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Abstract. This paper focuses on investigating a new multi-model predictive control approach. The multi-model concept allows the 
representation of a nonlinear dynamic system as a combination of several linear models, each valid within specific operating 
zones. Based on a multi-model description, we propose a new design for multi-model predictive control. Our proposed control law 
synthesis consists in relying on a multi-model approach that combines an offline PID controller trained by neural network. To 
validate the effectiveness of our approach, a simulation study was conducted applying this control of a boost converter. The results 
demonstrate the suitability of our method for systems with rapid dynamics. 
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1. INTRODUCTION 

The multi-model approach has garnered significant attention since the publication of Johansen's work [1]. This approach involves 
apprehending the nonlinear behavior of a system through a collection of local models, which may be linear or affine, representing the 
system's functioning within distinct operating zones. This modeling approach is interesting since it offers on the one hand, a simplified 
and clear representation of the nonlinear model and on the other hand, to easily study the synthesis of the controllers. A particularly 
compelling aspect of the multi-model approach is its capability to enable the approximation of nonlinear systems through a weighted 
combination of local models using validity functions or membership criteria [2–4]. These validity functions somehow delimit the model's 
zone of action. Since a weighted sum of local models represents a nonlinear system, the idea is to use the same formalism for synthesizing 
the final control law with the local controllers.  

Several works have been published from a predictive control perspective based on a multi-model representation [5–10]. The major 
interest of these approaches is manifested by the transformation of a nonlinear non convex optimization problem into a convex 
optimization one where its convergence is guaranteed. Adaptive structures as well as the study of stability have also been considered [11–
13]. The development and availability of a mathematical model describing the dynamics of the system is a central subject in the strategy 
of predictive control. Nevertheless, the need for a nonlinear representation constitutes a great restriction at the practical level when one is 
confronted with fast dynamics systems. This is the problem of nonlinear and non-convex optimization. In this case, a modeling problem 
arises. Multi-models constitute a particular representation of nonlinear systems. Indeed, given a nonlinear system which has several 
operating points, by linearization we obtain as many local linear models. These local models are then interpolated to arrive at a linear 
multi-model, of which the dynamic model is an approximation of the nonlinear dynamics systems. 

The organization of the article is as follows. Section 2 describes the new concept of multi-model predictive control strategy adopted. 
The implementation of the multi-model MPC algorithm to control a Boost converter is presented in section 3.  Finally, a conclusion is 
given for the whole paper. 

2. NEW CONCEPT FOR MULTIMODEL PREDICTIVE CONTROL 

This method centers on nonlinear discrete single-variable systems described by a nonlinear input-output equation in the following 
forma t: 

( ) ( ( ), ( )), , 0y k f y k i u k j i j= − − ∀ >                    (1) 
Where ( )y k ∈ℜ  represents the output of the system, ( )u k ∈ℜ  is the manipulated variable and f is an application of ℜ×ℜ  in ℜ . 

The nonlinear process is represented by Volterra model. The parametric second-order discrete Volterra model has the following form : 

0
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
y yun nn i

i i ij
i i i j

y k y a y k i b u k i b u k i u k j k
= = = =

= + − + − + − − +∑ ∑ ∑∑ ε                 (2) 

Where ia , ib  represent the Volterra model parameters, and un , yn are respectively the number of lags on the input and the output. 
One advantage of the Volterra model is that it allows the one-ahead prediction problem to be framed as a linear regression, thus 

simplifying the parameter identification process from input-output data. Hence, the model represented in (2) can be expressed as: 
( ) ( ) ( )Ty k k kθ ϕ ε= +                     (3) 

With : 
0 1 2 1 2 1,1 ,[ , , , , , , , , , , , ]

y u u u

T
n n n ny a a a b b b b b=   θ                    (4) 

2 2( ) [1, ( 1), , ( ), ( 1), , ( 1), , ( )]T
y uk y k y k n u k u k u k n= − − − − −  ϕ                  (5) 

In (3), ( )T kϕ  represents the regressor, while θ denotes the parameter vector. This model is characterized by linearity in parameters, 
allowing for the identification of both regressors and parameters based on input-output data. 
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The proposed control strategy in this work is presented in Fig. 1. This scheme focuses on model predictive control of nonlinear 
systems with fast dynamics, more precisely the synthesis of a new control strategy integrating the multimodel approach.  In this work, the 
control is supposed to be composed of two levels: a global level and a local level. 

- At the local level, several models each having a local objective. The set of local objectives can be grouped together to ensure a 
global performance. 

- At the global level, an offline PID controller tuned by a neural network is used as a lookup table in the microcontroller taking into 
account the results of local objectives in terms of ensuring tracking, regulation performance and essentially the constrained  ( )u k  and 

( )u k . 
 

 

Fig. 1. Bloc diagram of Multimodel predictive control strategies 

The optimization problem which is generally non-convex, is transformed on an explicit solution added to an offline PID, the 
consumption time calculation is reduced, in fact the nonlinear optimization is avoid. Added to that, the proposed technique which is 
presented and discussed can be applied to systems with dynamics rapid 

3. LOCAL MULTIMODEL PREDICVE CONTROL 

3.1. Model base construction 

The number of models can determined by using both two algorithms: the Frequency Sensitive Competitive Learning (FSCL) and 
Fuzzy c-means [14–18].   The structure of each model’s base is given by an ARX (AutoRegressive eXogenous) equation defined by : 

1 1
( ) ( ) ( )

a bn n

i i i j i i
i j

y k a y k i b u k j c
= =

= − − + − +∑ ∑                    (6) 

The parameters ia  and ib  of the ith local model are determined through the Recursive Least-Square method during identification. The 
instrumental determinant ratio-test [19] is employed to estimate the order of each model base. Each local model i is described by a 
discrete model in the following form: 

0
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Using n
kx ∈  to represent the state vector, n

ku ∈  as the control signal, n
ky ∈ as the output of the system, where iA , iB , iC  

denote matrices of appropriate dimensions, while 0
n

ix ∈  and 0
n

iy ∈  signify the initial state-level and output-level offsets, 
respectively. 

The multi-model representation is entrusted to a validity computation based on a residue approach. Residues are expressed by the 
difference between the output y of the system and elementary outputs iy  of each model. The residues are evaluated according to the 
following expression : 
  , 1, 2, ,i i mr y y i N= − =                      (8) 

Where 
mN  : Number of models in the base, 

The multimodel output, represented as a validity combination, is given by [20, 21]: 
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3.2. Local MPC 

The solution of the local predictive control for each model corresponds to an explicit solution given by the minimization of this cost 
function : 

  
12 2

1 0
( , , , ) ( ) ( ) ( )
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j j

J H H R Q y k j k y k j u k j k
−
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The prediction of a local output is given by successive iteration of (7) according to : 
1

1
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Taking into account (12), one can write the matrix equations describing the local predicted output. Indeed, if we define : 
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The predicted local output is expressed by : 
( ) ( ) ( )i i i i i iY k x k H U k O= Γ + +                    (15) 

The cost function (11), is rewritten as : 
( ( ) ( )) ( ( ) ( )) ( ) ( )T T

i i i i i i i i iJ H U k k H U k P k U k TU k= + Ρ + +                   (16) 
With : 

( ) ( ) ( )i i i i refP k x k O Y k= Γ + −                    (17) 
The minimum of (17) is obtained if the gradient of J equals zero, resulting in the subsequent optimal solution : 

1( ) ( )T T
i i i i iU k H H R H P−= − +                    (18) 

To adhere to the restrictions placed on the command and its increment, we opt to confine the final solution, mmu , within the 
permissible limits of minu  and maxu . Additionally, the devised control, subu , is constrained by two thresholds that encompass both its 
maximum and minimum deviations. These thresholds are defined as : 

max max max

min min min

lim min( ( 1), )
lim max( ( 1), )

u u k u
u u k u

= − − ∆
= − − ∆

                  (19) 

Where  maxu∆  and minu∆  are respectively upper and lower deviation of the control. 

4. OFFLINE PID 

The structure of PID controller, used offline, is given in Fig. 2. 

 

Fig. 2. Offline PID controller bloc diagram. 

The used velocity of the PID controller is of the form : 
( ) ( 1) ( ( ) ( 1)) ( ) ( ( ) 2 ( 1) ( 2)p iu k u k k e k e k k e k kd e k e k e k= − + − − + + − − + −               (20) 

The PID controller's parameters pk , ik  and dk  are tuned using an RBF neural network [22–26]. The neural network's offline 
performance index is defined as follows : 

( ) ( )NNJ y k y k= −                    (21) 
Where ( )y k  and ( )NNy k  are respectively the systems output and the network output. J is used to adjust the neural network weight 

according to the following equations : 
( ) ( 1) ( ( 1) ( 2)

( 1) ( ( 1) ( 2)
j j j j

j j j j j

w k w k Jh w k w k
b b k b b k b k

= − + + − − −

= − + ∆ + − − −

η α

η α
                  (22) 

Where h is the Gaussian activation function, η  and α  are respectively the learning rate and the momentum factor. 
The final error of the neural network ( )e k  is expressed by : 
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( ) ( ) ( )e k Ref k y k= −                    (23) 
Using the gradient descent, the adjustment parameters of the PID controller are given by : 
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p

i

d

yk e k e k e k
u
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u

η

η

η

∂
∆ = − −

∂
∂

∆ =
∂
∂

∆ = − − + −
∂

                  (24) 

5. BOOST CONVERTER CONTROL STUDY 

A Boost converter is employed in the novel implementation of multimodel predictive control. The block diagram is illustrated in Fig. 
3.  

This PWM signal controls the switching of the power transistor through the MOSFET driver. The boost output is connected to the 
input of the microcontroller's analog-to-digital converter (ADC). The system to be identified presents the following characteristics: 

Supply voltage: 12DCV V , 
Output voltage: 24outV V , 
Hash frequency:   80kHz, 
Load resistance:  50chR   , 

 

Fig. 3. Boost Converter bloc diagram 

Several methods are used to identify system parameters. We prefer in this work an experimental approach to determine the nonlinear 
Volterra model transfer function of the system.  

The identification test consists in generating an Amplitude-modulated Pseudo-Random Binary Sequence (APRBS) and applying it to 
the system's input [27]. 

The FSCL algorithm is employed to ascertain the appropriate number of clusters for multiple models. The outcomes are depicted in 
Fig. 4(a). Utilizing five neurons in the output layer, it's observed that two centers deviate from the data points. Thus, we infer that the 
optimal number of clusters is three. The classification outcomes are illustrated in Fig. 4(b). Subsequently, for each of the three data sets 
corresponding to the different clusters, the transfer function parameters and orders are estimated for the three base models. Employing the 
instrumental determinant ratio-test method reveals that the order of each model is two, while the Recursive Least-Squares method yields 
diverse transfer functions. 

 

Fig. 4. Determination of the number of cluster (FSCL c=5) and clustering results (c=3) 
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Fig. 5. Real and multimodel outputs 

 
The proposed concept illustrated in Fig. 1 is applied to control an electrical process designed by a boost converter. At the same time, 

we use a nonlinear programming procedure to control the nonlinear process (NMPC). The results carried in Fig. 6 are used to compare 
both approaches, so it is clear that the proposed technique approved good control performances. 

A comparative study between the proposed approach and the NMPC is also presented. We can notice first that there is no violation of 
the proposed constrained which are of the form :  0 ( ) 0.5u k   and ( ) 0.05u k  . Second that the systems output converges quickly to 
the adopted reference. A Comparisons study between the two approaches is made. So for the proposed one we notice that: 

■ The proposed approach achieves convex optimization in resolving the problem. 
■ To verify if this the proposed approach is able to reject disturbances, we introduce an output disturbance at time points k = 250 and 

k = 700. Remarkably, the disturbance is successfully mitigated, demonstrating the strategy's capacity in disturbance rejection. Hence, it is 
proven that the applied control concept significantly enhances control performance. 

 

Fig. 6. Evolution of the output/setpoint and command signals : Proposed approach and NMPC 

Fig. 7(a) illustrates the computation time required at each step for generating the sequence command, comparing both the new 
approach and the NMPC case. The proposed concept procured a significant reduction in complexity of calculation when we use an online 
nonlinear optimization procedure. The optimization challenge stands out as the most computationally intensive, showing the 
impracticality of real-time implementation in time-constrained systems. In Fig. 7(b), we illustrate the sampling intervals utilizing the PID 
solution stored in a lookup table. Out of 900 iterations, the PID controller solution was employed in only 35.56% of cases, demonstrating 
a significant 64.44% reduction in computational burden. 
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Fig. 7. Evaluation of the required implementation time (a). Instants of the use of the neural network (b) 

By comparing the results, it becomes clear that the innovative control system exhibits markedly enhanced control efficacy when 
compared with a conventional NMPC setup. This avoids the challenge inherent in minimizing the performance function for nonlinear 
predictive control, a task typically addressed through nonlinear programming techniques solved at each sampling time, generally is non-
convex. To compare the novel concept with the NMPC controller, a performance evaluation was conducted using the performance indices 
[28] given by : 
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SS U u k

=

=

=

= −
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∆ = ∆

∑

∑

∑

                    (25) 

In Table 1, SSE represents the sum of squared errors, SSU indicates the sum of squared control signals, SSΔU denotes the sum of 
squared changes in the control signal, and N signifies the number of samples. The data reveals that employing the NMPC controller 
significantly enhances control performance within the novel concept strategy. Furthermore, this method provides the best tracking 
performance and minimizes energy consumption. 

Table 1. Control performance comparison 

 SSE 10-8 SSU 10-11 SSΔU 10-11 

NMPC 5.4436 2.7052 3.9267 
New 

approach 1.009x10-5 3.5770x10-5 6.0565x10-6 

 

6. CONCLUSION 

Nonlinear model predictive control has long required for efficient diversity of process control in many industrial cases. Suffering from 
time consumption when used with fast dynamics systems as an alternative a modified multimodel predictive control is designed to control 
successfully a boost converter. The suggested approach demonstrates a favorable comparison when assessed alongside a numerical 
optimization routine. So, it avoids a nonlinear optimization procedure. Furthermore, the novel algorithm alleviates the online 
computational load, presenting promising prospects for application in systems characterized by swifter time constants. The computational 
demands in our approach are simpler and faster compared to nonlinear optimization, providing a good control performance 
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