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Abstract— Customers of cyber-physical and embedded 
systems anticipate dependable performance in a wider range of 
settings and applications.Reactive self-diagnosis methods either 
don't stop catastrophic failures or employ unduly strict 
guardbands. In this letter, we describe how we designed a 
prediction engine using machine-learning approaches to 
anticipate on-device failures in embedded systems. We assess the 
performance of our prediction engine in forecasting temperature 
behavior on a mobile system-on-a-chip and suggest a workable 
hardware solution for the use-case. 

 

I. INTRODUCTION 

HE COMPLEXITY of embedded system platforms and 
theapplicationstheysupportarecontinuouslyincreas- 

ing:theyrunlargeandevolvingapplicationsonheterogeneous 
multi- or many-core processing platforms. Examples include 
automated and autonomous driving, smart buildings, industry 
4.0, and personal medical devices. Such systems are required 
to provide dependable operation for the user while dealing 
with a large number of internal and external variabilities, 
threats, and uncertainties in their lifetimes. 

To provide such dependable operation, self-diagnosis tech- 
niques are developed for early detection of degradation and 
imminent failures, in order to maximize system life-cycle. 
Thesetechniquescanbecombinedwithunsupervisedplatform 
self-adaptation to meet performance and safety targets. Self- 
diagnosistechniquesthatarereactivemay:1)notbesufficient to 
address catastrophic failures; or 2) take overly conservative 
approaches that hinder performance. 

Forexample,considerthermalmanagementofanembedded 
system-on-chip (SoC). One technique is to define a temper- 
ature threshold and throttle performance [e.g., via dynamic 
voltage-frequency scaling (DVFS)] when the threshold is 
exceeded. This approach is reactive and must act conser- 
vatively to prevent overheating. The conservative frequency 
throttling may degrade performance potentially unnecessarily. 

If the temperature behavior could be predicted, a proactive 
approach could manage the temperature without sacrificing 
performance excessively. However, system dynamics, such as 
temperature, can behave nonlinearly, and are hard to predict 
without workload knowledge. 

Machine learning techniques, such as neural networks, are 
useful for identifying complex system dynamics. However, 
neuralnetworksarecomplexanddifficulttodeployonpower- 
constrainedembeddedsystems.Inthisletter,weproposea failure 
prediction technique for embedded systems using longshort-
termmemory(LSTM),atypeofrecurrentneu- ral network 
(RNN). We demonstrate the effectiveness of our 
predictorforpredictingtemperaturebehaviorwithrespecttoa 
threshold on an ODROID-XU3 [9] platform, making it a can- 
didate for mitigating overheating failures and implementing 
efficient control policies. We specify an implementation 
thatisrealizibleinhardwareonlow-powerembeddedsystems.The 
specific contributions are as follows. 

1) We propose a method for hardware hazard prediction 
called long short-term prediction model. 

2) We propose an architecture and hardware implementa- 
tion of nonintrusive prediction engine based on long 
short-term prediction model to predict temperature 
behavior in the embedded systems. 

3) We evaluate the predictor using measured temperature 
data from an ODROID XU-3. 

 
II. BACKGROUNDANDRELATEDWORK 

When modern SoCs operate near peak performance for 
extended periods, power dissipation can increase the tempera- 
ture to the point that adversely impacts the chip reliability. If 
we can provide proactive thermal management, we can avoid 
potentially dangerous execution scenarios. Proaction requires 
prediction. Anumber of strategies have been proposed for on- 
chipthermalprediction,andthemethodscanbeclassifiedinto two 
categories. 

The first prediction method builds models based on mea- 
sured temperature and power consumption [14], 
[15],[17],[19], [21]. The second method builds the prediction 
model indirectly using equations, without thermal 
measurements [4],[5],[7]. However, there have been many 
successful appli- cations of machine learning techniques 
employed in failure detection or prediction of large-scale 
systems. With suf-ficient sensor input, machine learning 
models can extract complex or subtle dynamics, potentially 
resulting in accurate predictions when applied to new 
execution scenarios. Failure 
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prediction has been proposed using support vector machines 
(SVMs)[3],[10],convolutionalneuralnetworks(CNNs)[16], and 
a combination of techniques [8]. 

RNNsarenaturallysuitedforlearningtemporal 
sequencesandmodelingtimeseriesbehaviors.RNNs have been 
applied to predict various behavior in large-scale systems [6], 
[13],[20]. Lima et al. [6] compared an RNN solution with an 
LSTM solution and observed that LSTMs significantly 
outperform RNNs in terms of accuracy. 

In[2],[11],and[18],LSTMsareusedinotherdomains 
fortimeseriespredictions,suchaswaterqualityestima- tion, stock 
transaction prediction, mechanical states, etc. The authors 
compared the LSTM networks with alternatives, such 
asbackpropagationneuralnetworks,onlinesequentialextreme 
learning machines, and support vector regression machines 
(SVRMs), and demonstrated the superiority of LSTMs. 

 
III. CONTRIBUTIONS 

We propose a method for predicting runtime behavior in 
hardware: the long short-term prediction engine. In this sec- 
tion, we describe how our predictor is composed by walking 
through our use-case: predicting runtime temperature behav- 
ior on an embedded SoC. Our goal is to predict temperature 
behavior such that critical thermal scenarios can be detectedin 
advance and avoided with a solution that can feasibly be 
integrated in an embedded SoC. Our SoC consists of four 
ARM A15 cores, with shared L2 cache connected via bus.We 
measure total power and temperature of the entire core cluster, 
as well as per-core utilization. To generate workloads, we use 
a synthetic microbenchmark [12] that is configurable. 
Themicrobenchmarkisabletostressthearchitectureinawide 
rangeandwegenerateda“general-purpose”workloadbyexe- 
cuting the microbenchmark in phases that exercised different 
behavior in these various dimensions. We execute different 
sequences on multiple cores to emulate different applications 
to train the model and test its performance. The prediction 
engine consists of two parts: 1) a short-term binary model;and 
2) a long-term regression model. The short-term binary model 
makes precise predictions quickly, useful for subtle changes, 
i.e., anticipating violations of a temperature thresh- old. The 
long-term regression model can make a prediction further in 
advance, useful to predict general behavior in less- 

 

 

Fig. 1.Temperature data collected from the ODROID XU-3 executing 
acombination of synthetic microbenchmarks. 

 

 
Fig. 2.Temperature data amplified using sliding average amplification. 
Wefocus on data above 85 ◦C (critical temperature). 

 

2)Output:Probabilityoffailure(afterboundarylimitation, the 
model produces a binary result: “0” refers to normal and 
number “1” refers to failure). 

2) ModelTraining:Fig.1showsthemeasuredtemperature data 
from the ODROID-XU3.1 We first isolate the data above the 

critical point (85 ◦C) to use as the training data. Because the 
range of the data is reduced, we amplify the changes of data to 
increase its variation. When performing amplification 
at runtime, we must consider constraints such as the real-time 
hardware implementation and the short failure intervals. We 
create a method called sliding average amplification to 
efficiently preprocess data in order to increase variation and 
applied it on the four features. The method takes local data 
(five timesteps) and uses min–max normalization to amplify 
the values. The following equations show the calculation of 
sliding average amplification. D(t)refers to the feature value 
at t and i refers to the number of timesteps defined as localdata 

n 

average(t) =  D(t−i) (1) 
n 

i=0 

max(t)=MAX{D(t−i),D(t−i+1),...,D(t)}(2) 

min(t)=MIN{D(t−i),D(t−i+1),...,D(t)}(3) 
D(t)−average(t) 

critical scenarios, i.e., predicting temperature trends in a safe 
state. 

amplified(t)= 
max(t)−min(t)

×100. (4)
 

 
A. Short-TermBinaryModel 

The short-term binary model is used to predict unwanted 
behavior, i.e., constraint violation. In our case, in which, we 
have a temperature threshold we do not want to violate, the 
short-term binary model is utilized when the measured tem- 
perature is nearing the threshold. In this scenario, a slight rise 
in temperature will cause a failure (violation of constraint), 
thereby, it is important to have a high recall rate. The recall 
ratemustbetunedcarefullytobalanceaccuracyandoverhead. 

1) Model Definition:Our initialshort-termbinary model is 
defined as follows. 

1) Input:Temperature,coreutilization,power. 

Fig.2showstheamplifieddataalongwiththeoriginal.The 
orange curve is the original data and the blue curve is the 
amplified data. 

3) Improved Loss Function:Our initial binary model still 
has a significant issue: it is trained with imbalanced data. 
Normal samples (i.e., noncritical temperatures) account for 
nearly 99.5 % of the training data. Due to the low ratio of 
failuresamples(i.e.,criticaltemperatures),themodelishighly 
confident in identifying critical samples, which is misleading. 
Weaugmenttheclassicbinarycross-entropylossfunctionwith 
weights in order to increase model sensitivity to normal sam- 

ples.yisthepredictedvalueandyˆ istheactualvalue.The 

1Ouruse-casesystem,containingthedescribedSoC. 
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weight factor αis determined empirically based on the rate of 
failure samples in the training data 

Loss=−(αylogyˆ+(1−α)(1−y)log(1−yˆ)) (5) 

α=0.992. (6) 

4) Model Structure:We propose the simplest structure of an 
RNN prediction model that provides the required accu-racy in 
order to minimize the hardware overhead. The LSTM 
internalstructureisdefinedinthefollowingequations.xrefers 
totheinputfeatures,histheoutputresult,W,baretheweights and 
bias, and c are the intermediate variables 

it=σ(Wxixt+Whiht−1+bi) (7) 

ft=σ(Wxfxt+Whfht−1+bf) (8) 

ot=σ(Wx0xt+Wh0ht−1+b0) (9) 

c˜t=tanh(Wxcxt+Whcht−1+bc) (10) 

ct=ft⊙ct−1+it⊙c˜t (11) 

ht=o⊙tanh(ct). (12) 

Fig. 3 (black and blue) illustrates the architecture of the 
proposedRNN/LSTMmodelwhichcontainstwoRNN/LSTM 
layers (the RNN and LSTM structure provide comparable 
accuracy,showninSectionIV):onefullyconnectedlayerand one 
binary classification layer based on sigmoid activation. The 
input features are time sequences of temperature, per-core 
utilization, and power. After calculation of time step t in 

thefirst layer, the result is conveyed to step t+1 in the same 

layerandthesteptinthesecondlayer.Atthesametime, stept+1 
data is added into the next step calculation. In each 
RNN/LSTMlayer,thereare8timestepsand64hiddenlayers. 
In the last time step, the result is passed to a fully connected 
layer and a sigmoid layer for classification. The output resultis 
the failure probability. When the value is greater than 0.9, we 
define it as failure and output 1. 

 
B. Long-TermRegressionModel 

The long-term regression model is used to predict behav-
iorinthenormalstate.Inthisstate,temperaturevariesin a large 
range depending on how the system is being exer- cised. Our 
goal is to predict the temperature sufficiently in advance to 
make runtime decisions in order to avoid critical states 
completely while also optimizing performance. In order 
toproactivelyavoidcriticalstateswithoutunnecessarilysacri- 
ficingperformance,itisnecessarytoensurethattheprediction 
engine can be applied during normal execution. As the system 
state is noncritical, precision can be sacrificed for universal- 
ity. To this end, we build a regression model for long-term 
prediction. 

1) ModelDefinition: 

1) Inputs:Temperature, power,per-coreutilization. 
2) Outputs:Temperature. 
2) ModelTraining:Inthiscase,weutilizealargerrangeof 

training data (60 ◦C—85 ◦C). We observe temperature varia- 
tion generally due to change in core utilization and operating 
frequency. We categorize training workloads as follows: uni- 
core,multicore,andshifting.Weexecutecombinationsof 

 

 
 

 

 
Fig. 3.Integrated model structure. The structures are shared between theshort-
term binary model and the long-term regression structure, depending onwhich 
is active. Functionality and structure specific to the short-term binarymodel is 
in blue, and specific to long-term regression model is in red. 

synthetic benchmarks to compose our workloads. The bench- 
marks vary in instructions-per-cycle (IPC), utilization, and 
cache miss rate, exercising the processor in a wide range. 

Forunicore workloads,we first run eachbenchmarkon one 
core to emulate stable workload state. Then, we combine 
multiple benchmarks and start them one by one to emulate 
changingworkloadstateononecore.Formulticoreworkloads, we 
assign different benchmarks on different cores and start them 
simultaneously. For shifting workloads, we assign the 
samebenchmarksondifferentcoresandstartthematdifferent 
times. 

Raw data collected from the ODROID-XU3 does not ini- 
tially appear stable, making filtering essential.2 After trying 
several filters to smooth the raw data and considering the 
hardware feasibility, we conclude that the data preprocessed 
by recursion average filter produces the most accurate model. 
Filter sizes of each input are determined empirically. 

3) Model Structure:LSTM has the nature of storing long- 
termmemory,therefore,todealwiththelong-termcases, we 
choose LSTM structure for our model. Compared to a short-
termmodel,increasedhistoricaldataisneededtoensure precision 
when predicting a large temperature range far in advance. This 
leads to increased model time step and exe- cution time. 
Therefore, we apply a stateful LSTM theory inthe cell 
structure, fitting output cell state as the initial state. In this 
way, the structure can remember long-term memory and better 
adapt. 

Fig. 3 (black and red) illustrates the architecture of the 
proposed LSTM model. The input features aretimesequences 
of temperature, per-core utilization, and power. After calcula- 
tionofstept,thecellstateisrecycledtonexttermcalculation. There 
are 8 time steps in the LSTM layer and 64 hidden lay- ers in 
each cell. We need 16 previous steps for prediction, therefore, 
the cell state will be passed for initialization every second 
iteration. 

C. HardwareImplementationFramework 

Tointegratetheshort-andlong-termmodels,wespecify a single 
shared-hardware implementation that supports all of Fig. 3. A 
judgement module receives temperature values from 

2Data is stored in a userspace buffer, sampled from sensors via 
kerneldrivers every 5 ms. 
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Fig. 4.Sample prediction of one workload. Binary events (i.e., experiencingcritical 
temperature) are predicted and observed. 

 

 
thesensoranddecideswhichmodeltoactivate.Iftemperature is 
≥85 ◦C, the short-term prediction model is activated and its 
weights are loaded into the model structure. If it is <85 ◦C,the 
long-term prediction model is activated. 

To reduce the structural overhead, the core LSTM and fully 
connected layers are partially shared, composed with the least 
common parameters (LSTM: 8 time steps, 64 hidden layers; 
fully connected: 4 hidden layers). The excess time steps canbe 
stored in a state buffer and fed back (Fig. 3). 

Using the LSTM implementation of Chang et al. [1], we 
calculate 12960 FFs, 7201 LUTs, and 16 BRAM overhead. 
The LSTM hardware is 20 times faster than the Zync ZC7020 
ARM-based hard-core processor (4.4 μs per inference), 44 
times more power efficient than a software implementation 
with the Zync ZC7020 (performance-per-watt). 

IV. EVALUATION 

We evaluate the effectiveness of both our short-term binary 
model and long-term regression model separately, using addi- 
tional measured data from the ODROID-XU3. The measured 
data consists of the model input data measured at 5 ms 
intervals. We perform sensitivity analyses of LSTM/RNN 
models for different parameters and structures. 

A. Short-Term BinaryModelEvaluation 

1) Evaluation Metrics:The output of the short-term binary 
model is a binary classification. We evaluate the model by 
average precision score (AP) and F1-score. The average 
precision score summarizes a precision–recall curve as the 
weighted mean of precision achieved at each recall thresh-old, 
with the increase in recall from the previous threshold used as 
the weight 

AP=
Σ
(Rn−Rn−1)Pn (13) 
n 

where Pnand Rnare the precision and recall at the nth thresh- 
old. F1-score is a measure of a test’s accuracy and is defined 
as the weighted harmonic mean of the precision and recall of 
thetest.F1-scoreconveysabalancebetweenprecision(P)and 
recall (R) 

F1 =
2×P×R

. (14) 
P+R 

2) Evaluation Results:The model can predict up to 8 steps 
(40ms)ahead.TheF1-scoreis0.43andtheAPscoreis 
0.78.Thelatencyofshort-termbinarymodelis0.088ms 
(based on execution in Python, no hardware acceleration).Fig. 
4 shows the prediction result of one dataset. The orange 
showsmeasuredfailuresandtheblueshowspredictedfailures. 
Observethatthereareanumberofmispredictedfailures(false 
positives). This is preferable to false negatives (nonpredicted 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 

 
Fig. 5.Sensitivity analysis of model structure. (a) Comparison for numberof 
network layers. (b) Comparison for number of time steps considered in 
thenetwork. (c) Comparison for number of neurons. (d) Comparison for 
numberof decimal places (precision) used in the model. (e) Comparison for 
variousdegrees of prediction (i.e., how many steps in advance). One time step 
in ourcase is 5 ms. 

 

failures), as we are trying to anticipate and potentially avoid 
undesirable system state. In fact, in the experiment shown in 
Fig. 4, the recall value is 1, which means that all measured 
failures are predicted—i.e., we have no false negatives. 

a) Model structure tradeoffs: To ensure the practical 
utility of our hardware predictor in low-power embedded 
systems, it is important to balance precision and complexity. 
Considering the feasibility constraints, we explore the impact 
of several hyper-parameters and layer structures on the model 
performance. Parameters include RNN type, model structure, 
number of hidden neurons, decimal digits, and number oftime 
steps. We evaluate the RNNs and LSTMs based on AP, F1, 
recall (performance), runtime, and degree of prediction. Fig. 5 
shows how different hyperparameters affect the model 
performance. The left y-axes measure AP score, F1-score, and 
recall score. The right y-axes measure the time it takes to gen- 
erateoneprediction.Thesolidlinesrefertothemodelwith
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n MAE=
1Σ

|Pi−Mik|. (15) 

 
 

 
Fig.6.LSTMpredictionaccuracyfor64-step(320 ms)prediction,comparedto 
measured behavior. 

 

 

LSTM layers and the dotted lines refer to the model withRNN 
layers. Fig. 5(a) shows how the number and type of lay- ers 
affect the performance. It indicates that LSTM has better 
accuracy. Prediction time increases with the number of lay- 
ers. Therefore, it is best to apply 2-layer LSTM. Fig. 5(b) 
shows how the number of previous timesteps affects the 
performance. After five timesteps, the accuracy plateaus and 
predictiontimeincreases,therefore,usingfivetimestepsisthe 
bestchoice.Fig.5(c)showshowthenumberofneuronsaffects the 
performance. Accuracy pleateus beyond 32 neurons, thus we 
choose 32 neurons in the network. Fig. 5(d) shows howthe 
decimal digit influences performance. Two digits is the 
minimum number to maintain accuracy. Fig. 5(e) shows how 
accuracy degrades as the prediction moves further in advance. 

 
B. Long-TermRegressionModel 

Fortheregressionmodel,weusemeanabsoluteerror 
(MAE)toevaluatetheaccuracy,whereyiisthepredicted 

temperaturekstepsinadvance(Pi),andyˆiisthemeasured 
temperature at step i + k(Mi+k) 

n 

+ 

i=1 

Fig. 6 shows a sample time plot of one experiment. The 
orange dashed line shows the measured temperature 64 steps 
(320ms)inadvance.Thelatencyofthelong-termregres- sion 
model is 0.108 ms (no hardware acceleration). The blueis the 
predicted temperature in realtime. The MAE 
achievedbythepredictorfor320 msinadvanceis0.018.Thehigh- 
est accuracy achieved by existing prediction methods is 0.024 
MAE[17],andthelongestpredictionstepis500ms[4],which we 
improve by 25% and 36%, respectively. 

 
V. CONCLUSION 

We presented a novel long short-term prediction engine 
(LSTM) based approach for hardware hazard prediction. Two 
models, each with distinct prediction criteria, are used by the 
prediction engine to produce predictions for both normal and 
urgent conditions. The ODROID-XU3 platform's data is used 
to train and evaluate the integrated model. The short-term 
model achieves an average precision score of 0.78 and 
generates accurate binary predictions 40 ms ahead of critical 
conditions.With an MAE of 0.018, the long-term model 
generates temperature values up to 320 ms ahead of time.  
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