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Abstract. This study significantly advances medical image processing and 

lung cancer detection through deep learning techniques and neural networks. 

The primary objective of this study is to accurately identify the presence of 

lung cancer and nodules within human lung image data. The research aims to 

enhance diagnostic accuracy by utilizing a comprehensive medical dataset 

comprising 15,000 histopathological images, divided into three classes—

lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue. 

The model effectively handles relational and spatial data by integrating 

Convolutional Neural Network (CNN) and Graph Convolutional Network 

(GCN) architectures, improving lung cancer detection capabilities. 

Comparative analyses with state-of-the-art studies demonstrate the superior 

performance of the proposed model, achieving an average accuracy of 

97.80% across all three classes. The model's low loss value of 0.1326 

underscores its proficiency in learning from training data. This 

comprehensive research underscores the intersection of medical sciences and 

machine learning, emphasizing the crucial role of precise image processing 

and synthesis in advancing diagnostic capabilities for complex medical 

conditions such as lung cancer. 

Keywords: Lung Cancer Detection, Convolutional Neural Network, Graph 

Convolutional Network, Medical Image Processing, Histopathological 

Images 

1 Introduction  

Lung cancer, a leading cause of cancer-related mortality worldwide, has undergone 

significant evolution in our understanding, detection, and treatment over the years. 

Initially regarded primarily as a smoking-related disease, our comprehension of 

lung cancer has broadened to encompass various risk factors, including 

environmental pollutants, genetic predispositions, and lifestyle factors [1]. When 

lung cancer is diagnosed, it often signifies the presence of malignant growths within 
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the lungs, which can disrupt normal respiratory function. These tumors may 

obstruct airways, impair lung expansion, and interfere with gas exchange, leading 

to symptoms such as persistent cough, shortness of breath, chest pain, and coughing 

up blood [2]. Moreover, lung cancer can metastasize to other parts of the body, 

causing additional complications and further compromising overall health and 

quality of life. The development of advanced imaging technologies such as 

computed tomography (CT) scans has revolutionized early detection efforts, 

enabling the identification of suspicious nodules and lesions at earlier stages when 

treatment is more effective [3]. 

The evolution of technologies to detect lung cancer and other forms of cancer 

efficiently has been marked by remarkable advancements across various fronts. 

Early detection efforts have been revolutionized by imaging technologies such as 

computed tomography (CT) scans, magnetic resonance imaging (MRI), and 

positron emission tomography (PET), enabling the identification of cancerous 

lesions at earlier stages when treatment is more effective [4]. Furthermore, 

molecular profiling techniques, including next-generation sequencing and gene 

expression profiling, have provided insights into the genetic alterations driving 

cancer development and progression. These advancements have facilitated the 

development of targeted therapies and immunotherapies tailored to individual 

patients' molecular profiles, improving treatment outcomes and survival rates [5]. 

Additionally, the integration of artificial intelligence, particularly deep learning 

models like convolutional neural networks (CNNs) and graph convolutional neural 

networks (GCNs), has enhanced diagnostic accuracy and prognostic capabilities, 

leading to more efficient and precise cancer detection and management strategies 

[6]. 

Graph neural networks (GNNs) and graph convolutional networks (GCNs) offer 

promising avenues for efficiently detecting lung cancers by modeling the complex 

relationships within medical data. These networks can represent patient data as 

graphs, where nodes represent various medical features (e.g., imaging findings, 

genetic markers) and edges capture relationships (e.g., similarity, correlation) 

[7][8]. By leveraging this graph structure, GNNs and GCNs can effectively integrate 

heterogeneous data sources, including imaging data, patient history, and molecular 

profiles, to identify patterns indicative of lung cancer. This approach enables 

comprehensive analysis, enhances diagnostic accuracy, and facilitates personalized 

treatment strategies, ultimately contributing to more efficient and precise lung 

cancer detection and management [9]. The subsequent section delves into related 

studies, detailing the methodology and implementation of the proposed model. 

Subsequently, the discussion shifts to the outcomes observed. 
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2 Related Works 

In recent years, advancements in the application of convolutional neural networks 

and other image-processing techniques, particularly deep learning and neural 

networks, have significantly enhanced the capabilities of lung cancer detection and 

other image-processing applications and use cases. The AlexNet Network Model 

with CNN layers was applied by [10]-[12] to identify lung tumors as benign or 

malignant. Similarly, [13]-[16] demonstrated an initial segmentation approach to 

segment out lung tissue from the rest of the CT scan using 3D CNNs for 

classification and detection. Subsequently, to detect lung cancer without imagery 

data, [17] [18] designed an Artificial Neural Network (ANN) based model that uses 

symptoms like yellow fingers, anxiety, chronic illness, fatigue, allergy, wheezing, 

coughing, shortness of breath, difficulty swallowing, and ensembles to determine if 

lung cancer is present in the human body or not. Further, [19]  constructed 

individual lung graphs and divided the lung CT scans into ten segments to train a 

GCN model to forecast the 5-year overall survival. As a comparison, the existing 

TNM staging system, a convolutional neural network based on the tumor, a set of 

machine learning (ML) models, and a Cox proportional-hazard model were 

employed. Graph-based Variational Auto-encoder with a Gaussian mixture model 

and a GNN-based methodology were utilized by [20] and [21] respectively, to find 

relationships between sample patches to aggregate patch details into a unique vector 

representation that differentiates between lung squamous cell carcinoma (LUSC) 

and lung adenocarcinoma (LUAD), two subtypes of lung cancer and to investigate 

inhibitors in small cell lung cancer. [22] evaluated several deep neural networks to 

identify lung cancer. Compared to other algorithms in deep learning approaches, the 

research discovered that convolutional neural networks are employed for lung 

cancer diagnosis in many cases. In a different context, Fuzzy Clustering methods 

and algorithms were proposed by [23] [24] for sputum color picture segmentation 

to identify lung cancer in its early stages and for analyzing high-dimensional cancer 

databases. Subsequently, [25] introduced a multi-path CNN model that uses more 

global contextual variables in addition to local characteristics at the same time to 

automatically identify lung cancer. To this purpose, the model employs three routes, 

the receptive field sizes of each of which vary, aiding in the modeling of distant 

dependencies (both the short- and long-range dependencies of the neighboring 

pixels.  

In contrast to contemporary methods that predominantly focus on individual 

implementations of either convolutional neural networks (CNNs) or artificial neural 

networks (ANNs), our proposed model stands out by integrating both CNNs and 

graph convolutional networks (GCNs). This innovative approach synergizes the 

strengths of CNNs in extracting features from medical imaging data with the graph-

based representation offered by GCNs. GCNs excel in handling spatial data by 

leveraging the inherent graph structure of lung cancer images. By modeling 
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relationships between image regions as nodes and their spatial connections as edges, 

GCNs effectively capture spatial dependencies and contextual information within 

the image, enabling more comprehensive analysis and precise localization of 

cancerous lesions. This integration of CNNs and GCNs thus presents a holistic 

solution for accurate and efficient lung cancer detection.   

3 Methodology 

In this study, the authors have integrated layers of CNNs with GCNs, concatenating 

them after flattening to achieve results. The following section elaborates on the 

specific methodologies utilized for the experimentation. Fig. 1 gives the visual 

representation of the architecture of the proposed CNN-GCN model. 

3.1  Data Normalization and Preprocessing 

Initially, the distribution of classes within the dataset is analyzed using 
value_counts() to understand the data balance. After the initial phase, the dataset 
undergoes a meticulous partitioning process facilitated by the train_test_split 
function. This pivotal step ensures that the dataset is appropriately divided into 
distinct subsets tailored for different stages of the machine learning pipeline. 
Specifically, the training set is allocated 80% of the data, serving as the cornerstone 
for model training and parameter optimization. Meanwhile, the remaining 20% of 
the dataset is evenly split between the validation and testing sets. This balanced 
distribution ensures that each subset captures a representative sample of the overall 
data distribution, mitigating the risk of overfitting and enabling robust model 
evaluation. By delineating distinct subsets for training, validation, and testing, the 
data preparation phase lays a solid foundation for subsequent model development 
and performance assessment. Image data preprocessing is facilitated using the 
ImageDataGenerator class from Keras, which allows for real-time data augmentation 
and normalization.  

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑜𝑟𝑖𝑔−𝜇

𝜎
                                                                  (1) 

In equation (1), 𝑋𝑛𝑜𝑟𝑚 represents the normalized pixel value, 𝑋𝑜𝑟𝑖𝑔 represents the 

original pixel value, μ is the mean of the pixel values across the dataset and σ is the 
standard deviation of the pixel values across the dataset. This formula is applied to 
each pixel of the image to scale its intensity to a standard range, typically [0, 1] or [-
1, 1], by subtracting the mean and dividing by the standard deviation. Normalizing 
pixel values helps reduce the effect of varying pixel intensity ranges across different 
images, making the training process more stable and efficient. The 
flow_from_dataframe method is utilized to generate batches of image data from the 
dataframe, where images are resized to a specified target size, normalized, and 
converted into RGB format. These batches of preprocessed image data are then 
utilized for training, validation, and testing of the machine learning model. 
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𝑅𝑒𝑠𝑖𝑧𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 ×
𝑁𝑊

𝑂𝑊
×

𝑁𝐻

𝑂𝐻
                             (2) 

In equation (2), the Resized Image is the image after resizing, Original Image is the 
input image. NW and OW represent the New Width and Original Width respectively. 
Similarly, NH and OH represent the New Height and Original Height. resizes the 
image by interpolating pixel values to fit the specified dimensions while preserving 
the aspect ratio of the original image.  

 

 

Fig. 1.  Architecture of the Proposed  CNN-GCN Model 

Resizing is a crucial preprocessing step to ensure that all images in the dataset have 
consistent dimensions, facilitating uniform processing and analysis by the machine 
learning model.  Finally, sample images from the training set are visualized to gain 
insights into the data and verify the correctness of the preprocessing steps. This 
visualization aids in confirming that images are correctly loaded, resized, and 
labeled, providing a crucial quality check before proceeding with model training. 

3.2  Model Architecture 

Input Layer 

The input layer serves as the model's entry point, receiving image data with 
dimensions (224, 224, 3), where 224x224 represents the spatial resolution and 3 
signifies the three RGB color channels. These dimensions are crucial for 
understanding the structure of the input data and are fundamental for subsequent 
processing steps. 

Convolutional Layer 

Convolutional layers are pivotal components in the model, responsible for extracting 
hierarchical visual features from input images. These layers apply learnable filters, 
or kernels, through convolution operations across the image's spatial dimensions. 
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The convolution operation involves element-wise multiplication of filter weights 
with local regions of the input tensor, followed by bias addition. Mathematically, this 
is represented as the dot product of the filter weights and the input tensor, summed 
with a bias term. The convolution process allows the model to detect low-level 
features, such as edges and textures, in the initial layers, and then progressively learn 
more complex and abstract features in the deeper layers. In equation (3) Let 𝑋 
represent the input tensor to the convolutional layer, 𝑊 denote the convolutional 
kernel (filter) weights, and 𝑏 represent the bias term. The convolutional operation is 
defined as the element-wise multiplication of the filter weights 𝑊 with a local region 
of the input tensor 𝑋, followed by summation and addition of the bias term 𝑏, where 
𝑍𝑖,𝑗 is the output value at position (𝑖,𝑗) in the output feature map, 𝑋𝑖+𝑚,𝑗+𝑛 represents 

the input value at position (𝑖+𝑚,𝑗+𝑛) in the input tensor, and 𝑀 and 𝑁 are the 
dimensions of the convolutional kernel 𝑊. 

𝑍𝑖,𝑗 =  ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛 × 𝑊𝑚,𝑛 + 𝑏𝑁−1
𝑛=0

𝑀−1
𝑚=0                             (3) 

The resulting values undergo Rectified Linear Unit (ReLU) activation to introduce 
non-linearity, enhancing the model's capacity to capture complex patterns using 
equation (4) to the output values 𝑍𝑖,𝑗 

𝑅𝑒𝐿𝑈(𝑍𝑖,𝑗) = 𝑚𝑎𝑥(0, 𝑍𝑖,𝑗)                                                          (4) 

Batch normalization is employed to standardize inputs, stabilizing the training 
process by reducing internal covariate shifts. Additionally, max pooling is utilized to 
downsample feature maps, reducing spatial dimensions while retaining essential 
features, enhancing the model's robustness, and reducing computational complexity. 
By stacking these convolutional, batch normalization, and max pooling layers, the 
model can build a hierarchical representation of the input image, capturing 
increasingly complex visual patterns that are essential for the overall task of the 
model architecture. 

Residual Blocks  

The model incorporates residual blocks, which are a key component of modern CNN 
architectures. Residual blocks are essential architectural elements designed to 
address the challenges associated with training deep neural networks. Each residual 
block comprises two convolutional layers, each followed by batch normalization. 
Crucially, a skip connection is introduced, enabling the input of the block to be 
directly added to its output. This skip connection facilitates the flow of information 
during training and helps alleviate the vanishing gradient problem, ensuring effective 
training of deeper networks. 

Inception Modules 

Inception modules are specialized components aimed at capturing features at 
multiple scales within the network architecture. Each module consists of four parallel 
convolutional paths, each employing different kernel sizes (1x1, 3x3, 5x5), along 
with a max pooling layer. The outputs from these paths are concatenated, enabling 
the model to learn diverse feature representations. By leveraging multiple kernel 
sizes and pooling operations, inception modules enable the model to capture features 
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at different levels of granularity, thereby enhancing its ability to represent complex 
patterns in the input data. 

Additional Convolutional Layers 

Additional convolutional layers are introduced following residual blocks and 
inception modules to further refine feature extraction. These layers continue to apply 
convolution operations, followed by batch normalization and max pooling as needed. 
By building upon the hierarchical representations learned by earlier layers, additional 
convolutional layers enable the model to capture increasingly complex visual 
patterns present in the input data and prepare the features for integration with the 
GCN layers. 

Graph Convolutional Layers 

The key component that distinguishes the model from a traditional CNN is the 
inclusion of Graph Convolutional Layers. These layers take two inputs: the feature 
maps from the previous layers and an adjacency matrix (A) that represents the graph 
structure. Through matrix multiplications, these Graph Convolutional Layers 
facilitate the propagation of information across the graph, enabling the model to 
glean insights from both image data and the relational intricacies embedded within 
the graph. Let 𝑋 denote the input feature matrix representing the node features, and 
𝐴 represents the adjacency matrix capturing the relationships between nodes in a 
graph. The GCN layer performs a convolutional operation on the graph data, which 
is mathematically expressed in equation (5). 

Z= σ(A∙X∙W)                                                                 (5) 

X is the input feature matrix of shape (𝑁×𝐷), where 𝑁 is the number of nodes and 𝐷 
is the number of features per node. 𝐴 is the adjacency matrix of the graph, 
representing the relationships between nodes. It is typically normalized or pre-
processed to capture the graph structure effectively. 𝑊 is the learnable weight matrix 
of the GCN layer, which transforms the input features to a new feature space. It has 
dimensions (𝐷×𝐹), where 𝐹 is the number of output features or filters. 𝜎 represents 
the activation function applied element-wise to the output of the convolutional 
operation. 

Output Layer 

The final layer of the model is a dense layer with a sigmoid activation function, 
responsible for producing class predictions. Equation (6) explains the sigmoid 
activation function where z is the input to the activation function. 

𝜎(𝑧) =  
1

1+𝑒−𝑧                                                                      (6) 

The number of output units in this layer corresponds to the number of classes in the 
classification task. The sigmoid activation function scales the output values between 
0 and 1, representing the model's confidence in each class. This layer produces the 
final output of the model, providing predictions for the input data based on the 
learned features and relationships captured throughout the network architecture. 
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4 Experimentations and Results 

The dataset utilized by the authors comprises 15,000 histopathological images, each 
measuring 768 x 768 pixels and stored in JPEG format [26]. These images are 
categorized into three classes: lung adenocarcinoma, lung squamous cell carcinoma, 
and benign lung tissue. Initially sourced from HIPAA-compliant and validated 
repositories, the dataset originally contained 750 images of lung tissue, equally 
distributed among the three classes. Further, the dataset has been augmented using 
the Augmentor package, resulting in 15,000 images. Each class in the augmented 
dataset now consists of 5,000 images, ensuring a balanced distribution across the 
classes. Fig. 2 demonstrates the equal distribution of data classes in the dataset. 

 

Fig. 2. Data Class Distribution 

Histopathological images of lung adenocarcinoma typically exhibit irregularly 
shaped glandular structures, often characterized by varying degrees of differentiation 
and the presence of mucin production. Conversely, lung squamous cell carcinoma 
images commonly display keratinization and intercellular bridges, reflecting their 
origins from squamous epithelial cells. Fig. 3 gives the visual representation of the 
three classes of data utilized in the experimentations. 
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Fig. 3. Histopathological Image Variations Across Lung Tissue Classes 

Benign lung tissue histopathological images, on the other hand, demonstrate a more 
uniform appearance with organized lung parenchyma, absence of atypical cellular 
features, and minimal architectural distortion. These distinctions arise from the 
diverse cellular origins and pathological characteristics associated with each type of 
lung tissue, facilitating their differentiation in histopathological analysis. 

The model has been compiled using the Adamax optimizer with a learning rate set 
to 0.001. The choice of optimizer and learning rate affects how the model adjusts its 
weights during training to minimize the loss function. In the study, categorical cross-
entropy is employed as the loss function. Categorical cross-entropy is particularly 
suitable for multi-class classification tasks like the one at hand, where the model 
needs to predict one class out of several mutually exclusive classes. It quantifies the 
difference between the predicted probability distribution and the true distribution of 
class labels. Additionally, accuracy is utilized as a primary evaluation metric to 
measure the model's classification performance on the validation and test datasets. 
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Fig. 4. Model Training and Validation Accuracy 

 

Fig. 5. Model Training and Validation Loss 

The integration of convolutional neural network (CNN) and graph convolutional 
network (GCN) layers demonstrates cutting-edge performance in image 
classification tasks. After training the model on a dataset comprising 15,000 images 
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over 20 epochs, the achieved accuracy and loss metrics reflect the model's 
robustness. Notably, the training accuracy reaches 0.9610 with a corresponding loss 
of 0.1326, indicating the model's proficiency in learning from the training data. The 
test accuracy, evaluated on previously unseen data, is also high at 0.9520, with a test 
loss of 0.1770, demonstrating the model's ability to generalize well. Fig. 4  and Fig. 
5 give the pictorial validation of the achieved results. Additionally, the validation 
accuracy stands at 0.9446, coupled with a validation loss of 0.1745, further validating 
the model's effectiveness and consistency in performance across different datasets. 
Table. 1 gives the evaluation metrics for each of the classes by calculating the values 
from the confusion matrix. The diagonal cells of the matrix represent the number of 
correct predictions (True Positives), while the off-diagonal cells show where the 
model is making mistakes (False Positives and False Negatives).   

Table 1. Evaluation Metrics For Each Class 

Class Name Accuracy Precision Recall F1-Score 

 

Lung Squamous 

Cell Carcinoma 

 

 

0.9662 

 

0.9933 

 

0.9026 

 

0.9457 

 

Lung 

Adenocarcinoma 

 

 

0.9833 

 

0.8799 

 

0.9939 

 

0.9334 

 

Lung Benign 
Tissue 

 

0.9846 0.9959 0.9590 0.9771 

 

Average  0.9780 0.9563 0.9518 95.20 

 

Accuracy measures the proportion of correctly classified instances out of the total 
instances. Precision measures the proportion of true positive predictions out of all 
positive predictions. Recall measures the proportion of true positive predictions out 
of all actual positive instances. F1 score is the harmonic mean of precision and recall, 
balancing both metrics. 

 Accuracy  = 
 𝑇𝑃+𝑇𝑁

𝑇𝑃 +𝑇𝑁+𝐹𝑁+𝐹𝑃
  (7) 

 Precision  = 
 𝑇𝑃

𝑇𝑃 +𝐹𝑃
  (8) 

 Recall  = 
 𝑇𝑃

𝑇𝑃 +𝐹𝑁
      (9) 

 F1 Score  = 
 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
      (10) 
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In equations (7), (8), (9), and (10), TP signifies true positive, TN signifies true 
negative, FP is false positive, and FN is false negative. The performance of the 
proposed CNN-GCN fused model has been meticulously compared with other state-
of-the-art models and architectures. Table. II provides a comprehensive evaluation 
and thorough understanding of the proposed model's effectiveness with existing 
cutting-edge approaches in the field.  

Table 1. Comparison of Proposed Model Performance Metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 2 presents a comparison of the accuracy achieved by the proposed CNN - 
GCN model with several state-of-the-art methods utilized in the field of lung cancer 
detection. Remarkably, our model outperforms most of the existing techniques, 
achieving an accuracy of 97.80%. Notably, the RNN-GAN model also demonstrates 
competitive performance with an accuracy of 98.60%. However, models such as the 
Multi-Path CNN and the Distanced LSTM exhibit comparatively lower accuracies 
of 87.80% and 89.05%, respectively. Due to several key factors, the proposed model 
showcases superior performance compared to other methods. Firstly, the 
combination of CNN and GCN allows our model to effectively capture both spatial 
features from histopathological images and relational information from the 
underlying graph structure, resulting in a more comprehensive representation of lung 

Model Accuracy (%) 

 

CNN - GCN (Our Model) 
 

97.80 

 

Alexnet CNN [10] 

 

96.00 

 

3D – CNN [13] 86.60 

 

ANN [17] 96.67 

 

MIL - GNN [20] 97.42 

 

Multi-Path CNN [25] 87.80 

 

RNN – GAN [27] 98.60 

 
Deep Residual U-Net [28] 94.96 

 

Attention-Based RNN [29]  97.47 

 

Distanced LSTM [30] 89.05 
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cancer characteristics [31][32]. Additionally, by leveraging GCN, our model can 
exploit the interdependencies among data points within the graph, enhancing its 
ability to discern complex patterns and relationships crucial for accurate 
classification. This holistic approach enables our model to achieve higher accuracy 
rates, as evidenced by its superior performance compared to other state-of-the-art 
methods. Overall, the integration of CNN with GCN enhances the model's capacity 
to capture diverse and informative features, thereby facilitating more accurate and 
reliable detection of lung cancer. 

5 Discussion and Conclusion 

Based on the findings and results presented in the preceding sections, the 
performance metrics for each class of the dataset are meticulously analyzed and 
visually represented in Fig. 7. A detailed evaluation of the model performance may 
be given based on the presented performance criteria. Lung Squamous Cell 
Carcinoma shows slightly lower Precision and F1-Score compared to the other two 
conditions, which might suggest a need for further model refinement for this 
particular cancer type. In contrast, Lung Adenocarcinoma exhibits the highest 
Accuracy, but this does not translate to the highest scores in the other metrics, 
implying that while it is accurate, there may be room for improvement in its precision 
and recall balance. Lung Benign Tissue stands out with consistently high scores 
across all metrics, suggesting that the model is particularly adept at identifying 
benign cases with a high degree of confidence. 

 

Fig. 7. Performance Metrics Comparison Chart 

The high Recall scores for both cancer types indicate that the models are effective at 
identifying true positive cases, which is crucial in medical diagnostics to ensure that 
cases are not missed. Lastly, the uniformly high F1 scores across all conditions 
reflect a balanced performance between Precision and Recall, which is desirable in 
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a diagnostic tool as it ensures both the accuracy of the diagnosis and the minimization 
of false positives or negatives. 

In conclusion, the study presents a novel approach integrating CNN with GCN for 
lung cancer detection. The proposed model achieves superior performance compared 
to state-of-the-art methods, with high accuracy and robust generalization to unseen 
data. Through comprehensive evaluation and analysis, the authors have 
demonstrated the effectiveness of the model in accurately detecting lung cancer 
subtypes. These findings underscore the potential of CNN-GCN fusion models in 
enhancing cancer detection accuracy and advancing medical diagnostics. In the 
future, there is substantial scope for enhancing and extending our work in several 
directions. Firstly, the integration of additional data modalities, such as genetic 
information or clinical data, could improve the model's predictive power and enable 
more personalized diagnostics and treatments. Additionally, exploring transfer 
learning techniques to leverage pre-trained models on larger datasets may further 
enhance model performance. Moreover, investigating the interpretability of the 
model's predictions could provide valuable insights into the underlying biological 
mechanisms of lung cancer. Lastly, deploying the developed model in real-world 
clinical settings and conducting prospective studies would validate its efficacy and 
pave the way for its adoption in clinical practice.  
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