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Abstract 

Cotton, the purest form of cellulose, is indispensable in various industries, including 

textiles and paper production. Enhancing the health of cotton crops is pivotal for an 

industry that sustains millions of jobs globally. This study aims to advance the early 

detection of nutrient deficiencies in cotton foliage. A novel transfer learning approach 

was employed to develop a predictive model. Comparative analysis with established pre-

trained Convolutional Neural Networks (CNNs) was conducted, evaluating metrics such 

as accuracy, loss, and computational efficiency during the training and validation phases. 

The Proposed Model demonstrated a commendable validation accuracy of 96.38%, 

indicating its potential for practical application in agronomy. 
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1. Introduction 

Cotton, often referred to as "White Gold," is a cornerstone of India's economy. It is 

cultivated in more than 80 countries for its versatile applications, including thread 

production, fiber blending, and oil extraction from seeds [1]. The oil content in cotton 

seeds varies between 15-20%, serving as a valuable organic resource. Cotton seed cake, a 

byproduct, is a rich organic fertilizer containing approximately 6% nitrogen, 3% 

phosphorus, and 2% potash. In contrast, cotton seeds, linters, and pulp are utilized as 

concentrated cattle feed [2,3]. Environmental factors such as temperature, humidity, and 

soil moisture influence the fiber's properties, with suboptimal irrigation and nutrient 

deficiencies notably diminishing yields [4]. 

Macronutrient scarcity manifests in stunted plant growth, poor flowering, and reduced 

yield, with symptoms in leaf discoloration and stunted foliage development [5]. Specific 

symptoms include interveinal chlorosis, marginal chlorosis, uniform chlorosis, necrosis, 

distorted leaf edges, and diminished leaf size [6]. Phosphorous deficits notably alter leaf 

physiology, impacting chlorophyll content, photosynthesis, adenosine triphosphate (ATP), 

and nonstructural carbohydrate levels [7]. Similarly, sulfur shortages can compromise 

yield and fiber quality [8]. Micronutrient deficiencies—boron, copper, iron, manganese, 

and zinc—exacerbate issues, leading to subpar crop production and seed quality [9]. 

Various diagnostic techniques, such as spatial FCM clustering [10] and deep learning-

based image processing [11], have been employed to detect these deficiencies. Effective 

nutrient management is thus critical for the optimal growth and development of cotton 

plants [12]. 
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2. Related works 

The detection of foliar diseases in cotton plants has been the subject of extensive 

research, employing various image-processing techniques for disease identification. 

Image filtering, segmentation, and feature extraction have been pivotal in discerning 

diseased areas on leaves. Transfer learning, a prominent method in computer vision, 

facilitates model generation by leveraging pre-learned patterns, thus reducing 

computational costs and time [13, 14]. 

Support Vector Machine (SVM)-based regression systems have been utilized to 

classify cotton leaf diseases such as Bacterial Blight, Alternaria, Grey Mildew, Cereospra, 

and Fusarium Wilt, achieving a classification accuracy of 83.26% [15]. Otsu's global 

thresholding method, coupled with a Multi SVM classifier, has been reported to detect 

diseases with an accuracy of 87.5% [16]. 

K-means nearest neighbor (KNN) algorithms have classified diseases like grey mildew, 

Bacterial blight, Leaf curl virus, Gemini virus, and Alternaria leaf spot with an accuracy 

of 92%. However, this was not the highest accuracy achieved among the methods 

reviewed [17]. A study employing KNN classification on a dataset of 150 training images 

and 40 validation images, each with a resolution of 1024 × 1024 pixels, reported an 

accuracy of 82.5% for grey mildew classification [18]. 

Integrating K-means clustering with Artificial Neural Networks (ANN) has resulted in 

a classification accuracy of 92.5%. However, the specific metrics for KNN were not 

disclosed [19]. Principal Component Analysis (PCA) combined with KNN, using a 

sample size of 110, has been applied to classify diseases such as Blight, Narcosis, 

Alternaria, Grey mildew, and Magnesium deficiency [20]. Decision tree Random Forest 

algorithms have been employed for cotton disease prediction, yielding an accuracy of 

96.73% and a sensitivity of 82.21% [21]. 

Furthermore, the adaptive neuro-fuzzy inference system and Graph cut method have 

been used to detect diseases like Bacterial blight, Myrothecium, and Alternaria, achieving 

an accuracy of 90% [22]. Rough set fuzzy C-means clustering has been applied to 

segment Cotton aphids in 20 images, attaining a segmentation accuracy of 85% [23]. 

SVM classifiers have also been used to distinguish between Bacterial blight and 

Magnesium deficiency, with a classification accuracy of 98.46% for a dataset comprising 

100 infected and 30 noninfected images [24]. 

 

3. Methodology 

The dataset for model training was generated by artificially inducing nutrient 

deficiencies in cotton plants via hydroponics. Approximately five plants were cultivated 

in each of the 39 hydroponic containers. These were categorized into six groups 

representing macronutrient deficiencies, six for micronutrient deficiencies, and one 

control group with a standard nutrient solution. For each nutrient deficiency, three 

replicate containers were used. The leaves exhibiting deficiency symptoms were manually 

harvested and digitized using a high-resolution HP Scanjet G3110 scanner. The original 

dataset images were resized to 224×224 pixels to facilitate the training process. The final 

dataset comprised 13 categories, each containing 100 images. It was partitioned into a 

70:30 ratio for training and network testing/validation.  

The proposed transfer learning model is structured with nine inception net modules, 

encompassing twenty-two layers and twenty-seven levels, including pooling layers, as 

shown in Figure 1. The input layer is defined with dimensions of 224×224 pixels. The 

inception modules employ convolution filters of sizes 1×1, 3×3, and 5×5. The initial 

convolution layer utilizes a 7×7 filter size to reduce the input dimensionality while 

retaining spatial information. Subsequent convolution layers compress the image 

dimensions by factors of four and eight before reaching the first inception module, 
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thereby reducing computational load. A 1×1 convolution block with two-layer depth is 

implemented to minimize operations. Maximum pooling layers interspersed between 

inception modules down sample the input. In contrast, average pooling layers compute the 

mean of the feature maps from preceding modules. Dropout layers are incorporated to 

mitigate overfitting. 

 

Figure 1. Proposed Transfer Learning Model 

The network culminates in a SoftMax layer, an activation function to compute the 

probability distribution across an input vector, representing class likelihoods. Auxiliary 

classifiers are utilized during training—though not during inference—to contribute to the 

overall loss estimation. These classifiers consist of an average pool layer, a convolution 

layer, two fully connected layers, a 70% dropout layer, and a linear layer with a SoftMax 

activation function, processing activations from earlier inception modules. 

We employed several key performance metrics to evaluate our model, each defined by 

a specific formula. The network underwent multiple training iterations with refined 

parameters, evaluated based on Accuracy (Acc), Precision (Pre), Recall, F1-score (Score), 

and Specificity (Spe). The iteration yielding the most favorable results was preserved. 

Alongside the performance metrics, the Confusion Matrix is a vital tool for evaluating the 

classification model's performance. It is a table used to describe the performance of a 

classification model on a set of test data for which the true values are known. The matrix 

itself is composed of four elements: 

True Positives (TP): Correctly predicted positive observations. 

True Negatives (TN): Correctly predicted negative observations. 

False Positives (FP): Incorrectly predicted positive observations (Type I error). 

False Negatives (FN): Incorrectly predicted negative observations (Type II error). 

The formulas for the metrics based on the confusion matrix are as follows: 

Accuracy (Acc) is the proportion of true results among the total number of cases 

examined, calculated as  
 

                 (1) 

Precision (Pre), also known as the positive predictive value, is the ratio of true 

positives to all positive predictions given by  

 

                   (2) 
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Recall, also referred to as sensitivity, measures the proportion of actual positives 

correctly identified and is calculated as  

 

                  (3) 

The F1-score (Score) is the harmonic mean of precision and recall, providing a balance 

between the two, and is defined as ("Evaluation Metrics in Machine Learning | by Tania 

Afzal - Medium")  

 

                  (4) 

Lastly, Specificity (Spe) quantifies the proportion of actual negatives correctly 

identified, which is the complement of the false positive rate and is calculated as  

 

                   (5) 

These formulas collectively offer a comprehensive assessment of the model's 

performance. Comparative analysis with existing pre-trained models focused on training 

and validation accuracy. The training was executed on a desktop with an AMD Ryzen 

Threadripper CPU, NVIDIA A5000 GPU, and 96GB of RAM. The trained network was 

archived for subsequent application. 

 

4. Result and Discussion 

This study evaluated three distinct training methodologies. Initially, a high-accuracy 

pre-trained network was selected, and a transfer learning model was constructed and 

subsequently fine-tuned. The original dataset comprised images with resolutions of 

approximately 3000×3000 pixels, each with a file size of around 20 megabytes, 

cumulatively amounting to 26 gigabytes—a volume too substantial for efficient network 

training. To address this, image dimensions were reduced to 100×100 pixels, significantly 

accelerating training speed and reducing dataset size. However, this resolution reduction 

led to the loss of critical spatial information, resulting in misclassification. The nutrient-

deficient leaf images from the dataset are shown in Figure 2. 

 

Figure 2. Cotton leaves with nutrient deficiencies. 

Ultimately, images were resized to 224×224 pixels, a compromise that preserved 

essential details while maintaining manageable memory requirements. The study utilized 

over 1200 images of cotton leaves exhibiting various nutrient deficiencies. Eighty percent 

of these images were allocated for training, with the remaining twenty percent reserved 

for testing. The Stochastic Gradient Descent with Momentum (SGDM) optimizer was 
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employed, and varying epoch counts and learning rates were used to optimize training. A 

batch size of 25 images per iteration was fixed to ensure comprehensive training 

coverage. Performance metrics such as Accuracy, Precision, Recall, F1-score, and 

Specificity were utilized to refine and evaluate the network throughout the training and 

validation phases, as shown in Table 1.  

Table 1. Evaluation Metrics of Fine-Tuned Network 

S. 

No 
Model Epoch 

Learning 

Rate 
Acc Pre Recall Score Spe 

1 Trial 1 100 0.001 89.44% 92.41% 89.44% 89.31% 99.04% 

2 Trial 2 50 0.01 90.00% 86.67% 86.67% 86.67% 98.79% 

3 Trial 3 10 0.01 91.94% 93.72% 91.94% 91.69% 99.27% 

4 
Tuned 

Model 
10 0.001 95.56% 96.51% 95.56% 95.62% 99.60% 

5 
Fine-

tuned 
10 0.0001 96.11% 96.70% 96.11% 96.14% 99.65% 

The training process underwent several iterations: 

First Trial: The epoch count was set to 100, and the learning rate was set to 0.001, 

achieving an accuracy of 89.44%. 

Second Trial: The Epoch count was reduced to 50, and the learning rate increased to 

0.01, resulting in an accuracy of 90%. 

Third Trial: Further reduction of epoch counts to 10 with a learning rate of 0.01, 

leading to an improved accuracy of 91.94% and better specificity. 

Fourth Trial (Tuned model): Maintained 10 epochs with a learning rate 0.001, 

yielding a superior accuracy of 95.56%. 

Final Tuning: Epoch count fixed at ten and learning rate fine-tuned to 0.0001, 

culminating in the best performance across all parameters with an accuracy of 96.11%. 

The graph in Figure 3 shows that the fine-tuned network performs better in all metrics. 

 

 

Figure 3. Comparison Graph of Tuning Models 

The proposed model's performance was benchmarked against other pre-trained 

networks, as shown in Table 2, assessing both the training duration and classification 

accuracy of new data. Derived from GoogleNet and InceptionNet architectures, the 

proposed model required only 46 seconds for training—a shorter duration than 

InceptionNet's. Moreover, it outperformed other pre-trained models' accuracy, attributable 

to the meticulously fine-tuned parameters. The validation accuracy of the proposed 

network reached 96.38%, surpassing GoogleNet's 93.33% and InceptionNet's 89.44%. 
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Table 2. Performance of Pre-trained Network v/s Proposed Network 

Trial 

Elapsed 

Time Network Name 

Training 

Accuracy 

% 

Training 

Loss % 

Validation 

Accuracy 

% 

Validation 

Loss % 

1 46sec  

Proposed 

Network  100 0.0008 96.3889 0.0671 

2 

1min 

17sec  vgg16  100 0.0026 87.7778 0.4122 

3 28sec  googlenet  99.2188 0.0459 93.3333 0.1412 

4 16sec  squeezenet  98.4375 0.0688 84.4444 0.6712 

5 58sec  mobilenetv2  100 0.0205 89.1667 0.3937 

6 23sec  resnet18  100 0.0181 86.1111 0.2920 

7 

1min 

3sec  resnet50  100 0.0140 89.4444 0.2474 

8 

1min 

50sec  resnet101  100 0.0092 93.8889 0.1873 

9 

1min 

54sec  inceptionv3  100 0.0846 89.4444 0.4977 

10 

6min 

39sec  inceptionresnetv2  99.2188 0.4754 78.0556 0.8727 

A confusion matrix was plotted to compare the true and predicted classes across the 

entire dataset, revealing no misclassifications among the 70 images per category. This 

indicates a robust dataset for model training. The confusion matrix for training data is 

shown in Figure 4. 

 

Figure 4. Confusion matrix for the training of the fine-tuned network 

 

Figure 5. Confusion matrix for the validating of the fine-tuned network 
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The proposed model exhibited a misclassification rate during validation, with 13 out of 

30 test samples incorrectly identified, as shown in Figure 5. Misclassifications occurred 

primarily with zinc and potassium deficiencies mistaken for phosphorus and molybdenum 

for zinc. Consequently, the classification accuracies for zinc, potassium, and molybdenum 

deficiencies were 86.7%, 83.3%, and 86.7%, respectively. Nevertheless, the overall 

accuracy between true and predicted classes was 96.38%. 

 

Figure 6. Predicted class for random validation images from the dataset. 

The model's efficacy was further demonstrated by its prediction accuracy for unknown 

leaf deficiencies, consistently exceeding 95% accuracy, as shown in Fig 6. Additionally, 

the model's practicality was validated by testing known deficiency images, which, upon 

classification, triggered a dialog box displaying the identified deficiency. The average 

prediction time was approximately 1.5 seconds, underscoring the model's efficiency, as 

shown in Table 3. 

Table 3. TESTING PROPOSED MODEL 

S: 

No 
Deficiency Classified Image Predicted Class 

Elapsed 

Time 

1 Nitrogen 

  

1.489955 

seconds 

2 Phosphorous 

  

1.466716 

seconds 

3 Potassium 

  

1.457844 

seconds 

4 

 
Complete 

  

1.456076 

seconds 

5 Ferrous 

  

1.497839 

seconds 
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5. Conclusion 

Nutrient deficiency poses a significant challenge to agricultural productivity. Precise 

identification and remediation of such deficiencies are crucial for preventing further 

detriment to cotton crops. This paper introduces a deep learning model tailored for this 

purpose. A comprehensive dataset was curated to facilitate the training of various pre-

existing networks as well as the proposed model. The research focused on classifying 

diverse nutrient deficiencies, with the proposed model demonstrating robust performance 

on the cotton leaf dataset. 

A comparative analysis with other pre-trained Convolutional Neural Network (CNN) 

models revealed that the proposed transfer learning model attained a validation accuracy 

of 96.38%, surpassing its counterparts. The findings highlight the potential of machine 

learning methodologies in combating nutrient deficiency issues in cotton cultivation. By 

integrating such advanced diagnostic tools, farmers can enhance crop yields and 

maximize profitability, thereby contributing to sustainable agricultural practices. 
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