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Abstract 

 This paper contracts with a finite-capacity Markovian queueing structure with 
state-dependent arrival and service rates [4]. It is expected that the customers may 
seek second optional additional service after completion of the first essential service. 
This model is defined using the infinitesimal generator matrix and for the analysis, the 
group generalised inverse of the infinitesimal generator is used. Using the group 
generalised inverses[1], the probabilities associated with the steady state are obtained 
analytically. Some performance measures are derived. Also, some numerical 
illustrations are provided.  

Keywords:  A Markovian queueing structure with limited capacity, State-dependent 
rates[4], Infinitesimal generator matrix, Group generalised inverse, Steady state 
probabilities, and Performance measures. 

1. Introduction 
In the literature, many researchers work on queueing models with infinite waiting 

space. However, in practice, in waiting line situations, the capacity of the line is finite. 
Since the waiting space is finite, the arriving customers leave the system without enter 
the waiting line, if the line is full, such a model is called the loss model. This type of 
model was first investigated by Erlang in 1917.  Some earlier researchers on this area 
are Fortet (1948), Vaulot (1954), Takacs(1969), Jagerman (1974), Harel (1987), 
Berezner et al.,(1995) and  Kalyanaraman and Pattabiraman (2010). 

Also, in the literature, the arrival rate and service rate are constant in many 
works on queueing systems. However, in many real-life situations, the arrival and 
service rates need not be constant; the rates are state-dependent, that is, λn and μn 
respectively, where n is the number of customers in the system(Cox and Smith(1961)).  
Based on physical situations, some special cases that received considerable attention 
in the literature are   
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Notable works in this line are Conway and Maxwell (1961), Harris (1967), Scott (1970), 
Natvig (1973),Hadidi (1974), Conolly (1975), Boxma et.al (2005), Kalyanaraman and 
Pattabiraman (2011) and Kalyanaraman and Sundaramoorthy (2019). 
 Queueing model through main services have been considered in many studies. 
However, in many real situations, some customers may need the main service and 
some subsidiary services as well. Madan in 2000, presented the idea of a second 
optional service. After the pioneering work of Madan many authors including Medhi 
(2002), Wang (2004), Choudhury et.al. (2009) and others working on queueing models 
with a second optional service. 
 In this article, we analysed a finite-capacity Markovian queueing system with 
state-dependent arrival and service rates[4]. After the end of service (essential service) 
the customer leaves the system with probability 1-r or the customer may demand 
additional service (optional service) with probability r (0<r<1).  

An application of our model is in the subsequent automobile repair garage for 
cars. Consider a mechanic of an automobile repair garage, the arrival of cars forms a 
random process. The mechanic is responsible for routine maintenance (essential 
service) of a car at one time (such as the routine maintenance every 1000 km, 2000km, 
etc.). Few vehicles may need a tire, windshield wiper, or battery spare (second optional 
service).   

 This model is defined using an infinitesimal generator matrix. The above-defined 
model has been analysed using the technique of group generalized inverses. Hunter 
(1969) recognised that a square medium G processes the group inverse, whenever G 
and G2 have the same rank. Some notable works in this area are Adi-Ben. Israel and 
Greville (1974), Boullion and Odell (1971) and Campbell and Meyer (1979). Meyer 
(1975) gave a formula for a group inverse of an infinitesimal generator of m-state 
ergodic processes. Using the group inverse he obtained the fixed probability vector. 
Kemney and Snell (1960) and Hunter (1969) have obtained the mean first passage time 
matrix for m-state ergodic processes.  

This paper is formatted as follows: In sections 2 and 3, the method and the 

corresponding analysis are given. In section 4, the model definition is given. In section 

5, the mathematical definition of the queueing system and the analysis are given. In 

section 6, some performance measures are given. In section 7, some numerical 

illustrations are provided. Finally, in section 8, a conclusion is given. 
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2. The Method 

Let (𝑋௡, 𝑌௡),  𝑛 ≥ 0 be a Markov process on the state 𝑆 = {(𝑛, 𝑗): 0 ≤ 𝑛 ≤ 𝑁,  1 ≤ 𝑗 ≤

𝑎௡}with the following bock tridiagonal infinitesimal generator. 

 

𝑄 =

⎝

⎜
⎜
⎜
⎜
⎛

𝐵଴ 𝐴଴ 0 0 … … 0 0
𝐶ଵ 𝐵ଵ 𝐴ଵ 0 0 … 0 0
0 𝐶ଶ 𝐵ଶ 𝐴ଶ 0 … 0 0
… … … … … … … …
… … … … … … … …
… … … … … … … …
0 0 0 … … 𝐶ேିଵ 𝐵ேିଵ 𝐴ேିଵ

0 0 0 … … 0 𝐶ே 𝐵ே ⎠

⎟
⎟
⎟
⎟
⎞

 

 
Where 𝐵଴, 𝐵ଵ, … , 𝐵ே are square matrices of order 𝑎଴, 𝑎ଵ, … , 𝑎ே respectively. Their diagonal 
elements are strictly negative, the other elements are non-negative. The matrices 
𝐴଴, 𝐴ଵ, . . . , 𝐴ேିଵ ,𝐶ଵ, 𝐶ଶ, . . . , 𝐶ே are rectangular matrices and non-negative. The row sums of 𝑄 
are equal to 0. That is, 

𝐵଴𝑒 + 𝐴଴𝑒 = 0 
𝐶௜𝑒 + 𝐵௜𝑒 + 𝐴௜𝑒 = 0: 1 ≤ 𝑖 ≤ 𝑁 − 1, 

𝐶ே 𝑒 + 𝐵ே𝑒 = 0 
Where 𝑒 denotes the column vector and unit elements. 

For the determination of the stationary probability distribution, the following 
realization of the Markov chain is useful. Observe the process 𝑄 during the interval of 
time spent at the level𝑛, before the original process enters the level 𝑛 + 1 for the first 
time. Denote𝑃௡, be the realization of the process. The state space of 𝑃௡ is 𝑆௡ = {(𝑛, 𝑗): 1 ≤

𝑗 ≤ 𝑎௡}.  All 𝑃௡,  0 ≤ 𝑛 ≤ 𝑁 − 1 are transient Markov Chains. The process 𝑝ே is the 
realization of the process 𝑄 with state space  𝑆ே = {(𝑁, 𝑗): 1 ≤ 𝑗 ≤ 𝑎ே}, it is an ergodic 
Markov chain. Denote 𝑄௡ as the infinitesimal generator of the process𝑃௡,  0 ≤ 𝑛 ≤ 𝑁. Let 
𝑊 = (𝑤଴, 𝑤ଵ, 𝑤ଶ, … , 𝑤ே) be the probability vector, where 𝑊௡be the probability that there 
are n customers in the system. 

3. The Algorithm 

Based on the method described in the above section the following algorithm is 
incorporated to find the analytic solution for the model defined in section 2.  

Based on the method described in the above sub-section the following algorithm is proposed to solve the 

model defined in this paper:  

Step 1 Write 
U c

R
d 

 
  
 

 R Q  , U is    1 1m m   matrix  

Step 2: Check the rank of R = rank of 
2R , if it is true 

#R exists. 
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Step 3: Calculate  and  where is non-zero. 

Step 4: Calculate . 

The Model 

The queueing model discussed in this paper is a single server queue with a finite 
waiting line of size N. The arrival process follows a Poisson process with a rate 𝜆௡ and 
service time of successive customers follow a negative exponential distribution with a 
rate 𝜇௡, where n the number of customers in the system at the period of arrival and 
service respectively. After the end of service (essential service) the customer exits the 
system with probability 1-r or the customer may demand additional service (optional 
service) with probability r (0<r<1). The optional service follows a negative exponential 
with rate μ. Also on arrival, if the system is full of N customers, then the arrival leaves 
the system.  

The Markov chain related to the model defined above is {(𝑋௡, 𝑌௡): 𝑛 ≥ 0} with state 
space.𝑆 = {(𝑖, 𝑗): 0 ≤ 𝑖 ≤ 𝑁,  𝑗 = 𝑎଴, 𝑎ଵ, 𝑎ଶ}.   

The 𝑄 matrix is. 

 

0 0

1 1 1 1

2 2 2 2

N 1 N 1 N 1 N 1

N N

0 0 0 0

( ) 0 0 0

0 r ( r ) 0 0
Q

0 0 0 r ( r )

0 0 0 0 r ( r )

0

0

0

   

  
      
          

  
 
         
 

        







       

 

 

 

 

Where 𝑎଴ = {0}, 𝑎ଵ = {1,2,3, … ,  𝑁 − 1}, 𝑎ଶ = {𝑁}. 

Define  𝑅 = ቀ
𝑈 𝑐
𝑑ᇱ 𝛼

ቁ, where 𝑅 = −𝑄, U is an 𝑁 × 𝑁 matrix, corresponding to the 

states {0,1,2, … , 𝑁}. 

 

4. The Mathematical Model and Study 

The model defined in the article can be identified utilizing the above construction. 
For the solution, we use the technique of group inverse (Kalyanaraman & Pattabiraman 

(2010)). The Markov chain related to this article is {(𝑋௡, 𝑌௡): 𝑛 ≥ 0} with state space.𝑆 =

{(𝑖, 𝑗): 0 ≤ 𝑖 ≤ 𝑁,  𝑗 = 𝑎଴, 𝑎ଵ, 𝑎ଶ}.  
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To put on the process of unit 4, we take 𝑅 = ቀ
𝑈 𝑐
𝑑ᇱ 𝛼

ቁ where. 

𝑅 = −𝑄, 

The 𝑄 matrix is. 

0 0

1 1 1 1

2 2 2 2

N 1 N 1 N 1 N 1

N N

0 0 0 0

( ) 0 0 0

0 r ( r ) 0 0
Q

0 0 0 r ( r )

0 0 0 0 r ( r )

0

0

0

   

  
      
          

  
 
         
 

        







       

 

 

 

Where 𝑎଴ = {0}, 𝑎ଵ = {1,2,3, … ,  𝑁 − 1}, 𝑎ଶ = {𝑁} 

 

 

U =

⎝

⎜
⎜
⎜
⎛

𝜆଴ −𝜆଴ 0 0 0 . . . 0 0

−(𝜇
1

+ 𝑟𝜇) ൫𝜆1 + 𝜇
1
൯ −𝜆ଵ 0 0 . . . 0 0

0 −(𝜇
2

+ 𝑟𝜇) ൫𝜆2 + 𝜇
2

+ 𝑟𝜇൯ −𝜆ଶ 0 … 0 0

0 0 −(𝜇
3

+ 𝑟𝜇) ൫𝜆3 + 𝜇
3

+ 𝑟𝜇൯ −𝜆ଷ … 0 0
… … … … … … … …
0 0 … … … … −(𝜇

𝑁−1
+ 𝑟𝜇) ൫𝜆𝑁−1 + 𝜇

𝑁
+ 𝑟𝜇൯⎠

⎟
⎟
⎟
⎞

 

 

 

 

𝑐 =

⎝

⎜
⎜
⎛

0
0
0
. . .
. . .

−𝜆ேିଵ⎠

⎟
⎟
⎞

 

 

   0 0 0 ... 0 ( )N Nd r r           

 

 

We examine the above model by means of technique described in Unit 4. 
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𝑈ିଵ = ൫𝑢௝௝൯
(ேିଵ)×(ேିଵ)

 

Where  

kn 3
1 l 1

ij
k j l jj 1 1 l 1

r1
u 1 1 for i j




  

     
    
     

 „  

kn 3
1 l 1

ij
k j l jj 1 1 l 1

r1
u 1 for i j




  

     
    
     

  

The unique fixed probability vector  0 1 N

1
W ' W , W ,..., W


 

     
N k 1 N N 1N 1

1 0 j j j j
k 1j 2 j 0 j k 2 j 0

K r r
 

    

                  

     
N k 1 N N 1N 1

1 0 j j j jN 1
k 1j 2 j 0 j k 2 j 0

j
j 0

1
r r

 


    



 
               

 
   


 

Where,  

   
N

0 j 0 j
j 2

1
W r

K 

 
       

 
  

 
k-1 N

j j
j=0 j=k+1

1
W = λ μ +rμ

Ki

 
 
 
   

N-1

N j
j=0

1
W = λ

K  

 

 
5. Some Performance measures. 

The Mean number of customers in the system is 
N

n
n=1

L= nW  

The probability that the server is idle is 0W  

The Blocking probability β np =1-W   
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6. Numerical Analysis 

In this segment, we examine three special models namely, Model I, Model II, and 

Model III related to model in unit 3. In this study, we take 𝜆௡ =
ଵ

௡ାଵ
, 𝜇௡ =

ଵ

ଶ௡
 and vary for 

𝑁 = 5(Model I) 𝑁 = 7(Model II) and 𝑁 = 15 (Model III). 

 

Model I: 𝑴(𝒏)/𝑴(𝒏)/𝟏/𝟓 

𝜆଴ = 1: 𝜆ଵ = 0.5: 𝜆ଶ = 0.333: 𝜆ଷ = 0.25: 𝜆ସ = 0.2, 

Optional service with 𝑟 = 0.5 and second service follows exponential with 𝜇 = 0.5 

𝜇ଵ = 0.5, 𝜇ଶ = 0.25, 𝜇ଷ = 0.167, 𝜇ସ = 0.125, 𝜇ହ = 0.10, then,  

 

𝑅 = −𝑄 =

⎝

⎜⎜
⎛

1 −1 0 0 0 0
−0.75 1.25 −0.5 0 0 0

0 −0.5 0.833 −0.333 0 0
0 0 −0.417 0.667 −0.25 0
0 0 0 −0.375 0.575 −0.2
0 0 0 0 −0.35 0.35 ⎠

⎟⎟
⎞

 

 

Uିଵ =

⎝

⎜
⎛

15.553 19.404 17.404 11.5  5
14.553 19.404 17.404 11.5  5
13.053 17.404 17.404 11.5  5
10.801 14.401 14.401  11.5  5
7.044 9.392 9.392 7.5  5⎠

⎟
⎞

 

 

 

Rank of (𝑄) =rank (𝑄ଶ) = 5 

𝑑′ = (0 0 0 0 −0.35) 

ℎᇱ = (−2.465 −3.265 −3.265 −2.625 −1.75) 

𝛽 = 11.745 

𝑊′ = (0.21 0.278 0.278 0.223 0.149 0.085) 

𝐿 = 2.067 

𝑊଴ = 0.21 
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 The blocking probability 𝑝ఉ =0.915 

 

Model II: 𝑴(𝒏)/𝑴(𝒏)/𝟏/𝟕 

λ଴ = 1: λଵ = 0.5: λଶ = 0.333: λଷ = 0.25: λସ = 0.2: 

λହ = 0.167: λ଺ = 0.143 

Optional service with 𝑟 = 0.2 and second service follows exponential with 𝜇 = 0.2 

μଵ = 0.5: μଶ = 0.25: μଷ = 0.167: μସ = 0.125: 

μହ = 0.10: μ଺ = 0.083: μ଻ = 0.071 

then,  

R = −Q =

⎝

⎜
⎜
⎜
⎜
⎛

1 −1 0 0 0 0 0 0
−0.54 1.04 −0.5 0 0 0 0 0

0 −0.29 0.623 −0.333 0 0 0 0
0 0 −0.207 0.457 −0.25 0 0 0
0 0 0 −0.165 0.365 −0.2 0 0
0 0 0 0 −0.14 0.307 −0.167 0
0 0 0 0 0 −0.123 0.266 −0.143
0 0 0 0 0 0 −0.111 0.111 ⎠

⎟
⎟
⎟
⎟
⎞

 

 

Uିଵ =

⎝

⎜
⎜
⎜
⎛

5.444  8.229 10.74  12.446 12.797 11.139  6.993
4.444 8.229 10.74  12.446 12.797 11.139  6.993
3.364 6.229 10.74  12.446 12.797 11.139  6.993
2.423 4.487 7.737 12.446 12.797 11.139  6.993
1.644 3.045 5.25 8.446 12.797 11.139  6.993
1.002  1.855 3.199 5.146 7.797 11.139  6.993
0.463 0.858 1.479 2.38 3.605 5.151 6.993⎠

⎟
⎟
⎟
⎞

 

 

Rank of (𝑄) =rank (𝑄ଶ) = 7 

𝑑′ = (0 0 0 0 0 0 −0.111) 

ℎ′ = (−0.051 −0.095 −0.164 −0.264 −0.4 −0.572 −0.776) 

𝛽 = 3.322 

W′ = (0.015 0.029 0.049 0.079 0.12 0.172 0.234 0.301) 

𝐿 = 5.944 , 𝑊଴ = 0.015 

The blocking probability 𝑃ఉ = 0.699 
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Model III: 𝑴(𝒏)/𝑴(𝒏)/𝟏/𝟏𝟎 

𝜆଴ = 1: 𝜆ଵ = 0.5: 𝜆ଶ = 0.333: 𝜆ଷ = 0.25: 𝜆ସ = 0.2: 

𝜆ହ = 0.167: 𝜆଺ = 0.143: 𝜆଻ = 0.125: 𝜆଼ = 0.111: 𝜆ଽ = 0.1: 𝜆ଵ଴ = 0.091: 

 

Optional service with 𝑟 = 0.2 and second service follows exponential with 𝜇 = 0.2 

𝜇ଵ = 0.5: 𝜇ଶ = 0.25: 𝜇ଷ = 0.167: 𝜇ସ = 0.125: 

𝜇ହ = 0.10: 𝜇଺ = 0.083: 𝜇଻ = 0.071, 𝜇଼ = 0.063: 

𝜇ଽ = 0.056: 𝜇ଵ଴ = 0.05: 𝜇ଵଵ 

 then, 

𝑅 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 −1 0 0 0 0 0 0 0 0 0
−0.54 1.040 −0.5 0 0 0 0 0 0 0 0

0 −0.290 0.623 −0.333 0 0 0 0 0 0 0
0 0 −0.207 0.457 −0.250 0 0 0 0 0 0
0 0 0 −0.165 0.365 −0.2 0 0 0 0 0
0 0 0 0 −0.140 0.307 −0.167 0 0 0 0
0 0 0 0 0 −0.123 0.266 −0.143 0 0 0
0 0 0 0 0 0 −0.111 0.236 −0.125 0 0
0 0 0 0 0 0 0 −0.103 0.214 −0.111 0
0 0 0 0 0 0 0 0 −0.096 0.196 −0.1
0 0 0 0 0 0 0 0 0 −0.090 0.090⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

𝑈 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 −1 0 0 0 0 0 0 0 0
−0.54 1.040 −0.5 0 0 0 0 0 0 0

0 −0.290 0.623 −0.333 0 0 0 0 0 0
0 0 −0.207 0.457 −0.250 0 0 0 0 0
0 0 0 −0.165 0.365 −0.2 0 0 0 0
0 0 0 0 −0.140 0.307 −0.167 0 0 0
0 0 0 0 0 −0.123 0.266 −0.143 0 0
0 0 0 0 0 0 −0.111 0.236 −0.125 0
0 0 0 0 0 0 0 −0.103 0.214 −0.111
0 0 0 0 0 0 0 0 −0.096 0.196 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

𝑈ିଵ =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

6.6033 10.3765 14.4422 18.4021 21.8214 24.0306 24.4968 22.5499 17.6577 10.0000
5.6033 10.3765 14.4422 18.4021 21.8214 24.0306 24.4968 22.5499 17.6577 10.0000
4.5233 8.3765 14.4422 18.4021 21.8214 24.0306 24.4968 22.5499 17.6577 10.0000
3.5827 6.6347 11.4392 18.4021 21.8214 24.0306 24.4968 22.5499 17.6577 10.0000
2.8040 5.1925 8.9527 14.4021 21.8214 24.0306 24.4968 22.5499 17.6577 10.0000
2.1615 4.0028 6.9013 11.1021 16.8214 24.0306 24.4968 22.5499 17.6577 10.0000
1.6229 3.0053 5.1816 8.3357 12.6298 18.0425 24.4968 22.5499 17.6577 10.0000
1.1596 2.1474 3.7024 5.9561 9.0244 12.8920 17.5038 22.5499 17.6577 10.0000
0.7482 1.3856 2.3889 3.8431 5.8228 8.3183 11.2940 14.5499 17.6577 10.0000
0.3665 0.6787 1.1701 1.8823 2.8520 4.0743 5.5317 7.1265 8.6486 10.0000⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

Rank of (Q) =rank (Qଶ) = 10 

d'=[0 0 0 0 0 0 0 0 0 −0.096] 

h'

= [−0.0352 −0.0652 −0.1123 −0.1807 −0.2738 −0.3911 −0.5310 −0.6842 −0.8303 −0.9600]
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β=5.0638 

W=[0.007 0.0129 0.0222 0.0357 0.0541 0.0772 0.1049 0.1351 0.1640 0.1896 0.1975] 

 𝐿 = 7.3374 

𝑊଴ = 0.007 

 The Blocking probability𝑃஻ = 0.8025 

7. Conclusion 
 

This paper deals with a finite-capacity Markovian queueing system with state-
dependent arrival and service rates[4]. After completion of the first essential service, the 
customer may demand additional optional services. We define the model using an 
infinitesimal generator matrix and for the analysis, we are applying the group 
generalised inverse of the infinitesimal generator matrix. Using the group generalised 
inverse the steady-state probabilities are obtained analytically. Some performance 
measures are derived. Also, we provide some numerical illustrations to show the 
practical applicability of the model.   
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