulse 

parameters used in 

figure 9.2(b) 

 

Figure 9.2 (b) Deadbeat response of   

reduced second order system of figure 

9.2 (a) 
 

 

 

Figure 9.2(a) and 9.2(b) represents dead-beat realization of the given linear system and its 

equivalent second order system respectively in example 9.1.2. The figure 9.2(c) represents the 

mean square error of the output response between higher order system and equivalent second 

order system in example 9.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.2 (c). The mean square error of the output response between higher order system and equivalent second 

order system of example 9.1.2  
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Table 9.1: The pulse parameters for the six different second order linear continuous systems 

 

10 Conclusions 

In this paper the dead-beat control has been achieved by signal correction technique (SCT), 

which does not require any restriction on the system parameters. In this scheme of dead beat 

control the additional signal is the pulse of appropriate duration and applied at a suitable time 

and having a specified amplitude. The application is selected so that the non-dead-beat and the 

corresponding dead-beat systems have the same rise time (when the system response attains 90% 

of its final value). The pulse duration is selected so that it ends long before the first overshoot of 

the uncompensated system. In this work it is decided to make zero overshoot or undershoot after 

the exact rising time (the system response attains 100% of its final value) to find out the pulse 

parameters (t1, t2, b). This idea is a novel one and results in better deadbeat realization. The 

proposed method is based on theoretical foundation given in theorem 5.1, theorem 5.2, theorem 

6.1.1, and theorem 6.2.1 for second order linear continuous time systems. Theorem 8.1.1 and 

theorem 9.1.1 extended the method for higher order linear continuous time systems. The 

parameters of the added pulse to the uncompensated system i.e the start time (t1), end time (t2) 

and the required amplitude (b) are determined without any restriction on system parameters The 

implementation of the dead-beat system by adding pulse is straight forward and gives good 

performance as has been seen in many simulations. In this scheme the generation of pulse is 

quite easy in real time operation and it does not raise the hardware complexity unlike the other 

scheme done in previous works. Whatever be the order of the system, the system components 

will not increase in this scheme. But in the previous works of various researchers, the system 

components will increase as the order of the system being increased, which leads to more 

hardware and computation complexity. The dead beat control scheme discussed in section 4 to 

section 6 can be applied to any higher order linear continuous time invariant system with any 

type of reference input like ramp input, parabolic input or any polynomial type of input. Section 

7 represents the simulation result of 2
nd

 order continuous system. Section 8 and section 9 

demonstrate how the higher order linear continuous system can undergo deadbeat realization 

using the same additional pulse signal of its equivalent second order system. In this work 

deadbeat realization of linear time invariant system is done only for the step input. The other 

type reference input such as ramp input, sinusoidal input can motivate the authors and other 

researchers for the future scope of deadbeat realization. Still there are lot of future works left for 

Sr no                k                       p                                                    1t                       2t                         b  

 

1                       1                         0.1                        0.05                  1.5147               1.7306                4.27863 

 

2                       1                         0.01                     0.005                 1.4744               1.6772                    4.9 

 

3                       4                         0.5                      0.1250                 0.7949              0.9140                3.39194 

 

4                       9                         1.8                         0.30                  0.5980              0.7108                   1.586 

 

5                     100                        5                           0.25                  0.1758              0.2006                2.47575 

 

6                    4.4324                 0.2316                  0.0550                 0.7216              0.8236                4.27557 
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implementing deadbeat controller over the nonlinear system and time varying system. The 

Feedback linearization of nonlinear system can introduce locally asymptotically stable system. 

The thoughts of feedback linearization must to be implemented for global stability and 

robustness of the non-linear time varying system.  
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