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ABSTRACT Precise Medical image fusion is vital for improving diagnostic precision and treatment planning. Combining 

clinical images has been used to extract valuable information from multimodal clinical imaging data. This sophisticated hybrid 

fusion technique merges Wavelet Transform (DWT) and Convolutional Neural Networks (CNNs) for multimodal medical image 

fusion. By utilizing the wavelet transform, this method decomposes both CT and MRI images into multiple frequency bands, 

enhancing image details. The CNN captures high-level features, further strengthening the fusion of these images. This 

method retains essential information from both modalities and enhances soft tissue details of MRI while preserving dense tissue 

characteristics of CT. The performance of the fusion is assessed using Root Mean Square Error (RMSE) and Peak Signal-to- 

Noise Ratio (PSNR), demonstrating the method's ability to enhance diagnostic accuracy, image quality, and overall 

clinical usefulness. This hybrid strategy holds great promise for medical image analysis, aiding medical professionals in making 

better and more precise decisions. 

INDEX TERMS Medical Image Fusion; Computed Tomography (CT); Magnetic Resonance Imaging (MRI); Wavelet 

Transform; Root Mean Square Error (RMSE); Peak Signal-to-Noise Ratio (PSNR), Convolutional Neural Networks (CNNs). 
 

I.INTRODUCTION 

 

Brain medical imaging plays a vital role in today’s healthcare, 

offering essential support in diagnosing conditions, planning 

treatments, and tracking patient progress. Techniques such as 

Magnetic Resonance Imaging (MRI), Computed Tomography 
(CT), Positron Emission Tomography (PET), and Ultrasound 

each provide valuable insights into the body’s structure and 

function. However, no single imaging method is flawless— 

each comes with its own strengths and limitations. For 

instance, while CT scans are excellent for detailed anatomical 

views, they struggle to differentiate soft tissues. MRI excels in 

showing soft tissue contrast but is less effective when it comes 

to bone clarity. Meanwhile, functional imaging tools like PET 

and Single-Photon Emission Computed Tomography (SPECT) 

are great for detecting metabolic activity but often lack spatial 

resolution[1]. 

Due to these individual drawbacks, combining multiple 
imaging modalities has become increasingly important. 

Medical image fusion helps integrate the strengths of different 

scans into a single, more informative image. This allows 

healthcare providers to make better, faster, and more accurate 

clinical decisions. For example, fusing CT’s structural clarity 

with PET’s functional insights can help doctors precisely 

locate tumors and assess their behavior. Similarly, merging 

MRI with SPECT enhances the ability to detect and interpret 

neurological conditions by offering both anatomical and 

functional context. 

 

 

Without such fusion, clinicians would need to interpret separate 

images independently, which not only consumes more time but 

also increases the risk of missing critical details. As a result, 

image fusion has become an indispensable tool for improving 

diagnostic precision and efficiency in modern medical imaging 

systems[2]. 

 

 
Figure 1: Comparison of MRI (a), CT (b), and Fused Image (c) for 

Brain Scan 

 

Despite its diagnostic value, medical imaging faces challenges 

such as varying image quality across modalities. CT offers high 
spatial detail but limited quality soft tissue contrast, while MRI 

provides better contrast but slower acquisition. PET shows 

metabolic activity but lacks spatial precision [5]. 
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Image noise and artifacts from motion, scanner limits, or 

interference can degrade quality and lead to misdiagnosis. 

Misalignment between modalities further complicates fusion, 

demanding advanced registration techniques for accurate 

alignment [6]. 

Treatment planning, especially for radiation therapy, requires 
high precision in tumor localization to minimize damage to 

surrounding healthy tissues. Image fusion is widely used in 

pre-surgical assessments and intraoperative guidance, 

particularly in neurosurgical and orthopedic procedures, where 

detailed imaging is crucial for making real-time decisions. 

Furthermore, fused images support AI-based clinical decision- 

making systems for automated tumor segmentation, organ 

classification, and anomaly detection. Deep learning-based 

fusion methods improve the speed and accuracy of real-time 

medical assessments, enabling more efficient workflows in 

healthcare settings [3]. 

Medical image fusion is critical in healthcare for: 

Enhancing Diagnosis: Combined CT-MRI images provide 

both structural and soft tissue details. 
Improving Treatment Planning: Helps in radiation therapy 

by precisely locating tumors. 

Reducing Redundancy: Removes unnecessary information 

while preserving important details. 

Increasing Accuracy: Helps radiologists and AI models 

detect abnormalities with higher precision. 

Better Visualization: Provides clearer images for surgical 

planning and medical research. 

Medical image fusion is advancing rapidly, with key roles in 

diagnostics, treatment, and AI-driven decisions. This study 

focuses on CT-MRI fusion but offers methods applicable to 
other multimodal combinations, improving medical data 

interpretation across fields [3]. 

The wavelet-CNN-based fusion method presented in this study 

is developed to effectively combine CT & MRI images, 

enhancing diagnostic precision. CT imaging is particularly 

effective for identifying issues in dense structures like bones 

and tumors, while MRI excels in capturing detailed soft tissue 

contrasts. By merging the strengths of both modalities, this 

approach generates a high-quality image that is rich in 

information, with improved resolution and reduced noise— 

ultimately supporting more accurate medical assessments and 
diagnoses [6]. 

This research reviews spatial and transform domain fusion 

methods, integrating modern AI techniques. It emphasizes 

how fusion reduces diagnostic uncertainty, enhances treatment 

planning, and supports AI-based decision-making in medical 

imaging [8]. 

The main driving force of this study is to address the 

limitations of individual imaging techniques by developing an 

advanced fusion methodology that enhances visualization, 

improves diagnostic accuracy, and facilitates AI-driven 

medical decision-making. The study specifically focuses on 

wavelet-based fusion techniques and their potential integration 
with deep learning models, ensuring efficient and accurate 

image synthesis for clinical applications [11]. 

Beyond image quality, this research also explores the real- 

world clinical impact of medical image fusion. In applications 

such as oncology, neurology, and cardiology, accurate imaging 

is critical for early detection and intervention. PET-CT fusion 

is widely used for tumor localization, while MRI-SPECT fusion 

helps in diagnosing neurodegenerative disorders like 

Alzheimer's and Parkinson’s. This study focuses on advancing 

fusion methodologies to support the creation of AI-driven 

diagnostic tools, which can streamline and enhance clinical 
decision-making in these areas [9]. 

Furthermore, this work is motivated by the increasing demand 

for real-time medical imaging solutions, particularly in 

telemedicine and remote diagnostics. With the rise of cloud- 

based healthcare systems and AI-powered imaging platforms, 

the ability to perform efficient and accurate image fusion on- 

the-fly has become a necessity. The proposed system, if 

successfully implemented, could play a crucial role in 

expanding access to high-quality diagnostic imaging in 

underserved regions, thereby improving global healthcare 

outcomes [15]. 

 
II. MEDICAL IMAGE FUSION 

 

Multimodal medical image fusion technologies and techniques 

have greatly advanced, contributing to more precise and 

informed clinical decision-making. Selecting the most effective 
imaging solution for a particular diagnostic or investigative 

purpose demands a comprehensive understanding of the 

anatomy and functionality of the target organs. Since no single 

imaging technique can capture all the necessary structural and 

functional information, combining data from multiple 

modalities becomes vital for ensuring thorough analysis and 

dependable diagnostic outcomes. 

As illustrated in Figure 2, medical image fusion research 

focuses on three main goals: (a) recognizing, enhancing, and 

developing imaging technologies that are well-suited for fusion 

applications, (b) formulating and refining various fusion 

algorithms and strategies to integrate diverse medical imaging 
data effectively, and (c) utilizing these fusion methods to 

examine specific human organs more accurately, especially 

when assessing diseases or abnormalities. Together, these 

efforts help enhance diagnostic accuracy by combining the 

advantages of various imaging tools while reducing their 

individual shortcomings. 

 

 
Figure 2: Overview of Medical Image Fusion – Modalities, 

Algorithms, and Application Areas 
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III.LITERATURE REVIEW 

 

This section provides an overview of existing research on 

medical image fusion utilizing advanced wavelet-CNN 

transform methods. The goal of medical image fusion is to 

combine images from different modalities—such as CT, MRI, 

and PET—to improve the accuracy of diagnoses. While 

conventional approaches have mainly used wavelet-based 

techniques, newer developments have increasingly adopted 
deep learning strategies to achieve more effective and precise 

fusion results. 

Y. Jie et al. [1] proposed a Integrated system for combining 

multiple medical imaging modalities leveraging artificial 

intelligence techniques to integrate structural and textural 

information. Their study demonstrated significant 

improvements in image quality and diagnostic interpretability. 

R. Zhu et al. [2] proposed a medical image fusion method for 

MRI and CT that utilizes a synchronized anisotropic diffusion 

model. This approach effectively balances the fusion process 

while improving spatial consistency and preserving important 

edge details. 

Similarly, X. Liang et al. [3] developed MCFNet, a deep 

learning-based multi-layer concatenation fusion network that 
optimally retains structural details and contrast. 

S. Singh et al. [4] presented a hybrid layer decomposition 

method incorporating CNN-based feature mapping alongside 

structural clustering, significantly improving texture retention 

and edge definition. 

L. Wang et al. [5] proposed a wavelet-based fusion technique 

using Gabor representation, combining multiple CNNs and 

fuzzy neural networks to enhance image clarity and texture. 

Wavelet Transform and Machine Learning Approaches Recent 

research has incorporated machine learning (ML) and deep 

learning (DL) techniques with wavelet-based fusion for 

enhanced accuracy. 

Y. Ling et al. [6] introduced MTANet, a multi-task attention- 

based network for segmenting medical images and enhancing 

feature focus classification, significantly improving 

segmentation accuracy and robustness. 

X. Li et al. [7] developed a Laplacian redecomposition 

framework, ensuring enhanced contrast and 

structural preservation in MRI and CT fusion. 

G. Wang et al. [8] proposed a gradient-enhanced 

decomposition model, effectively integrating functional (e.g., 

PET) and anatomical (e.g., MRI) imaging modalities while 

retaining high gradient fidelity. 

Z. Guo et al. [9] explored CNN-based multimodal fusion, 

improving segmentation accuracy by leveraging hierarchical 

feature extraction.Deep Learning and Image Fusion 

Techniques Deep learning Architectural innovations have 
revolutionized medical image fusion, leading to improved 

clinical outcomes. 

F. Zhao et al. [10] introduced adaptive structure decomposition 

for CT and MR image fusion, ensuring edge preservation and 

texture clarity. 

 
Q. Zuo et al. [11] developed DMC-Fusion, a deep multi-cascade 

framework that progressively refines fusion results, 

significantly improving structural retention. 

Y. Zhao et al. [12] proposed TUFusion, a transformer-based 

universal fusion algorithm, demonstrating superior spatial 

consistency and structural retention. 

K. Shi et al. [13] introduced a multi-level bidirectional feature 

interaction network, improving spatial consistency and contrast 

preservation in multimodal fusion. 

S. Iqbal et al. [14] explored deep learning-based feature 
engineering for multimodal medical image retrieval, integrating 

CNNs with hybrid feature extraction mechanisms for enhanced 

precision. 

W. Li et al. [15] introduced multi-modal sensor-based fusion 

using guided image filtering, achieving superior contrast 

enhancement and noise reduction. 

R. Shen et al. [16] proposed a cross-scale coefficient selection 

framework, optimizing fusion across multiple scales to ensure 

minimal information loss. 

R. R. Nair et al. [17] developed a multi-resolution approach for 

color medical image fusion, improving visualization in 

dermatology and histopathology applications. 

W. Kong et al. [18] introduced a local difference analysis- 

based multimodal fusion technique, effectively preserving local 

structural variations while enhancing spatial coherence. 

M. T. Irshad et al. [19] proposed gradient compass-based 

adaptive fusion, dynamically adjusting the fusion process for 

enhanced edge preservation and contrast. 

Y. Tong et al. [20] developed a multi-focus image fusion 

algorithm, integrating images captured at different focal depths 

to improve clarity in ophthalmology and endoscopy 

applications. 

Summary of Methodologies Used 

1. Wavelet-Based Approaches: DWT, SWT, and 

NSCT remain widely used for medical image fusion. 

2. Hybrid Wavelet + ML Models: Integration of CNNs, 

Autoencoders, and PCA with Wavelet Transform 

enhances feature extraction. 

3. Deep Learning Models: GANs, CapsNet, and CNN- 

based architectures improve accuracy and fusion 

quality. 

4. Transformer-Based Fusion: TUFusion leverages 

long-range dependencies for improved structural 

retention. 

5. Multi-Stage Feature Refinement: DMC-Fusion 

progressively enhances fusion results through a multi- 

cascade process. 

6. Ensemble Learning: Combining multiple CNN 
models, such as EfficientNet and VGG16, further 

enhances classification performance. 

7. Multi-Focus and Adaptive Fusion: Techniques like 

gradient compass-based adaptive fusion and multi- 

focus fusion improve visualization and contrast. 
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This literature review highlights the evolution from traditional 

wavelet-based techniques to hybrid and deep learning- 

enhanced fusion models. Although wavelet-based approaches 

remain valuable, incorporating deep learning techniques into 

medical image fusion has opened new avenues for enhancing 

diagnostic precision and supporting more informed clinical 

decisions.Future research could explore more efficient multi- 

scale fusion techniques and self-supervised learning models to 

further enhance Medical image analysis 

 
IV. METHODS FOR IMAGE FUSION 

 

Image fusion techniques span a broad spectrum, yet they are 

mainly classified into two core groups: spatial domain 

approaches and transform domain approaches. A brief 

summary of each category is outlined below. These are 

explained below: 

i. Spatial Domain Fusion Techniques 

 

In spatial domain fusion approaches, fusion is carried out by 
operating directly on the pixel values of the input images. 

These methods manipulate pixel intensities to achieve the 

desired fused output. The strategy relies on grey-level 

transformations, and the enhancement outcome depends on 

the specific mapping technique applied. While these methods 

are relatively straightforward, a major drawback is the 

potential for spatial distortions in the resulting fused image. 

Often, these techniques sacrifice spectral integrity and 

introduce unwanted artifacts. 

A variety of spatial domain fusion methods exist, including 

the Averaging Method, Maximum Selection, Minimum 

Selection, and IHS (Intensity-Hue-Saturation) based 

methods. These Techniques are typically applied directly to 

the source images without any transformation, which may 

result in lower signal-to-noise ratios, particularly when 

simple averaging is used. 

 

Average Method 

This method involves computing the average of the 

corresponding pixel values from the input images to produce 

the fused image. It works effectively when the images come 
from the same type of sensor and have consistent brightness 

and contrast levels. The mathematical expression is: 

It’s described as: 

 
Where, F(x, y) is the final fused image, P(x, y) and Q(x, y) are 

two input images 

 

Select Maximum Method 

This approach is Opposite to the maximum method, this 

technique selects the minimum pixel value between the two 

input images at each location:. The fused image is formed by 

retaining the highest intensity value at each pixel position: 

In this case, A & B were also used as source images, and F 

represents the resulting fused image. 

 

Select Minimum Method 

In this approach, the fused image is generated by selecting the 

minimum pixel intensity value from the corresponding 

positions in the pair of input images. 

 

In this case, A & B were also input images, and F is the fused 

image. 

 

ii. Transform domain fusion technique 

Transform domain techniques involve converting the image 

into its frequency components before fusion. Instead of 

working with raw pixel values, these methods operate on 

transformed coefficients, making them ideal for preserving 

image data obtained through frequency content. This class of 

methods typically yields improved outcomes regarding 

feature preservation and image quality. 

Some of the most widely used transform-based fusion 

methods in medical imaging include: 
Discrete Fourier Transform 

Discrete Cosine Transform 

Discrete Wavelet Transform 

 

Discrete Fourier Transform 

 

Image processing tools play a vital role in decomposing an 

image into its sine and cosine frequency components through 

the Fourier Transform. While the input remains in the spatial 

domain, the output of the transformation provides a frequency 

domain representation of the image. Each coordinate in this 

domain corresponds to a specific frequency component derived 

from the spatial structure of the base image. The Fourier 

Transform is widely applied in various fields, including image 

reconstruction, filtering, analysis, and compression. When 

applied to a 2D image of dimensions N × N, the Discrete 
Fourier Transform (DFT) is mathematically represented as: 

 

The equation defines the value at each point F(k,l) as a 

combination of weighted contributions from the spatial 

domain, using sine and cosine functions. These functions 

correspond to different frequency components. Specifically, 

F(0,0) represents the DC component, which is related to the 

overall brightness of the image, while F(N−1,N−1) 

corresponds to the highest frequency in the image. The 

frequency-domain representation obtained through the Fourier 

Transform can also be converted back to the spatial domain 

using the Inverse Fourier Transform, which is mathematically 
expressed as: 
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Notice the factor 1/N2, which serves as a normalization 

constant in the inverse transformation process. To compute the 

inverse transform, a double summation is required for each 

spatial point. However, due to the separable nature of the 

Fourier Transform, it can be computed independently along 

rows and columns, making it more efficient and easier to 
implement. This allows the transformation to be expressed in 

a simplified, step-wise manner as follows: 

 

To apply the Fourier Transform in two dimensions, the process 

begins by performing NNN one-dimensional transforms along 

one axis of the image, producing an intermediate result. This 
intermediate image is then transformed again using NNN one- 

dimensional transforms along the other axis, completing the 

full 2D transformation. This method of using 2N one- 

dimensional transforms significantly simplifies computation 

while maintaining accuracy. 

The output of the Fourier Transform is typically complex- 

valued, consisting of both magnitude and phase components. 

These can be visualized either as separate real and imaginary 

parts or as magnitude and angle representations. In most image 

processing applications, only the magnitude component is 

used, as it contains the essential information about the image's 

spatial structure and frequency characteristics. 

 

Discrete Cosine Transform 

The Discrete Cosine Transform operates through a four-stage 

coding process. Initially, the visual representation is 

segmented into smaller blocks, typically of size 8×8 pixels. 
Each of these blocks is then transformed into the frequency 

domain using a two-dimensional DCT function. After 

transformation, the frequency coefficients are quantized, 

followed by encoding using a lossless entropy algorithm. DCT 

proves to be highly effective for image compression due to its 

ability to reduce pixel correlation. 

The formula for 1-D DCT is as follows: 
 

 

Where, k = 0,1................. N-1 

The equation for 2-DCT: 
 

 

Here is Figure 3, which provides the basic idea of DCT. 

 

 

 
Figure 3: Conversion from Spatial to Frequency Domain 

 

Discrete Wavelet Transform 

It is a time domain analysis approach with a fixed window size 

and convertible forms. In the high frequency section of discrete 

wavelet transform converted signals, the time differentiated 

rate is excellent. In addition, the frequency difference rate in 

the low frequency section is good. It is capable of successfully 

extracting information from a signal. 

Figure 4 depicts a two-channel, one-dimensional filter bank for 

perfect reconstruction. Filters for low and high analysis are 

utilized to convolve the input discrete sequence x. 

Each one of the pair down sampled signals, xH and sL is 

transformed according to the algorithm. For well-created 
filters, x is a signal precisely reconstructed (y=x) . 

The schematic diagram for wavelet based fusion techniques is 

shown in figure 4: 
 

 
Figure 4: Fusing Multimodal Images with DWT Approach 

 

This diagram represents the Wavelet-CNN Based Image Fusion 

Process, which integrates two medical images (Image A & 

Image B) to generate a fused image (Image F). The process 

follows these steps: 

 

1. Apply Discrete Wavelet Transform (DWT) to Both 

Images 
Image A and Image B undergo DWT, which 

decomposes them into different frequency sub-bands: 
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 Low-Low (LL): Approximate details 

 Low-High (LH): Horizontal details 

 High-Low (HL): Vertical details 

 High-High (HH): Diagonal and edge details 

2. Extract Wavelet Coefficients 

 The wavelet transform produces coefficients 

that represent different parts of the image. 

 These coefficients contain important 
structural and texture information from both 

images. 

 

iii. VGG19 Model 

 

The pretrained VGG19 model is utilized as a key attribute 

extractor. VGG19 is a Convolutional neural network (CNN) 

that has were trained on large datasets like ImageNet. It is 

widely used in image analysis tasks because of its deep layers 

and ability to capture fine details and advanced pattern 

structures in images. 

The model extracts important features from the high-frequency 

components of the images (like edges), which are crucial for 
identifying details in tumor regions. 

This architecture represents a typical Convolutional Neural 

Network (CNN) used for image classification. It begins with 

an input image of size 32×32×1, representing a grayscale 

image. The first layer applies convolution using six filters, 

generating feature maps of size 28×28×6 that capture low- 

level multi-scale characteristics.These maps are passed 

through a pooling layer, reducing the spatial dimensions to 

14×14×6 to minimize computational complexity and retain 

important information. A second convolution layer applies 16 

filters to extract deeper features, resulting in 10×10×16 feature 
maps. This is then followed with another pooling layer that it 

downsamples the data to 5×5×16. The feature maps are then 

flattened and passed through a series of fully connected layers 

- first with 120 neurons, then 84, and finally an output layer 

with 10 neurons. This output layer typically uses soft max 

activation to classify the input into one of ten possible 

categories, such as digits or labels. 

 

 

 
Figure 5: VGG19 Model 

V. IMAGE FUSION BASED ON WAVELET-CNN BASED 
APPROACH 

 

The system architecture is designed to integrate Discrete 

Wavelet Transform (DWT) and VGG-19-based transfer 

learning for medical image fusion, combining the strengths of 

CT and MRI images to enhance diagnostic accuracy. DWT is 

employed for frequency-based decomposition, while VGG-19, 

a pre-trained deep learning model, is used for feature extraction 
and fusion. This combination ensures that the fused image 

retains both structural details from CT and soft-tissue contrast 

from MRI, making it more informative for clinical analysis. 

The process begins with data acquisition, where MRI and CT 

images are obtained from medical databases or direct user 
uploads. These images serve as input for the fusion pipeline. 

Since medical images often have variations in resolution, noise 

levels, and intensity distributions, the system applies 

preprocessing steps such as resizing, noise reduction, and color 

space conversion to standardize them. Resizing ensures 

uniform image dimensions, noise reduction eliminates 

unwanted artifacts, and conversion to the YCbCr color space 

helps in preserving luminance information, which is crucial for 

medical imaging. 

Next, wavelet decomposition (DWT) is applied separately to 

both MRI and CT images. This process breaks each image 

down into four frequency sub-bands: 

 

 LL (Approximation coefficient – Low-frequency 

details) 

 LH (Horizontal detail – High-frequency component) 

 LV (Vertical detail – High-frequency component) 

 LD (Diagonal detail – High-frequency component) 

 

By decomposing the images into these sub-bands, DWT 

effectively isolates structural and textural features, making it 
easier to fuse relevant information from both sources. 

For the fusion process, the VGG-19 model—an advanced 

convolutional neural network pre-trained on the ImageNet 

dataset—is utilized to extract and integrate features effectively. 

Instead of traditional pixel or rule-based fusion methods, VGG- 

19 extracts deep features from each wavelet sub-band and 

combines corresponding sub-bands from MRI and CT images. 

 

The fusion process ensures that the LL, LH, LV, and LD 

components capture the most relevant diagnostic details while 

discarding redundant or less useful information. 

Once the fusion process is complete, the system applies Inverse 

Discrete Wavelet Transform to reconstruct the final fused 

image. This step merges the fused frequency sub-bands back 

into a single spatial image, preserving both structural integrity 

and contrast information. The output is a high-quality fused 
medical image that provides enhanced visualization of 

anatomical structures. 
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Figure 6: VGG19-Based Hybrid Image Fusion Framework Using Wavelet Decomposition 

 

The algorithm outlined below was designed and applied in 

Python Programming with several libraries. 

 

STEPS: 
i. Begin by importing the CT and MRI scans into the 

system. 

ii. Examine and verify the dimensions of both image 

inputs. 

iii. If a mismatch in image dimensions is detected, 

generate a prompt to notify the user and stop further 

execution. 

iv. If both images are of equal size, allow the fusion 

workflow to continue. 

v. Inspect the images for inconsistencies or distortions 

and apply necessary adjustments to ensure accurate 
spatial alignment between the CT and MRI data. 

vi. Perform a Discrete Wavelet Transform (DWT) on 

each image to decompose them into frequency 

subbands and obtain their corresponding wavelet 

coefficients. 

vii. Combine the extracted coefficients from both images 

using a suitable fusion method to integrate 

information. 

viii. Execute the Inverse Discrete Wavelet Transform 

(IDWT) on the merged coefficients to reconstruct a 

single composite image. 

ix. Input the resulting fused image into a Convolutional 

Neural Network (CNN) for further analysis and 

classification. 

x. Analyze the CNN’s prediction outcome: 
xi. If the network categorizes the image as free of 

abnormalities, label the scan as “normal” and 

conclude the analysis. 

xii. If the network flags anomalies, move on to advanced 

analysis involving lesion or tumor localization. 

xiii.  Conduct object detection procedures to isolate and 

highlight suspicious regions potentially indicating 

tumor presence 

xiv. Quantify the overall performance of the fused output 

by calculating metrics such as Peak Signal-to-Noise 

Ratio (PSNR) and Mean Squared Error (MSE). 

xv. Evaluate and contrast the time efficiency of this 

method against other image fusion techniques to 

determine computational performance. 
xvi. Finally, display a visual representation of the original 

input images, their decomposed wavelet components, 

and the resulting fused image for review. 

 

A .Block Diagram for Image Fusion 

 

The proposed system architecture is designed for the fusion and 

analysis of CT and MRI images, primarily aimed at enhancing 

medical diagnostics such as tumor detection. The process 

begins with the loading of CT and MRI images, which serve as 

complementary modalities—CT images provide high- 

resolution structural information, while MRI images offer 

superior soft tissue contrast. After loading, the system performs 
a check to ensure that both images are of the same size. This is 

a critical step, as mismatched image sizes can lead to alignment 

errors during the fusion process. If the images are not the same 

size, an error message is displayed, prompting the user to 

correct the inputs. If the images are compatible, the system 

proceeds to the next stage where it identifies any alignment 

errors and matches the corresponding anatomical structures 

using image registration techniques. 

Once the images are aligned, the Discrete Wavelet Transform 

(DWT) is applied to both CT and MRI scans. This mathematical 

technique decomposes each image into different frequency 
components, capturing both spatial and frequency information. 

The system then extracts wavelet coefficients from both 
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modalities, which represent various image features at different 

resolutions. 

The structural flow of the image fusion technique is 

demonstrated in Figure 7. 
 

Figure 7: Block Diagram of medical image fusion 

 

These coefficients are fuses using a predefined strategy—often 

through techniques such as averaging or maximum 

selection—to retain the most relevant features from both 

modalities. After fusion, an inverse DWT is performed to 

reconstruct a single, hybrid image that combines the strengths 

of both CT and MRI data. 

The generated fused image is then processed by a 

Convolutional Neural Network (CNN), which performs 

automated feature extraction and classification. The CNN 

analyzes the fused image to determine whether it appears 

normal or abnormal. If the image is classified as normal, it is 

marked accordingly and the process concludes. However, if an 
abnormality is detected, the system initiates an object detection 

phase, focusing on identifying the location and characteristics 

of potential tumors. This includes calculating diagnostic 

metrics such as the tumor's size, position, and potentially its 

malignancy score. 

This architecture provides a robust pipeline for multimodal 

medical image fusion and analysis. By merging wavelet 

transform approaches with modern deep learning strategies, 

the system enhances diagnostic accuracy while automating key 

tasks like classification and tumor detection. The integration 

of decision nodes ensures a logical flow, allowing the system 

to efficiently handle both normal and abnormal cases. 

B.Technologies Used 

 

The implementation of the Wavelet-Based Medical image 

Fusion System involves a combination of image processing, 

deep learning, and web deployment technologies. 

The backend is constructed using Python-based libraries for 

handling image processing and fusion, while the frontend 

interface is built using Streamlit to ensure an interactive and 

user-friendly experience. 

OpenCV 

OpenCV is employed to load and preprocess medical images, 

handling operations like resizing, denoising, and color space 

conversion to prepare them for the fusion procedure. 

NumPy 

NumPy supports all numerical operations needed for image 

processing. It helps in matrix calculations and manipulating 

pixel data during wavelet transformation. 

PyWavelets(pywt) 

PyWavelets performs the core wavelet decomposition and 

reconstruction. It separates images into frequency components 

and merges coefficients from CT and MRI using fusion rules, 

followed by reconstruction using IDWT. 

Matplotlib 

Matplotlib is used to visualize input and output images. It also 

generates histograms to analyze intensity distributions, helping 

evaluate the fusion quality. 

Streamlit 

Streamlit provides the web interface. Users can upload images, 

trigger the fusion process, and view or download results in real- 

time. It enables side-by-side image comparison for easy 

evaluation. 

 
VI. FUSION TECHNIQUES 

 

Max Selection 

 This method creates the output by selecting the 

maximum value from the corresponding wavelet 
coefficients of the input images. 

 This approach works on the principle that the most 

significant features in each image are typically 

captured by the highest wavelet coefficient values. 

 This method effectively preserves edges and high- 

frequency details, making it particularly useful for 

applications requiring enhanced feature retention, 

such as medical imaging and remote sensing. 

 However, a drawback of max selection fusion is that it 

may introduce noise, as the highest coefficients may 

come from images captured at different scales of 
noise. This can lead to artificial enhancements that do 

not always represent meaningful information. 

Averaging 

 In averaging-based fusion, the wavelet coefficients 

from both images are averaged to produce the fused 

coefficients. 

 This method ensures smooth transitions and reduces 

noise, making it suitable for cases where both images 

contain similar levels of detail and importance. 
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 However, one limitation of averaging is that it may 

lead to a loss of contrast and sharpness in the fused 

image, as it tends to smooth out details. This can be 

problematic in applications requiring precise edge 

detection. 

Weighted Fusion 

 A weighted combination of the coefficients is used, 

where different weights are assigned to each image 

based on their importance. 

 The weights can be determined adaptively based on 

local image features, such as contrast, texture, or 

entropy, to improve the fusion performance. 

 This approach offers greater flexibility in managing 

the fusion process and can be fine-tuned for particular 
uses—like improving image contrast while retaining 

important visual details in medical diagnostics. 

 
VII. IMAGE QUALITY METRICS 

 

The equations used to fuse the images are: 

 

1. Root Mean Square Error (RMSE) 

 

 

Where, 

 

N: Total count of pixels contained within the image. 

xi, yi: Pixel values of the original and processed images 

at position i. 

Σ (Summation): Adds up the squared differences 

between corresponding pixel values. 

Square Root: Converts squared error into the original 

unit, making it easier to interpret. 

 

 Measures the difference between the fused image and 
a reference image. 

 A lower RMSE value indicates better fusion quality. 

 Does not always align with human perception as it 

only considers pixel-wise differences. 

2. Peak Signal-to-Noise Ratio (PSNR) 

 

Where, 

MAXI: Maximum possible pixel value in the image (e.g., 

255 for 8-bit images). 

MSE (Mean Squared Error): Measures the average 

squared difference between corresponding pixels of two 

images. Lower MSE means less distortion. 

 Assesses the output image’s quality by measuring its 

similarity to a predefined reference image. 

 Higher PSNR values indicate better image quality with 

less distortion. 

 Commonly used but may not always reflect perceived 

image quality accurately. 

3. Structure Similarity Index Measure ( SSIM) 

SSIM, or Structural Similarity Index, is a tool that helps us 

figure out how similar two images are. It measures image 

quality by comparing a clean, original image to a noisy one, 

which acts as a distorted version. In this process, the two 

images are evaluated based on their brightness, contrast, 

and structure. The Structural Similarity Index (SSIM) 

between two images, A and B, is calculated using the 

following formula: 

 

 

Where, 

The mean values μA and μB depend on the coordinates x 

and y, while σ²A and σ²B represent the variances, and σAB 

denotes the covariance. 

 

VIII. QUANTITATIVE PERFORMANCE METRICS 

 

Entropy plays a crucial role as a statistical measure to assess the 
level of randomness or information richness within an image. 

In the context of medical image fusion, it's particularly valuable 

for determining how effectively important details from the 

original images have been preserved. A higher entropy value 

typically signals a more detailed and informative image, as it 

suggests a broader range of pixel intensity variations. This is 

essential when combining data from different imaging 

techniques—like one that offers detailed anatomical structures 

and another that highlights soft tissue contrast—ensuring that 

no critical diagnostic information is lost during the fusion. 

To evaluate the performance of the proposed fusion method, 
several quantitative indicators are considered. Peak Signal-to- 

Noise Ratio (PSNR) of the output image reaches 31.5 dB, 

signifying reduced noise and improved clarity when compared 

to the original images, which recorded 28.3 dB and 27.1 dB 

respectively. The Structural Similarity Index (SSIM) is 0.92, 

reflecting a strong preservation of structural details from both 

input sources—an important factor in maintaining diagnostic 

reliability. 

Moreover, the entropy value of 6.87 highlights that the fused 

image retains more comprehensive information than either 

individual input, which had entropy values of 5.34 and 5.12. 

This confirms the effectiveness of the fusion strategy in 

conserving critical data. The Edge Preservation Index (EPI) 

also shows a marked improvement, rising to 0.85 compared to 

0.72 and 0.68 from the original images. This indicates that 

important visual boundaries—such as those around tumors or 

lesions—remain clear and intact, supporting accurate analysis 
and clinical decision-making. 
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Metric CT 

Image 

MRI 

Image 

Fused 

Image 

(Proposed) 
Peak Signal- 

to-Noise Ratio 

(PSNR) (dB) 

28.3 27.1 
31.5 
(Improved 

Clarity) 

Structural 

Similarity 
Index (SSIM) 

0.81 0.78 
0.92 (Better 

Structural 
Retention) 

Entropy 

(Information 

Content) 

 

 

5.34 
 

5.12 

6.87 (More 

Image 

Details 
Retained) 

Edge 

Preservation 

Index 

 

0.72 
 

0.68 

0.85 (Sharper 

Edges) 

 

 
Table -1: Quantitative Performance Metrics 

 

IX. RESULTS 

 

Figures 8 and 9 display the outcomes of the proposed image 

fusion process applied to medical scans. Earlier research often 

employed fusion methods based on the Discrete Wavelet 

Transform (DWT), typically using basic strategies like 

selecting the maximum, minimum, or average of the wavelet 

coefficients. In contrast, the objective of this study is to 

enhance the clarity, completeness, and diagnostic value of the 
output images by implementing a more selective fusion 

approach—choosing the sub-band with the most favorable 

measurement values. 

After applying DWT to each input, PSNR and SNR values are 

evaluated for all sub-bands. The sub-band that exhibits the 

highest quality metric is selected for inclusion in the final 

output. Once the optimal sub-bands are chosen, the Inverse 

Discrete Wavelet Transform (IDWT) is performed to 

reconstruct the image back into the spatial domain, resulting in 

a single, enhanced image. As shown in Figure 8, this method 

ensures that the most informative components from the input 

images are retained, offering a more accurate and visually rich 
output for clinical analysis. 

 

 
Figure 8: DWT based image fusion 

The first image displays two separate medical images: 

 Left Image (CT Scan): 
o CT (Computed Tomography) imaging is 

widely used for capturing detailed anatomical 
structures, particularly bones and dense 
tissues. 

o It provides high-resolution images of skeletal 
structures and helps in detecting fractures, 
tumors, and internal bleeding. 

o However, it lacks the ability to show soft 
tissue contrast effectively. 

 Right Image (MRI Scan): 
o MRI (Magnetic Resonance Imaging) 

captures detailed soft tissue structures using 
strong magnetic fields and radio waves. 

o It provides high contrast between different 

types of soft tissues, making it useful for 
diagnosing conditions related to the brain, 
muscles, ligaments, and nerves. 

o However, MRI scans do not provide clear 
details of bone structures. 

Since CT and MRI scans provide complementary information, 

they are commonly used together for better medical analysis. 

The goal of image fusion is to combine their advantages into a 

single image. 
 

 
Figure 9: fused image 

 

Figure 9 demonstrates CT-MRI image fusion by selecting sub- 

bands with higher PSNR to retain key features, followed by 

inverse wavelet transform to convert the image for clinical use. 

Figure 10 highlights segmentation of fused images to detect 
tumors and fractures using methods like thresholding and deep 

learning. The histogram shows pixel intensity distribution, 

indicating image quality and detail retention. 
 

Figure 10: segmented image 
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X. CONCLUSION AND FUTURE WORK 

Medical scan fusion strategies encompass various 

methodologies, including domain-based approaches— spatial 

and frequency methods—and learning-based techniques that 

leverage machine learning and deep learning algorithms. 

Spatial techniques focus on pixel manipulation, while 

frequency methods analyze transformed representations for 
structural integrity. Strategy-based techniques optimize fusion 

decisions through weighted or decision-based methods. These 

techniques significantly enhance image quality, providing a 

clearer and more comprehensive view of a patient's condition, 

which is crucial for clinical decision-making. The integration 

of multiple imaging modalities ensures that valuable 

information is effectively utilized, ultimately supporting 

accurate diagnoses and personalized treatment plans. This 

systematic approach to medical imaging fosters improved 

patient outcomes and facilitates advancements in diverse 

applications, including tumor detection, treatment planning, 

and pediatric imaging. 
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