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Abstract

A single server finite source model is analysed in this paper. The inter arrival
time and the service times are two different exponential distributions. The service
rates are state dependent. The services are given in accessible batches of minimum
size 1 and maximum size M . The customers arrive from a source of size N .
If the server gives service of maximum size M(< N), the arrivals stay in a
queue. After completion of a service of a batch, whatever may be the size of
the batch, the customer departs singly. This model is analysed both in the case of
time dependent and time independent domain. Some performance measures are
derived. Numerical illustrations are provided to show the practical applicability
of the model. Cost analysis is carried out using genetic algorithm.

Keywords: Finite Source Queue-Single Departure-Batch Service-Accessible Batch-
Transient Analysis-Steady State Analysis-Performance Measures-Cost structure-Genetic
algorithm.

AMS 2000 Subject Classifications Number: 60K25, 60K30 and 90B22.

1 Introduction

The Queuing literature contains many works on single server bulk service queues.
Bailey(1954)(also Downton 1955)) considered that customers are served in batches of
not more than b. If, immediately after the completion of a service, the server finds
more than b customers waiting for service, he takes a batch of b customers for service
while the others wait on the other hand, if he finds r (0 <r <b) customers, he takes all
the r customers as a batch for service. Bloemena (1960), Jaiswal (1961), Neuts (1967)
considered the same rule with the restriction that(l <r<b), and if r=0, the service
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facility stops until a customer arrives. This rule is called the usual bulk service rule.
While Bailey’s rule is its modified type, is called, bulk service rule with intermittently
available service. Jaiswal(1961) points out the distribution of the queue length for the
modified rule can be obtained from that of the usual rule. The rule with a fixed batch
size has been considered by Fabens(1961), Tackacs(1962) and others. In their case, the
server waits until the queue size become K, and then the server serves all K customers
as a batch. If there are more than K customers are waiting at a service completion
point, the server takes first arrived K customers (if first in first out queue discipline
is followed) for service while others will wait. Bhat(1963) considered the rule that the
number taken in a batch is a random variable Y.

Neuts(1967) considered the general bulk service rule. Some more notable
works are by Medhi and Borthakur(1972), Medhi(1975, 1979), Chaudhry and
Templeton(1983), Chaudhry etal(1984), Briere and Chaudhry (1988) and Chaudhry
and Gupta(1992). Markovian systems with accessible batches for service have been
studied by Sivasamy(1990).

In this study the genetic algorithm(GA) has been successfully applied to solve an
optimization cost analysis that will contribute to the solution of the queueing model
defined in this paper. The performance of GA algorithm depends on the genetic
operators(such as selection, crossover and mutation) used. The performance of GA
using different genetic operators including intuitive recombination process for crossover
and interchanging genes for mutation, are used. Genetic algorithm(GA) is an important
optimization method in evolutionary computation science(Venkataraman, 2009). A
large portion of researchers concurs that GA is a useful direct search process for optimum
discovery of solutions. This search method found a baasis in the natural evolution
process, primarily in the darwinian rule of the survival of the fittest(Sivanandam and
Deepa, 2007). GA is the most suitable technique for analysing the discrete optimisation
problem of cost analysis of queues. GA is considered and important method in
evolutionary computation(Venkataraman, 2009). Several authors(Milton 2009;Agrawal
1999) have explored the genetic operators and their applicability into the algorithm
improvement.

A quick view of how GA operates is depicted as follow. Initially, the population is
generated randomly(using the’ GeneratePopulation’ function). All the members of the
population are tested, with the help of a fitness function. A reduction of the population is
undertaken with a preference for keeping individuals with higher levels of fitness, letting
the rest 'die’(be erased). Those results represent the main criteria that GA uses to guide
the search. However, the use of this simple but powerful operational concepts allows
GA to create intuitively generations of ’better’ individuals(using the "Select’ function).
For instance, the key to searching for the shortest distance relies on the fitness value
associated with each individual within the population. This optimisation strategy found
bases in concepts of the natural evolution process, primarily the Darwinian rule of the
survival of the fittest(Poli, 2000). With the poliferation of artificial intelligence, Nature-
Inspired Algorithm(NIAs) are gradually getting prominence in the current era. This is
because of their learning and adaptation capability from the nature. To address complex
problems, scientists study how nature behaves in various contexts. The NIAs are based
on physics, biology, and ethology concepts. They employ stochastic components, which
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include random variables.

Many real-world applications require the optimization of specific goals such as cost
reduction, energy consumption reduction, performance, efficiency, and sustainability
maximisation. Genetic Algorithm(GA) is one of the various NIAs available. GA is a
method of optimization that employs search to solve problems with a large solution
space. It implements a natural selection process with the purpose of generating superior
solutions. GA maintains a chromosomal population. A comprehensive solution to the
problem is represented by a chromosome. Chromosomes provide solutions to problems
in the search space, which are rated using a fitness function. Malik et al.(2021) have used
genetic algorithm for a Geo/G/I retrial model cost inspection. Jain and Jain(2022) have
considered a server based retrial queueing system with breakdown and optimized the cost
function using GA. Chahal and Kumar(2024) analysed a queueing models of machining
systems with multiple working vacation and generalized triadic policy and carried
out optimization using genetic algorithm. Jain and Raychaudhuri(2022) considered
customers Intolerance Markovian Model with Working Vacation and Multiple Working
Breakdowns and carried out cost optimization using genetic algorithm. Kalyanaraman
and Anurathi(2024) has abalysed a heterogeneous two servers queue with restricted
admissibility of customers and with hybrid service discipling and carried out cost
optimization using genetic algorithm.

Krishnamoorthy and Ushakumari(2000) studied a queuing system with accessible
batches for service. But, after completion of service the customers departs individually.
As a modification of the above work, in this study we consider a finite source queue
of source size N and the maximum number of customers accomadated in the service
station is M. This model is analyzed in time independent and time dependent domain.
The format of the paper is, the model definition, the analysis, performance measures,
the waiting time analysis and numerical study are presented in sections 2, 3, 4, 5 and 6
respectively. Section 6 provides cost and profit analysis. The final section ends with a
conclusion.

2 The Model

The model considered in this article is a single server finite source model.
The services are given in batches of minimum size 1 and maximum size M. In addition
the accessible batch service policy is used. The model has the following statistical
characteristics:

1. The arrivals are from a source of size N .

2. The arrival to the queueing system occurs according to a Poisson Process with
rate \.

3. Service times are exponentially distributed, whose parameter depends on the
number of customers undergoing service.

4. The maximum number of customers accommodated in the service station is M .
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5. At the time of arrival, if the number of customers in the service station is less than
M , then the arrival joins the service station until the batch size reaches M , this
policy is called batch service with accessible batches.

6. At the time of arrival, if the number of customer in the service station is full, then
the arrival joins the queue and waits for service, in the queue literature this model
is called delay model.

7. After completion of service the departure takes place singly.

The Schematic representation of the model is given in the figure 2.1

Service station

Service group

Single departure
> _

N-M

Finite
Source (N)

Figure 2.1: The Queueing System

3 The Analysis

For the analysis, the following notations have been introduced:

Let, X (t) = Number in the Queue at time ¢, X(¢) € {0,1,2,....,. N — M}
and Y (t)= Number in the service station at time ¢, Y (t) € {0,1,2,...., M}. The
stochastic process {(X(t),Y(¢)):¢ >0} is a Markov Process with state space S =
{0,1,2,...,. N — 1} x {0,1,2,.... M} . Let p(n,m,t) = Pr{X(t) =n,Y(t) = m} be the
probability distributions and p(n,m) = lim;_,., p(n, m;t) state probability distribution.
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3.1 The Transient Analysis

The forward Kolmogorov equations of the process are obtained as

P (0,0;t) = =NAp(0,0; 1) 4 p1p(0, 1;t) (1)
P (0,158) = =[(N = n)A + npalp(0,758) + (N —n+ D)Ap(0,n — 1;1)

+(n + 1) pingap(0,n + 151); 1<n<M-1 (2)
(0, M;t) = =[(N = M)A+ Mpunp(0, M; 1) + (N — M +1)Ap(0, M — 1;1)

+M ppp(1, M;t) (3)
p(n, M;t) = —[(N — M —n)\+ Mupp(n, M;t) + (N — M —n+ 1)\

p(n — 1, M;t) + Muyp(n+ 1, M;t); 1<n<N-M-1(4)

p'(N — M, M;t) = =Mpupyp(N — M, M;t) + A\p(N — M — 1, M; t) (5)

The corresponding matrix form for equations (1) to (5) is

p(t) = Ap(t) (6)
where,
—CLO M1 0 0 0 0 0 T
bo ar 2pus 0 0 0 0
0 bl (05} 0 0 0 0
0 0 b 0 0 0 0
A | : : : : : 0 0
“l0 0 0 0 ay. Muy 0 0
0 0 0 0 bM—l aps 0 0
SRR A S My 0
0 0 0 0 0 0 aMJr(N,M,l) M,UM
L 0 0 0 0 0 0 Ce bM+(N—M—1) aM—l—(N—M)_
where,
ag — —NA

a1 = —[(N = DA+ /u]

az = —[(N = 2)A + 2]

apy—1=—[(N =M+ 1A+ (M — 1)pp-1)]
ay = —[(N — M)+ M pupy]

an4(N-m-1) = — (A + Mpar)

AM+(N-M) = —Mppg
bo = NA
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b= (N — 1)A

by = (N — 2)A

bar1 = (N — M+ 1)A
bare(N—M—1) = A

p(t) = (p(0,0;t),p(0, 1;¢),..p(0, M — 1;t),p(0, M; t),p(1, M; 1)
,o.p(N — M —1,M;t),p(N — M, M;t))" (7)

Integrating the equation (6) and p'(t) is %p(t) get,

o A (8)
logp(t) = At + ¢ 9)
p(t) = ettec (10)
p(t) =e.C (11)

If t =0,

p(0) = €°.C (12)
C = p(0) (13)

Therefore,

p(t) = e*.p(0) (14)

where p(0) is the initial probability vector.

For finding matrix exponential, Python provides sophisticated method powered by
the SciPy library, we use the coding in Python, and find the values of e 4* for various
values of t and fixing the parameters N = 20, M = 15, u;(i = 1,2,...,15) = 1,1.1,1.2,
1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4. The probability vector p(t) is obtained
using p(t) = et . p(0), by taking the initial probability vector p(0) = [1,0, ...,0]

3.2 The Steady State Analysis

In steady state, the following steady state equations are obtained from (1) to (5),

PAGE NO: 360


user
Textbox


Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 11 2024

NAp(0,0) = p1p(0, 1) (15)

(N = )X+ npnp(0,n) = (N —n+ 1)Ap(0,n — 1)
+(n+ Dpgnpap(0,n +1);1 <n < M -1 (16)

[(N - M))‘+MMM]p(0>M) = (N_ M+ 1))\p(0,M - 1) +MﬂMp(1aM) (17)

(N =M —n)X\+ Mppylp(n, M) = (N —M —n+1)A\p(n — 1, M)
+Mupypn+1,M); 1<n<N-—M-—1(18)

Mupyp(N — M, M) =Ap(N—-M—1,M) (19)

and the normalization condition is,

p(0.0)+ 5 p(0.m) + 3 p(m, M) =1 (20)

m=1 m=1

From (15) and (16),

N(N —=1)(N —=2)..(N — (M — 2)))\M71

p(0, M~ 1) = (M — ) ppg . finr p(0,0) 2
From (17),
Pl M) = S g 0) (23)
From (18) and (19),
G
p(N =M, M) = p(0,0) (24)

MM )N M i prg- pia

where,

G = N(N = 1)(N = 2)..(N = (M + (N — M — 1)) \M+(N=2)
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M N(N—=1)...(N—(m—1))A™
0,0) =<1+
p( ) { mz—l m',ul,uz Hm
-1
N-M N(N —1)... (N — (M — 1)) A\MFm
S ( ) (N — (M + (m—1)) (25)
m=1 MM pung )™ pur pia--fonr
J
p(0,5) = (}) [T :p(0.0). j=1,2,... M (26)
. N M ; .
p(]7M> = (M+]) Epz(pM—i—l)Jp(O?O)’ J = 1727 JN - M (27>
where,
A A
= - =1,2,.... M
Pi Hi’ PM+1 M,UM’ ? ) Ay ey
Therefore,

p(0,0) = {1 + %1 (7) ﬁl pi + Nijlw (rs) il]\_/[[l pi(PM+1)j} (28)

3.3 SOME PERFORMANCE MEASURES:

In this section some performance measures like mean number of customers in the
queue, in the system, in the service station and in the source, the idle probability are
derived both in the case of time dependent domain(transient case) and time independent
domain(stationary case) using statistical formulas.

3.3.1 Transient Case
1. Mean number of customers in the queue at time t

N-M

Li(t) = 3. np(n, M) (29)

n=0

2. Mean number of customers in the system at time t

Ly(t) = énp(O, n;t) + Nz::]f np(n, M;t) (30)
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3. Mean number of customers in the service station at time t

Lo(t) = 3= np(O,mst) + M5 p(n, M: 1)

n=0 n=1

4. Mean number of customers in the source at time t

L) = 3 (N = wp0,mst) + 3 (N = M —n)pln, ;)

5. Idle Probability at time t

p(070) = { g ( ) ﬁ pi + Z (M—i—]) ZH PZ(pM—f—l) }

3.3.2 Stationary Case
1. Mean number of customers in the queue

N-M

L, = Z np(n,M) Z;: (M+n)

n=0

&

@
I
—

pi(prr41)"p(0,0)

2. Mean number of customers in the system

M N-M
Ly = E np(oan) + Z np(na M)
n=0 n=1

( ) H pip(0,0) + ]S:?’L(M]in) ﬁpi(pMH)”p(O, 0)

3. Mean number of customers in the service station

M N-M
n=1

M n N—M M
= 2 n() Ipw(0.0)+M 3 (47,) I piloars1)"p(0.0)
4. Mean number of customers in the source
M N—M
Ly=> (N—-n)p0,n)+ > (N—M—n)p(n, M)
n=0 n=0
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= S0 =) (0.0)
+ ii::f(N — M —n) (M]Ym) f[l pi(par+1)"p(0,0) (37)

5. Idle Probability

p(0,0) = {1 SE e+ 3 (A m-(pMH)f} (39)

3.4 Particular Case:

If M =1, the model coincides with the model M |M|1||N .

4  Waiting Time Analysis

Let W represents the time spent by an arriving customer(Test Customer) in the
queue and W(t) be its Cummulative Distributive Functions. There are two cases (i)If
the Test Customer finds no one in the system, its waiting time is the service time in the
system. In this case W = 0. (ii)lf the Test Customer finds the service station is full

then the waiting time in the queue W > 0. Using simple probabilistic arguments the
distribution of W is obtained as

W) If W =0,
W(0) = Pr{W = 0} (39)

W(0) = Pr{M — 1 (or) less number of customers in the service station}

M—-1

W) =5 p(0.n) (40)

W) = 5 () [1o0.0) (41)
(i) If W >0,

W(t) = Pr{0 < W < 1} (42)
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W(t) = SN M pr{(n — M + 1) service completions

< t /the customer finds n in the system} x p(n — M, M) (43)
M n—M
W0 = S o= M) Jf e My (44)
n— M)
By using integration by parts method we get,
Y . (M,UM)TL_M B e M ; e—M}L]wt
fO (& KM MquWdl' =1- Zi:O (MILLMt) . il (45)

The Cummulative distribution function for waiting time Random variable W is,

szziﬁw%wum&—zgﬁMmm”]T} (46)

Now differentiating W (t) with respect to t we get,

%MWDZEU%W—MM%—ZUM%%dWPMMmA@m
+ e—Mth.z'ti—l)} (47)
d N-M
S V() = S5 pn — M, M) x
S M) Tt RS s M M) e AP } (48)

4.1 Expected Mean Waiting Time

EW) = fooo tdW (t) (49)
Consider,

JoStdW (£) = S0 pln — M, M) SR Ll 50 oMt it gy

=0 1! 0

— N pln — M M) S G [0 oMt iy (50)

PAGE NO: 365


user
Textbox


Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 11 2024

Since,

O _Murt s2i+1 o (i41)! 0O Munst 4i o i
foe ’uM.tH_dt—W andfoe “M.tldt—W

Substituting above values in equation (42) we get,

EW) =N M pn — M, M) Sor- M (i)™ (i)

i=0 il 7 (Mpa )2
— Sniar pln— M, M) S (]Effﬁ? X Gty (51)
EW) = ZnN:_J\]/\[/[ p(n— M, M){ Z?:_OM 1(\?;;2 o E?;M M;M } (52)
E(W) =00 pln — M, M) S (53)
E(W) = Y05 p(n — M, M) St (54)

5 The Numerical Study

In this section, we presents some numerical illustrations to show the effect of
the parameters on the model, both transient case and steady state case in this section.
By taking particular values to the parameters, A, u;, M and N, the probabilities and
performance measures are calculated and are presented in the following subsections.

5.1 Transient Case

For finding matrix exponential, Python provides sophisticated method powered by the
SciPy library. We use the coding in the Python, and we find the value of e! for various
values of t and fixing the parameters N =20, M =15, A =5, p;(i = 1,2,...15) = 1, 1.1,
1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4 . The probability is obtained using
p(t) = e, by taking the initial probability vector p(t) P(0) = [1,0,0,..0]. The
corresponding performance measures are calculated using the formulas in the subsection
3.3.1. The transient probabilities of various values of t are presented in table 5.1 and
5.2 and the performance measures are presented in table 5.3. The first row of table 5.1
and 5.2 show the idle probability.
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Table 5.1: The Transient State Probabilities

M=15,N=20,A\=5, ;(i=1, 2, ... 15)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4

Pig;t)

t=0.1

t=0.2

t=0.3

t=0.4

t=0.5

8.09636x 100

3.18357x 1098

1.30422x10~10

6.50613x 10~ 12

1.67108x10~ 12

D(i,j;t)

P(o,0;t

pio,l;t; 1.01094x1070% | 1.02241x1079¢ | 7.60888x107%9 | 5.20380x107'0 | 1.52667x1071°
P(0,2;t) 5.93189x10793 | 1.50810x107%5 | 1.97522x10797 | 1.81563x107%8 | 6.04230x10°°
P(0,3;t) 2.17513x10792 | 1.36038x107%* | 3.04864x10~% | 3.70167x10-°7 | 1.38870x10°7
P(0,45t) 5.59062x 10702 | 8.42714x107%* | 3.15081x107°% | 4.97661x107% | 2.09272x 1079
P(0,5;t) 1.07076x 10791 | 3.81511x10793 | 2.32624x107%4 | 4.71458x10795 | 2.21066x10~0°
P(0,6;t) 1.58584x107° | 1.31107x10792 | 1.27702x107°3 | 3.28032x107%4 | 1.70689x 10704
P(0,7;t) 1.85997x10791 | 3.50533%x10792 | 5.35240x10793 | 1.72324x10793 | 9.90644x10~04
P(0,8;t) 1.75475x 1070 | 7.41041x10792 | 1.74384x107°? | 6.96538x107°3 | 4.40556x 1073
P(0,95¢) 1.34491x107° | 1.25092x10791 | 4.46966x1070% | 2.19412x107°% | 1.52100x 10792
P(0,1051) 8.42079x 10792 | 1.69197x107°1 | 9.07929%x10792 | 5.42974x10792 | 4.11058x10~02
P(0,11;¢) 4.31516x10792 | 1.82129x107° | 1.46661x10791 | 1.05975x10~91 | 8.73276x10~92
P(0,12:) 1.80679x10792 | 1.49256x10791 | 1.88306x10~ 91 | 1.63128x10701 | 1.45885x10~01
D(0,13t) 6.14827x 10793 | 8.05254x107°% | 1.91251x107° | 1.97177x107°" | 1.90902x10~°!
P(0,14;t) 1.68365x10793 | 3.22318x10792 | 1.52005x107°1 | 1.85312x10°1 | 1.93947x10~ 0!
P(0,15;¢) 3.64210x107%% | 9.59482x107%% | 9.25503x107 92 | 1.32977x10791 | 1.50556x10~91
P(1,15:) 6.24785x1070% | 2.18183x1079% | 4.57395x10702 | 7.82387x10792 | 9.65210x10~92
D(2,1551) 8.17870x10~96 | 3.67206x107%% | 1.76557x107°2 | 3.62939x10792 | 4.91064x10~92
P(3,15:1) 7.67518x10797 | 4.31900x107%% | 4.99909x107%3 | 1.24601x10792 | 1.86010x10~02
P(a,15:¢) 4.59835x10798 | 3.17389x10796 | 9.24136x10794 | 2.81676x10793 | 4.66559x10~93
P(5,15:0) 1.32135x10799 | 1.09817x10797 | 8.37407x1079 | 3.14703x10794 | 5.81447x10~ %4

Total Probability 0.9999993 0.999999 0.999999 0.999999 0.999999
Table 5.2: The Transient State Probabilities
M=15N=20,A=5, u;(i=1, 2, ... 15)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4
t=0.6 t=0.7 t=0.8 t=0.9 t=1

P(o,0;t)
P(o,1;5t)
P(o,2;t)
P(o,3;t)
P(o,4;t)
P(o,5;t)
P(o,6;t)
P(o,7;t)
P(o,s;t)
P(0,9;t)
P(o,10;t)
P(o,11;t)
P(0,12;t)
P(0,13;t)
P(0,14;t)
P(o,15;t)
P@1,15;t)
P(2,15;t)
P(3,15;t)
P(4,15;t)
P(5,15;t)

9.34367x10~13
8.99865x 1011
3.74635x10~09
9.03894x 1008
1.42728x10~06
1.57707x 1095
1.27164x10~04
7.69561x10~04
3.56360% 1003
1.27945x 1092
3.59173x10~02
7.91823x1002
1.37160x 100t
1.86026x 1091
1.95906x10~01
1.57850x10~01
1.05494x10~01
5.61673x10~02
2.23433x1092
5.90473x 1093
7.77692% 1004

7.27120x10~ 13
7.15356x 1011
3.04023%x 1099
7.48311x10708
1.20469x10~06
1.35636x1070°
1.11382x 1004
6.86143x 1004
3.23291x 10703
1.18058x10702
3.36985x1002
7.55210% 1002
1.32969x10~01
1.83315x10~01
1.96305x10~01
1.60989x10~01
1.09766x10~01
5.97467x1002
2.43442x10792
6.60115x10—93
8.93524x 1004

6.50513x10~ 13
6.45763x10~ 11
2.76856x 1009
6.87279x1098
1.11568x 1006
1.26640x10~95
1.04826x 1004
6.50822x 1094
3.09013x1093
1.13703x 10702
3.26998x 1092
7.38322x10~02
1.30972x10~01
1.81940x10~01
1.96368x 1001
1.62397x10~01
1.11792x10~01
6.15011x10792
2.53519x 1002
6.96099x 1093
9.54890x 1094

6.18307x10~ 13
6.16224x 1011
2.65216x10~99
6.60879% 1008
1.07682x10~06
1.22675x10~95
1.01910x 10024
6.34962x 1004
3.02541x 1093
1.11709x 1092
3.22375%x 1002
7.30410x 1002
1.30022x10~01
1.81266x 1001
1.96367x10~01
1.63046x10~01
1.12754x10~01
6.23484 %1092
2.58454 %1092
7.13948 %1093
9.85715%x 1004

6.03889x10~ 13
6.02936x10~11
2.59955x 1099
6.48893x 1008
1.05909x 1006
1.20859x10~03
1.00567x10~04
6.27626x 1004
2.99532x 1003
1.10777x10702
3.20204x 10792
7.26672x10~02
1.29570x 1001
1.80940x10~01
1.96360x10~01
1.63351x10~01
1.13212x10-01
6.27549%x 10792
2.60838x 1092
7.22626x 10703
1.00080x 1003

Total Probability

0.99999

0.999999

0.999999

0.999999

0.99999
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Table 5.3: The system performance measures

M=15N=20,p;(i = 1,2,...15) = 1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4
t 0.1 0.2 0.3 0.4 0.5
Li(t) 8.13290x10~7°% | 3.05910x10~ %3 | 1.00163x10~ YT | 2.01047x10 1 | 2.72106x 10~ %
Lo(t) 7.34744 9.19710 11.47183 11.28709 11.02992
L3(t) 7.34843 9.23297 12.41269 13.03790 13.2995
L4(t) 12.65147 8.31796 7.48714 6.76107 6.42795
EW(t)) | 1.62658x10~95 | 6.11820x10~0% | 2.00326x 1002 | 4.02094x10~ 92 | 5.44212x10~ 02
t 0.6 0.7 0.8 0.9 1.0
L1(t) 3.12366x10- 0% | 3.33164x107 0T | 3.43468x10~ VT | 3.48474x10~ 9T | 3.50882x 10~ 0T
Lo(t) 10.86713 10.78037 10.73692 10.71571 10.70551
L3(t) 13.41507 13.46747 13.49186 13.50334 13.50880
L4(t) 6.27258 6.19936 6.16467 6.14817 6.14034

[ EW () [ 6.24732x10-9% | 6.66328x10~ 7% [ 6.86936x10-°% | 6.96948x10~ 9% [ 7.01764x10-92 |

In the figure 5.4, for varying values of ¢, the mean length Ly(t), Lo(t), Ls(t), La(t)

are drawn as graphs. In the figure 5.5, the graph of expected waiting time using Little’s
law are drawn.

15 4 — Ll

— Ly(t
10 | /¥

Figure: 5.4
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Figure: 5.5

5.2 Steady State Case

we calculated the stationary probabilities and the performance measures
obtained in subsection 3.3.2 For the analysis, we vary the arrival rate A from 1 to 10.
The steady state probabilites are presented in tables 5.6 and 5.7. The corresponding
system performance measures are presented in tables 5.8. In the figure 5.9, the system
performance measures Ly, Lo, L3 and L4 are shown as graphs and the mean waiting
time is shown in the graph 5.10.
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Table 5.6: The Steady State Probabilities

M=15N=20,p4,(i=1,2,.15)=1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4

pi

A=1

A=2

A=3

A=4

A=5

Po,0
Po,1
Po,2
Po,3
Po,4
Po,5
Po,6
po,7
Po,8
Po,9
Po,10
Po,11
Po,12
Po,13
Po,14
Po,15
P1,15
p2,15
p3,15
P4,15
P5,15

1.51213x10~0%
3.02420%x 1004
2.61181x10793
1.30590x 1002
4.26930x 1092
9.75864x 1092
1.62640x10~01
2.03300x 1091
1.94331x10701
1.43949x 1001
8.33338x 1002
3.78813x 1002
1.35290x 1002
3.78434x10~03
8.22683x 1004
1.37114x 10704
1.19044x10~05
2.11596x 1096
1.76330x10~07
9.79609x 1009
2.72114x10~10

3.49466x 10708
1.39787x10~06
2.41449x10~95
2.41449%10~04
1.57871x10~93
7.21695x10~93
2.40565x 1002
6.01413%x10792
1.14976x10~01
1.70335x10~01
1.97230x10~01
1.79300x 1001
1.28071x10~01
7.16482x10~02
3.11514x10792
1.03838x10~02
2.88439%10~02
6.40975x 1004
1.06829x 1004
1.18699x10~95
6.59440%x 1097

4.12803x10~ 10
2.47682x10~08
6.41721x10797
9.625682x 1006
9.44071x10-95
6.47363x10794
3.23681x1093
1.21381x 10792
3.48077x10792
7.73503 %10~ 02
1.34345x10~01
1.83198x10~01
1.96284x10~01
1.64714x10~01
1.107422x10~91
5.37110x 10792
2.23796x 1002
7.45986x 10~ 03
1.86496x 10093
3.10827x10~04
2.59023x10~05

1.17846x 10~ 1T
9.42772x10~10
3.25685x 1008
6.51369% 1097
8.51791x 1006
7.78780%x 10705
5.19187x1004
2.59593 %1003
9.92563x10~03
2.94093 %1002
6.81057x 1002
1.23829x10~01
1.76898x 10~ 01
1.97928 x 1001
1.72111x10~91
1.14741x10~01
6.37448x 1002
2.83310x 1092
9.44368 %1003
2.09860x 1093
2.33177x1004

5.91284x10~13
5.91284x 1011
2.55327x 1099
6.38318x 1008
1.04340x 1096
1.19246x 10705
9.93719x10~95
6.21074x 10794
2.96837x1003
1.09940x10~92
3.18246x 10792
7.23287x10702
1.29158x 1001
1.80641x10~01
1.96349x10~01
1.63624x10~0L
1.13628x10~01
6.31266x 10792
2.63027x 1002
7.30632x10703
1.01477x10793

Total Probability

0.999985

1

1

1

1

Table 5.7: The Steady State Probabilities

pi

A=6

A=T7

A=8

A=9

A=10

Po,0
Po,1
Po,2
Po,3
Po,4
Po,5
Po,6
po,7
Po,s
Po,9
Po,10
Ppo,11
Po,12
Po,13
Po,14
Po,15
P1,15
Pp2.15
P3,15
P4,15
DP5,15

4.41037x10~ 14
5.29244 %1012
2.74245%10~10
8.22735%x 1009
1.61383x10~97
2.21325%10~06
2.21325x10~95
1.65993x10~03
9.52021 %1093
4.23121x10702
1.46979x10~02
4.00851x10~02
8.58967x 1002
1.44162x10~01
1.88038x 1001
1.88038x10~01
1.56698x 10~ 01
1.04465x10~01
5.22327x 1092
1.74109x10~92
2.90182x1093

4.42908x10~15
6.20071x10~13
3.74861x 1011
1.31201x 10799
3.00249x 10798
4.80399x 1097
5.60465x1006
4.90407x 1095
3.28140%x 10794
1.70147x10703
6.89542x 1092
2.19400x 10792
5.48499x 1002
1.07398x10~01
1.63432x10~01
1.90671x10~01
1.85375x10~01
1.44180x10~01
8.41052x 10792
3.27076x 1092
6.35981x 1093

5.61753x 10~ 16
8.98804x 1014
6.20992x 1012
2.48397x10~10
6.49653x 10799
1.18794x10~97
1.58392x 1006
1.58392x10~ 05
1.21123x10~94
7.17766x10~04
3.32439x1093
1.20887x10~02
3.45391x 1092
7.72903 %10~ 02
1.34418x10~01
1.79224x10~01
1.99138x10~01
1.77011x10~01
1.18007x10~01
5.24478x 10792
1.16551 %1002

8.61009x 1017
1.54982x 1014
1.20463x10~12
5.42083x10~11
1.59498x 1099
3.28109% 10098
4.92164x10~97
5.53685x 1006
4.76332x1095
3.17554%x 1004
1.65463x10~03
6.76892x10~03
2.17573%x 1002
5.47735%x 1002
1.07166x 1091
1.60748x10~01
2.00935x 1091
2.00935% 1001
1.50701x 1001
7.53507x 1002
1.88377x10~02

1.54442x10~17
3.08883x 1015
2.66763x1013
1.33381x10~ 11
4.36055x 1010
9.96696 x 1099
1.66116x10~97
2.07645x 1096
1.98484x 1095
1.47025x10~04
8.51199x 1004
3.86909x 1093
1.38182x10702
3.86522x 10702
8.40266x 10792
1.40044x10~01
1.94506x10~01
2.16118x 1001
1.80098x10~01
1.00055x10~01
2.77929x 1092

Total Probability

1

1

1

1

1
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Table 5.8: The system performance measures

M=15N=20,p;(i = 1,2,...15) = 1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4
A 1 2 3 4 5
Ly 2.38450x 10795 | 4.53760x10~ 0% | 4.42670x 10~ 9% | 1.58298x10 0T | 3.53088x 10~ °!
Lo 7.42775 10.0706 11.2918 11.3938 10.6961
Ls 7.42804 10.1207 11.7282 12.7932 13.5137
Ly 12.5719 9.87472 8.22758 7.04846 6.13319
E(W) | 3.87558x107 0% | 2.99689x10~9% | 1.62165x10~% | 3.79619x 10~ 03 | 6.44964x10~ 03
P 6 7 8 9 10
L1 6.06480x10~ 0T | 8.88681x10~ 0T 1.17525 1.4505 1.70622
Lo 9.59936 8.4198 7.33847 6.42947 5.70412
Ls 13.9985 14.322 14.5371 14.6804 14.7764
Ly 5.39500 4.78929 4.28764 3.86912 3.51734
E(W) | 9.00045x10~ %3 | 1.14117x107°2 | 1.25904x10~02 | 1.42621x10~92 | 1.57460x 1002
15 %
— Iy
— Ly
Ls
— Ly
~

Figure: 5.9
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Figure: 5.10

6 Cost and Profit analysis

Cost analysis in a queueing model involves determining the costs associated with
operating a queueing system and balancing them to achieve optimal performance. The
goal is to minimize total costs which typically include service costs and waiting costs.
For example, In call centers, minimizing operational costs while ensuring acceptable
waiting times. In health care, balancing staff costs with patient waiting times. In
manufacturing, reducing down time costs while maintaining efficiency.

Profit analysis in queue management involves examining how queueing model
impact profitability in a bussiness setting. This includes evaluating the trade offs
between between costs benefits. Effective queue management balances costs and benefits
to optimize profitability. Implementing targeted strategies such as reducing waiting
time, using technology, etc..,

Revenue analysis in a queue system involves assessing how revenue is
generated and affacted by customer arrivals, service rates, waiting times and over all
system performance. This type of analysis is particularly relevent in industries like
retail, telecommunications, or service-oriented business where queues are a significant
operational aspect.

We define suitable cost, revenue and profit structure to the model discussed in this
article. To define the structure of the cost and profit related elements

e (J;-The rate at which service is provided per unit time
e (', -The holding cost per customer per unit time
e (;-Cost per unit time for idle period

e (), -cost incurred during period of service activity
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o (', -Waiting cost of a customer per unit time

o R.-Cost related to revenue

are introduced.

Total expected cost per unit time of the system,

Te = (11Cs;, + p2Csy + oo + unrCsyy) + CrLa + Cip(0,0) + Cy(1 — p(0,0)) + Cp E(W)
Total expected revenue of the system,

Tr = (/vbqu + N2R62 +ot NMReM)(l - p<07 O))

Total expected profit of the system,

T,=1T —1T..

The total cost function is minimized using genetic algorithm. In this analysis, a
population of our choice of chromosomes with six decision factors, which are genes, has
been considered. In the given population each individual is referred as chromosomes
and each chromosome contains six genes, which are randomly initialized. The expected
total cost function is the fitness function. R-program is used to calculate the value. The
chromosome with lowest total cost value is the best fittest. 1000 cycles are used for the
generation. The relevant values are presented in table 6.1.

The general steps of the GA implemented to our model is
Input: Fitness function, Decision variables
Output: Best fitness(optimal)value, Best(optimal)solution
Step 1: Initialize population size
Step 2: Generate initial solution
Step 3: Evaluate the fitness value
Step 4: Select parameters based on fitness
Step 5: If
criteria satisfied then get the optimal solution
else
CToss over
mutation
generate next generation
goto Step 3.
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Table 6.1: Expected total cost, Total expected revenue and Total expected profit

S.No.| Arrival 154 Mean Mean Expected Total Total
rate number of | waiting total cost expected expected

customers time in the revenue profit

in the | queue

system
1 1.621497 | 10.00024 3.591204 0.09136619 324.7059 27043.13 26718.4241
2 2.901962 | 0.1321958 | 15.29464 0.3253712 367.7299 399.4087 31.6788
3 3.199791 | 5.002808 16.16119 3.108343 412.925 13550.06 13137.135
4 3.403904 | 10.10006 16.16119 3.108343 451.1544 27312.64 26861.4856
5 4.144202 | 10.03059 7.752687 0.174476 366.5484 27125.07 26758.5216
6 4.645974 | 5.061178 16.16119 3.108343 413.3628 13707.66 13294.2972
7 5.127787 | 10.00093 1.609141 0.05206374 304.8905 27044.99 26740.0995
8 7.279139 | 10.02532 1.609141 0.05206374 305.0734 27110.84 26805.7666
9 12.75144 | 10.01591 28.97339 1.19863 578.6452 27085.44 26506.7948
10 12.8668 5.001275 17.67703 0.3730363 428.072 13545.92 13545.92
11 14.42059 | 15.0218 11.87284 0.1715143 445.184 40601.34 40156.156
12 14.51486 | 10.0135 1.609738 0.0521755 304.9907 27078.93 26773.9393
13 14.6837 5.021765 17.47488 0.3689985 426.2041 27078.93 26652.7259
14 15.23037 | 15.0092 21.31344 0.4462054 539.4954 40567.32 40027.8246
15 17.85752 | 10.00142 68.55063 136.9258 974.309 27046.31 26072.001

The above table demonstrate the expected total cost, using GA and are given in sixth
column. Using R code the total expected revenue has been calculated and are given in
the seventh column. The eighth column presents the total expected profit. Columns two,
three, four and five shows the optimum arrival rate, service rate( 157 ), mean number of
customers in the system and mean waiting time in the queue.

7 Conclusion

In this paper, we have analysed a single server finite source model, in addition
a services are given in batches of size r(1 < r < N )with accessible batch service
policy. If the server is busy with a batch of M customers, the customer wait in a
queue. Eventhough the services are given in batches, after completion of service the
customers departure singly. The model analysed both in time independent domain
and time dependent domain. In the case of time dependent domain the formula for
probability vector p(t) is given. In the case of time dependent domain the probabilities
are obtained using recurrence concept. Both the cases performance measures like mean
number of customers, idle probability and mean waiting time are calculated. Waiting
time Distribution is also derived. To show the practical applicability of the model we
present some numerical illustrations. Cost and profit analysis is also carried out.
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