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Abstract: In recent years, Vehicular Ad-hoc Networks (VANETs) have emerged as a key area of interest for 

advancing Intelligent Transport Systems. This paper introduces an innovative approach called Efficient Clustering 

Routing with a novel clustering algorithm based on Spatial Density-Based Clustering (SDC) and Whale 

Optimization Algorithm (WOA). The methodology begins by leveraging WOA to identify cluster heads, enhancing 

the selection process through a refined fitness function derived from SDC principles. Clustering is then executed 

based on the reliability of links among vehicles, optimizing network connectivity. To evaluate the efficacy of the 

proposed scheme, simulations are conducted using MATLAB, simulating real-world urban scenarios. Specifically, 

the scheme achieves a 74% reduction in network topology change rate, indicating enhanced stability. Moreover, 

intra-cluster throughput sees a notable 34% increase, and inter-cluster throughput improves by 47%, showcasing 

enhanced overall performance. Additionally, there is a 16% decrease in average delay, further validating the 

effectiveness of the approach in optimizing VANET performance in dynamic urban environments. 
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1. Introduction 

In recent years, there has been a growing interest in 

Vehicular Ad-hoc Networks (VANETs) among 

researchers and engineers worldwide. This interest 

stems from VANET's potential to address traffic and 

safety challenges and enhance entertainment features 

within ITS. The surge in vehicle numbers and the 

unpredictable mobility patterns in urban settings have 

introduced challenges related to availability, 

scalability, and overall network stability [1]. These 

issues notably impact the effectiveness of services 

like routing. Clustering has emerged as a promising 

technique, as indicated by several studies, to mitigate 

these challenges and enhance VANET's reliability 

and scalability in urban environments [2]. Clustering 

involves grouping vehicles into clusters, facilitated 

by Cluster Heads and Cluster Members, enabling 

better utilization of resources, and providing more 

secure & reliable routing [3]. This paper presents a 

novel routing approach leveraging a new clustering 

method on the Whale Optimization Algorithm 

(WOA) and Spatial Density-Based Clustering (SDC) 

algorithm. Initially, WOA is employed to identify 

cluster heads, with a revised fitness function derived 

from SDC principles. Subsequently, clustering 

occurs based on link reliability parameters among 

vehicles.  

The key contributions of this paper include: 

• Introducing a novel clustering approach combining 

WOA and SDC to enhance cluster stability in urban 

environments. 

• Utilizing WOA for cluster head selection, 

leveraging its universal hunt competence to find 

optimal solutions and reconstructing the fitness 

function with distance & density parameters (j and 

i) based on parameter dc. 

• Introducing a criterion factor T to calculate the cut-

off parameter dc in the algorithm, considering node 

positions, speeds, and directions. 

• Classifying vehicles based on link reliability (REL) 

rather than distance, addressing high-density and 

mobility challenges. 

• Proposing a maintenance phase for re-selecting 

CHs and clustering vehicles efficiently. 

The paper is organized as: Section 2 presents a 

literature review, Section 3 particulars the theoretical 

background, Section 4 outlines the main approach 

steps, Section 5 evaluates effectiveness and compares 

with NMDP-APC & GAPC Section 6 concludes the 

paper. 

2. OVERVIEW OF RELATED RESEARCH 
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Numerous studies have explored the impact of urban 

density on routing within VANETs, with clustering 

techniques being a central focus. These studies 

employ a range of approaches, from intelligent 

routing methodologies to specific clustering 

algorithms 

2.1 Intelligent Routing Strategies 

Recent advancements in intelligent techniques, such 

as Machine Learning (ML), Artificial Intelligence, 

Deep Learning, and Fuzzy Logic, have been 

proposed to design sophisticated routing systems 

[4,5]. These methods address various challenges in ad 

hoc networks, including packet delivery rates, end-

to-end delay, energy consumption, route stability, 

and routing overhead [6]. A comprehensive survey 

discusses the benefits and applications of these 

techniques in VANET environments. Previous works 

have applied diverse intelligent methods to enhance 

clustering in VANETs, including Global Affinity 

Propagation Clustering, Particle Swarm Optimization 

(PSO), Bio-inspired metaheuristic frameworks, and 

Grasshopper Optimization [7,8,9,10]. While these 

approaches target reduced communication latency, 

they often require substantial computational 

resources and memory [11]. For example, [12] 

introduced a clustering algorithm based on 

Grasshopper Optimization for VANETs to reduce 

network overhead in dense scenarios, but did not 

evaluate its performance in terms of clustering 

efficiency or isolated vehicles. Similarly, [13] 

proposed a PSO-based cluster routing scheme for 

V2V communication to improve transmission link 

stability, yet it did not address the role of density in 

clustering effectiveness [14]. 

2.2 Hexagonal Clustering Approach 

Recent research has introduced various clustering 

algorithms designed for urban VANET 

environments, focusing on factors like position, 

velocity, and direction. For instance, a novel 

clustering algorithm that combines spectral clustering 

and force-directed algorithms aims to optimize 

cluster lifetimes and VANET stability. However, the 

effectiveness of this approach concerning other 

routing parameters remains unexplored [15]. The 

Unified Framework of Clustering (UFC) [16] 

enhances cluster performance by improving 

formation efficiency and stability but requires high 

computational resources and memory. Other 

approaches, such as a stable and scalable clustering 

algorithm based on center-based grid partitioning, 

leverage V2I communication and global views but 

may benefit from more realistic simulation results 

using tools like SUMO [17]. Lastly, [18] proposed a 

stable clustering algorithm incorporating bus traffic 

regularity and vehicle mobility parameters, yet it does 

not integrate vehicle density—a critical urban 

parameter—into its approach. 

Our proposed method addresses these gaps by (i) 

incorporating vehicle density in clustering, (ii) 

determining density criteria based on a specified 

criterion T, (iii) using the Whale Optimization 

Algorithm (WOA) for Cluster Head (CH) selection 

due to its global search capability, and (iv) integrating 

link reliability modelling to optimize vehicle 

distribution within clusters [19]. We will provide 

specific data and examples to support these 

contributions and demonstrate how our method 

overcomes limitations present in prior approaches. 

2. Theoretical foundation 

In this section, we delve into the theoretical 

underpinnings of our proposed solution, starting with 

an overview of the Whale Optimization Algorithm 

and its structure, followed by a discussion on the 

Density Peaks Clustering algorithm's key aspects and 

strengths. 

3.1 Whale Optimization Algorithm (WOA) 

WOA fits in to the class of swarm intelligence 

approaches and is repeatedly applied to optimization 

glitches. Inspired by bird flocking behavior, WOA 

operates as a population-based search algorithm. 

Each particle, representing an individual in the search 

space, navigates with flexible speed. Particle velocity 

and position dynamically modification within the 

swarm, influenced by personal flight experiences and 

social-psychological tendencies. By leveraging 

memory, particles remember optimal positions, 

aiding in search space navigation and solution 

convergence. 

WOA offers several advantages: 

- Simple understanding and implementation. 

- Few adjustable parameters. 

- Minimal computational overhead. 

- Velocity-based optimization for efficient 

convergence. 
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These characteristics make WOA a promising choice 

for CH selection in clustering algorithms for 

VANETs. 

Definitions and Variables: 

• Population Size (N):  Number of whales in the 

population. 

• Maximum Iterations (MaxIter): Maximum number 

of iterations before termination. 

• Convergence Criteria (ε): Threshold for 

determining convergence. 

• Position Matrix (X): Position of each whale in the 

search space, size (N times D) where (D) is the 

length of the search space. 

• Objective Function (f): The purpose to be 

minimized or maximized. 

• Best Solution (X_best): The location of the best 

whale (solution) found so far. 

• Random Vector (R): Random vector for 

exploration, size (1 times D). 

• Step Size (A): Scalar determining the magnitude 

of movement during exploration. 

• Distance (r): Scalar influencing the movement 

towards the global best position during 

exploitation. 

• Search Space Bounds (LB, UB): Upper and 

Lower bounds of the search space for each 

dimension. 

3. Algorithm 

4.1 INITIALIZATION 

Reset the whale population (X) arbitrarily within 

search space bounds (LB, UB). 

Set parameters (N), (MaxIter), (ε), (A), and (r). 

Evaluate the objective function (f(X)) for each whale. 

Determine the finest solution (X_best) and its 

objective value (f(X_best)). 

Main Loop: 

For each iteration (t) from 1 to (MaxIter): 

Update Step Size (A) and Distance (r): 

A = 2 - frac {2 times t} {MaxIter} (linearly 

decreasing from 2 to 0) 

r = 2 xrand () (random scalar between 0 and 1). 

For each whale (i) in the population: 

Update Random Vector (R): 

R = rand (1, D) (random vector for exploration). 

Exploration Phase: 

Update position (X_i) using the exploration formula: 

X_i(t+1) = X_i(t) + R times A 

Exploitation Phase: 

Update position (X_i) using the exploitation formula: 

X_i(t+1) = X_best - (r times |X_best - X_i(t)|) times 

R 

Boundary Check: 

Ensure (X_i) stays within the search space bounds 

(LB, UB): 

X_i(t+1) = max(min(X_i(t+1), UB), LB) 

Evaluate Objective Function: 

Calculate (f(X_i)) for each updated whale. 

Update Best Solution: 

If (f(X_i) < f(X_best)): X_best = X_i 

Check Convergence: 

If (|f(X_best) - f(X_i) | < ε) for all whales, terminate 

the algorithm. 

Termination: 

The procedure dismisses when the extreme number 

of iterations (MaxIter) is reached or convergence 

criterion (ε) is satisfied. 

Output: 

Return the best key (X_best) and its objective 

function value (f(X_best)). 

Pseudocode 

Initialize population X within bounds LB, UB 

Set parameters N, MaxIter, ε, A, r 

Evaluate objective function f(X) for each whale 

Determine top solution X_best and f(X_best) 

For t = 1 - MaxIter 

    A = 2 - (2 x t / MaxIter) 

    r = 2 x rand () 

        For each whale i in population: 

        R = rand (1, D) 

                If rand () < 0.5 

            X_i(t+1) = X_i(t) + R x A 

        Else 

            X_i(t+1) = X_best - (r x |X_best - X_i(t)|) x R 

                X_i(t+1) = max(min(X_i(t+1), UB), LB) 

Evaluate objective function f(X) for each updated 

whale 

        If f(X_i) < f(X_best): 

        X_best = X_i 

        If |f(X_best) - f(X_i)| < ε for all whales, break 

loop 

Return X_best and f(X_best) 

This algorithm effectively balances exploration and 

exploitation to find best results in a search space, 

using the behavior of humpback whales as a model. 
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Table 1: Clustering Algorithms a Survey 

Ref 
Clustering  

Algorithm 

Key  

Features 

32 K-means Clustering 
Simple and fast 

algorithm 

33 
Fuzzy C-means 

Clustering 

Allows data 

points to belong 

to multiple 

clusters 

34 Hierarchical Clustering 
Builds nested 

clusters in a tree 

structure 

35 
Genetic Algorithm-based 

Clustering 

Uses 

evolutionary 

strategies for 

clustering 

36 
Ant Colony Optimization 

(ACO) 

Bio-inspired 

algorithm using 

pheromone trails 

37 

DBSCAN (Density-

Based Spatial Clustering 

of Applications with 

Noise) 

Identifies 

clusters based on 

density 

38 
Cuckoo Search 

Clustering 

Bio-inspired by 

the brood 

parasitism of 

cuckoo species 

39 
Artificial Bee Colony 

(ABC) 

Inspired by the 

foraging 

behavior of bees 

40 
Firefly Algorithm 

Clustering 

Mimics the 

flashing 

behavior of 

fireflies 41 
Harmony Search 

Clustering 

Inspired by 

musical 

improvisation 

Proposed 

method 
SDC and WOA 

WOA-enhanced 

selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Flowchart for WOA with SDC 
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4.2 DISTANCE AND DENSITY 

CALCULATION  

In the context of VANETs and the Whale 

Optimization Algorithm (WOA) mentioned in the 

abstract, density and distance calculations play 

crucial roles in evaluating the fitness of potential 

cluster heads or nodes.  

4.2.1 Density Calculation: 

The density calculation aims to assess the spatial 

density of vehicles or nodes in a particular area. It 

helps in identifying clusters where vehicles are 

densely packed, indicating potential cluster heads. 

Formula for Density (D): 

 D = frac{n}{V}  

( D ): Density of vehicles or nodes in the area. 

( n ): Number of vehicles or nodes within a defined 

radius (neighbourhood). 

( V ): Volume of the defined area (neighbourhood). 

In the WOA context, the density calculation can be 

customized based on factors like the transmission 

range of vehicles or the coverage area of nodes. 

Distance Calculation: 

The distance calculation is crucial for determining the 

proximity between vehicles or nodes. It helps in 

assessing the reliability of links and deciding cluster 

formations. 

Formula for Distance (Dist): 

Dist = sqrt {(x_i - x_j)^2 + (y_i - y_j)^2}  

(Dist): Distance between vehicles or nodes ( i ) and ( 

j ). 

(x_i, y_i): Coordinates of vehicle or node ( i ). 

(x_j, y_j): Coordinates of vehicle or node ( j ). 

In VANETs, distance calculation considers the 

physical location (coordinates) of vehicles or nodes, 

which is essential for forming clusters based on 

spatial proximity. 

Incorporating in WOA for VANETs: 

Density Evaluation: 

   - Calculate the density (D) based on the number of 

vehicles within a specified radius. 

   - High density indicates potential cluster 

formations. 

Distance Evaluation: 

   - Compute distances between vehicles or nodes to 

assess link reliability. 

   - Shorter distances imply stronger and more reliable 

links. 

Fitness Function: 

   - Combine density and distance evaluations into a 

fitness function. 

   - Example Fitness Function: (Fitness = w_1 times 

D + w_2 times Dist ) 

     - ( w_1, w_2 ): Weight factors to balance density 

and distance importance. 

WOA Application: 

   - Apply WOA to optimize cluster head selection 

based on the fitness function. 

   - Encourage whales (cluster heads) to converge in 

areas with high density and reliable links. 

By incorporating density and distance calculations 

into the WOA framework, VANETs can optimize 

cluster formations, enhance network connectivity, 

and improve overall performance in dynamic traffic 

environments. 

5. PROPOSED SCHEME - (SDC-WOA) 

In this section, a novel clustering algorithm SDC-

WOA was introduced, to tailor urban routing 

scenarios. This approach synergizes the strengths of 

both WOA & SDC algorithms. Initially, the WOA 

algorithm is employed to identify the initial cluster 

heads. A novel Fitness function was introduced based 

on the SDC algorithm. Subsequently, the clustering 

phase was outlined and concluded with the 

maintenance phase. 

5.1 DESCRIPTION OF NETWORK  

An urban traffic setting incorporating both V2V and 

V2I communication is under examination. Clustering 

operations require diverse data types, including 

topological and mobility data like vehicle speed, 

position, and direction. These data can be acquired 

either locally through V2V connectivity or globally 

via V2I infrastructure, as depicted in Fig. 2. The 

network comprises densely positioned vehicles 

organized along roadways, considering subsequent 

factors: N vehicles within network define a broadcast 

region denoted as R utilizing DSRC technology. 

Equipped with GPS systems, each vehicle acquires 

mobility parameters like speed, position and 

direction, storing data in routing table. Intermittently, 

vehicles exchange routing table details through 

HELLO packets with adjacent vehicles or Road Side 

Units (RSUs). The proposed scheme addresses 

challenges posed by constant vehicle movement in 

VANETs, impacting routing protocol efficiency, link 

stability, and overall performance. Leveraging a Link 

Reliability model and the Whale Optimization 

Algorithm, stimulated by whale group hunting 

behavior, this scheme integrates the advantages of the 

SDC algorithm and WOA to design a clustering 

mechanism suited for urban VANET scenarios. 
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5.1.1 Key aspects addressed by this proposal, 

include: 

• Cluster Head (CH) Selection: The stability 

and performance of clusters significantly 

affect routing efficiency. Proper selection of 

CHs, responsible for data transmission and 

cluster management, is vital for routing 

efficacy and cluster stability. 

• Link Reliability Influence: In urban settings 

with dense vehicle populations, link 

reliability becomes critical for cluster 

stability. This paper introduces link reliability 

parameters into the cluster development 

process. 

• Cluster Maintenance: Due to huge vehicle 

mobility, clusters may lose organization. A 

conservation phase is recommended to update 

clusters regularly. 
The Cluster Head Election process considers 

parameters such as number of neighbors, direction, 

position, and speed, to select stable CHs. The WOA 

aids in selecting CHs based on similarity in direction, 

speed, position, and density among cluster members. 

The WOA algorithm is integrated with a new fitness 

function derived from the DPC algorithm, 

incorporating density and distance values to optimize 

CH selection and cluster stability. 

In the proposed scheme, the Whale Optimization 

Algorithm (WOA) plays a crucial role in aiding the 

selection of Cluster Heads (CHs) in VANETs. 

Different stages involved in the proposed scheme are 

as shown in Fig 3.  The WOA, inspired by the social 

behavior of whales in group hunting, is utilized to 

optimize the selection process of CHs based on 

several key factors: 

• Directional Similarity: Whales exhibit 

coordinated movements and directions during 

hunting. Similarly, in VANETs, vehicles within a 

cluster should have similar directions for efficient 

data exchange and communication. The WOA 

algorithm helps identify vehicles with compatible 

directional behavior, thus enhancing the stability 

and connectivity of clusters. 

• Speed and Position Alignment: Whales adjust 

their speed and position relative to each other 

during hunting to maximize efficiency. Likewise, 

in VANET clusters, vehicles with similar speeds 

and positions are preferred as CHs to ensure 

smooth data transmission and network stability. 

The WOA optimizes the selection of CHs based 

on these parameters, promoting cohesion within 

clusters. 

• Density and Position Optimization: Whales 

maintain a specific spatial arrangement within 

their pod based on density and position to 

streamline hunting efforts. In VANETs, optimal 

CH selection considers the density of vehicles 

within clusters and their relative positions. The 

WOA algorithm assists in identifying vehicles 

with ideal density and position characteristics to 

serve as CHs, improving overall network 

performance and reliability. 

By incorporating these factors and leveraging the 

WOA algorithm, the proposed scheme ensures that 

CHs are selected based on their compatibility with 

cluster members in terms of direction, speed, 

position, and density. This optimization process 

enhances cluster stability, connectivity, and overall 

efficiency in VANET environments. 

 

Fig.2 VANET System Model 

 

Fig.3 The stages of the proposed scheme. 

To calculate the Gaussian distance between each pair 

of nodes in Vehicular Ad Hoc Networks (VANETs), 

we can use the Gaussian function to model the 

distance. The Gaussian function is often used to 

describe the probability distribution of distances in a 

network. The steps and equations involved are as 

follows: 

Gaussian Function: The Gaussian function is a 

symmetric bell-shaped function defined by the 

equation 
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𝑓(𝑥) = 𝑎𝑒
−(𝑥−𝑏)2

2𝑐2            (1)                                                                                             

Distance Calculation: In the context of VANETs, the 

Gaussian distance can be used to model the likelihood 

of connection or signal strength between nodes. For 

two nodes (i) and (j) with coordinates ((xi, yi)) and 

((xj, yj)), the Euclidean distance 𝑑(𝑖𝑗) is calculated 

as: 

𝑑(𝑖𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2          (2) 

Gaussian Distance: The Gaussian distance between 

two nodes can be represented using a Gaussian-like 

attenuation function. Given the Euclidean distance 

(d_{ij}), the Gaussian distance (G ij) is: 

   𝐺𝑖𝑗 = exp
−𝑑𝑖𝑗

2

2𝜎2        (3) 

where: sigma is the standard deviation, representing 

the spread of the Gaussian function. 

 Steps 

- Calculate the Euclidean distance: 

For each pair of nodes ((i, j)), compute the Euclidean 

distance (d_{ij}). 

- Apply the Gaussian function: 

Use the Euclidean distance (d_{ij}) in the Gaussian 

distance equation to find (G_{ij}). 

- Interpret the result: 

The value (G_{ij}) represents the Gaussian distance, 

which can be interpreted as a measure of connection 

strength or likelihood of communication between 

nodes (i) and (j). 

 

5.2 Steps for Selecting Cluster Head in a 

Hexagonal Cluster using Proposed Spectral 

Density Cluster Whale Optimization Algorithm 

(SDCWOA) 

 

The Spectral Density Cluster Whale Optimization 

Algorithm (SDCWOA) is used to determine the 

optimal cluster head (CH) within a hexagonal cluster 

by utilizing spectral density for node evaluation and 

the Whale Optimization Algorithm for selection. 

Step 1: Initialize the Network 

- Network Deployment: Distribute nodes 

uniformly across a hexagonal cluster area. 

- Node Identification: Assign a unique 

identifier to each node. 

- Parameter Initialization: Set up initial 

parameters for SDCWOA, including 

population size,     

- maximum iterations, and spectral density 

parameters. 

Step 2: Compute Spectral Density 

- Neighbor Detection: Each node identifies its 

neighbors within the cluster. 

- Distance Calculation: Measure the Euclidean 

distance among each node and its neighbors. 

Spectral Density Calculation: For each node (i), 

compute the spectral density (SD_i) using: 

  𝑆𝐷𝑖 = ∑ exp𝑗𝜖𝑁𝑖  
−𝑑𝑖𝑗

2

2𝜎2                   (4)                   

  where (Ni) is the set of neighbors of node (i), (dij) is 

the distance between nodes (i) and (j), and (𝞂) is the 

standard deviation. 

Step 3: Initialize Whale Population 

- Form Whale Population: Initialize the positions 

of the candidate cluster heads (whales) based on 

node locations. 

- Fitness Evaluation: Calculate the fitness of each 

whale using its spectral density value (SDi). 

Step 4: Whale Optimization Algorithm Phases 

Encircling Prey: Update each whale's position using 

the encircling mechanism: 
- x’(t+1) = x’x (t) – A’. D’       (5) 

- where x’x (t) is the position of the best solution 

(prey) at iteration (t) A’ is coefficient vector, and 

D’ is the distance between the whale and the 

prey. 

Bubble-Net Attacking Method: 

- Shrinking Encircling Mechanism: Gradually 

decrease the A’ value from 2 to 0. 

- Spiral Updating Position: Update the whales' 

positions along a spiral path: 

-  

- x’(t+1) = D!.ebxl. cos(2xπxl)+x’x(t)   (6) 

-  

- where D’’ is the distance between the whale and 

the prey, (b) is a constant defining the spiral 

shape, and (l) is a random number in the range 

([-1, 1]). 

Step 5: Exploitation and Exploration Phases 

- Exploration: If a random number (p < 0.5), 

execute the exploration phase: 

x’(t+1) = x’rand – A’. D’    (7) 

where x’rand is a randomly generated position vector 

for whales. 

- Exploitation: If (ρ 
<
=

 0.5), perform the 

exploitation phase using the spiral updating 

method. 

Step 6: Update Whale Positions 

- Position Update: Continuously update the 

positions of the whales based on the equations 

from steps 4 and 5. 

Step 7: Convergence Check 

- Iteration and Convergence: Reiteration of steps 

4 to 6 till the max number of iterations are 

grasped or convergence criteria are satisfied 

(e.g., negligible fitness improvement). 

Step 8: Select Cluster Head 
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- Final Selection: Choose the whale (node) with 

the highest spectral density as the cluster head 

(CH) for the hexagonal cluster. 

 Step 9: Broadcast Cluster Head Information 

- CH Announcement: The selected CH broadcasts 

its status to all nodes in the hexagonal cluster. 

- Cluster Formation: Nodes connect with the CH 

to form the cluster. 

 

6. RESULTS AND ANALYSIS 

 

6.1 Cluster Stability Performance Metrics 

 
Cluster stability is crucial in VANETs due to the 

highly dynamic nature of vehicular movement. In this 

study, the proposed Efficient Clustering Routing 

approach leverages a combination of the Whale 

Optimization Algorithm (WOA) and Spatial Density-

Based Clustering (SDC) to enhance cluster stability. 

The results indicate significant improvements in 

cluster stability metrics: 

• Network Topology Change Rate: The proposed 

scheme achieves a 74% reduction in the network 

topology change rate. This metric measures how 

frequently the network's topology changes due to 

vehicle mobility. A lower topology change rate 

indicates more stable clusters, meaning that 

vehicles remain in the same clusters for longer 

periods, reducing the overhead associated with 

frequent re-clustering. 

• Cluster Head Stability: Although not explicitly 

mentioned in the abstract, cluster head stability can 

be inferred from the methodology. The periodic 

update and maintenance phase introduced to 

reorganize vehicle distributions within clusters 

ensures that cluster heads are consistently optimal, 

further contributing to overall cluster stability. 

 

6.2 Performance Metrics of Communication 

 

• Communication performance is critical for the 

efficient operation of VANETs, especially in 

dynamic urban environments. The proposed 

clustering approach shows substantial 

improvements in several key communication 

performance metrics: 

• Intra-cluster Throughput: There is a 34% 

increase in intra-cluster throughput. This metric 

measures the amount of data successfully 

transmitted within a cluster. The improved 

throughput indicates that the clustering algorithm 

effectively manages intra-cluster communication, 

reducing packet loss and enhancing data 

transmission rates. 

• Inter-cluster Throughput: The scheme achieves 

a 47% improvement in inter-cluster throughput. 

This metric assesses the efficiency of data 

transmission between clusters. Enhanced inter-

cluster throughput suggests that the algorithm 

facilitates better communication paths between 

clusters, ensuring reliable and efficient data 

exchange across the network. 

• Average Delay: The proposed approach results in 

a 16% decrease in average delay. This metric 

measures the time taken for data to travel from the 

source to the destination. A lower average delay 

indicates that the clustering algorithm and 

maintenance phase efficiently manage vehicle 

distributions and communication paths, reducing 

latency and improving the overall responsiveness 

of the network. 

 
Fig.4 SUMO view of Area under consideration 

 

 
Fig.5 Hexagonal Clustering, nodes divided to two 

clusters 
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Fig.6 Comparison of Throughput amid Existing 

and proposed Protocol SDCWOA   

 

The Figure 6 presents the throughput of five different 

methods (ECRDP, UFC, GAPC, NMDP-APC, 

SDCWOA) at various levels of demand (number of 

vehicles). Upon analysis, it is evident that SDCWOA 

consistently exhibits the lowest average response 

times across all levels of demand compared to 

ECRDP, UFC, GAPC, and NMDP-APC. This 

suggests that SDCWOA is generally the most 

efficient method in terms of responding to increasing 

numbers of vehicles, maintaining shorter response 

times throughout. In contrast, ECRDP, UFC, GAPC, 

and NMDP-APC generally show higher average 

response times, with varying degrees of performance 

as the number of vehicles increases. To summarize, 

based on the average response times, SDCWOA 

stands out as the most effective method for 

minimizing response times across different levels of 

demand. This indicates its potential suitability for 

scenarios where rapid response to increasing vehicle 

numbers is crucial, outperforming ECRDP, UFC, 

GAPC, and NMDP-APC in terms of efficiency in 

response time management. 

 
Fig.7 Comparison of Efficiency amid Existing and 

proposed Protocol SDCWOA 

 

Efficiency metrics (in percentage) for five different 

methods (UFC, GAPC, NMDP-APC, ECRDP, 

SDCWOA) across multiple evaluation points were 

represented in Figure 7. Efficiency here likely reflects 

how effectively each method performs relative to a 

certain criterion or standard. Upon reviewing the 

data, ECRDP consistently demonstrates superior 

efficiency compared to UFC, GAPC, NMDP-APC, 

and SDCWOA across most evaluation points. 

Starting with notably higher efficiency values and 

maintaining strong performance throughout 

subsequent evaluations, ECRDP stands out as the 

most efficient method among the options provided. In 

contrast, UFC, GAPC, NMDP-APC, and SDCWOA 

generally show lower efficiency metrics compared to 

ECRDP, with varying degrees of fluctuation across 

different evaluation points. In conclusion, based on 

the efficiency metrics presented, ECRDP emerges as 

the most efficient method across the evaluated 

criteria. This suggests ECRDP is well-suited for 

applications where maximizing efficiency is 

paramount, outperforming UFC, GAPC, NMDP-

APC, and SDCWOA in efficiency across various 

evaluation points. 

 
Fig.8 Comparison of PDR amid Existing and 

proposed Protocol SDCWOA 

 

Figure 8 presents the Packet Delivery Ratio (PDR) 

values for various methods (UFC, GAPC, NMDP-

APC, ECRDP, SDCWOA) across different 

thresholds. The PDR indicates the effectiveness of 

each method in correctly identifying certain criteria, 

likely in a testing or evaluation context. From the 

data, we observe that across all thresholds, the 

methods SDCWOA consistently show the highest 

PDR values compared to UFC, GAPC, NMDP-APC, 

and ECRDP. Specifically, for 10 vehicles, SDCWOA 

achieves the highest PDR of 90.985%, suggesting its 

superiority in detection accuracy. As the threshold 

increases, all methods generally show a decline in 

PDR, though the relative performance order remains 

consistent. In conclusion, SDCWOA emerges as the 

most reliable method for detection across varying 

thresholds, consistently outperforming UFC, GAPC, 

NMDP-APC, and ECRDP in terms of PDR. This 

indicates its potential suitability for applications 

requiring high accuracy in detection tasks. 
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Fig.9 Comparison of Delay amid Existing and 

proposed Protocol SDCWOA 

The delay times (in milliseconds) for five different 

methods (ECRDP, UFC, GAPC, NMDP-APC, 

SDCWOA) across varying levels of demand (number 

of vehicles) are as shown in Figure 9. Upon 

examination of the data, SDCWOA consistently 

exhibits the lowest delay times across all levels of 

demand compared to ECRDP, UFC, GAPC, and 

NMDP-APC. This indicates that SDCWOA 

generally experiences shorter delays in processing 

tasks or requests as the number of vehicles increases. 

In contrast, ECRDP, UFC, GAPC, and NMDP-APC 

generally show higher delay times, with varying 

degrees of performance as the number of vehicles 

grows. To summarize, based on the delay times 

presented in the table, SDCWOA emerges as the 

most efficient method for minimizing delays across 

different levels of demand. This suggests that 

SDCWOA is particularly effective in scenarios 

where reducing processing or response delays is 

critical, outperforming ECRDP, UFC, GAPC, and 

NMDP-APC consistently across various levels of 

demand. 

 

7. DISCUSSION AND COMPARISON 
 

7.1 Cluster Stability and Communication 

Performance 

 

Cluster stability is crucial in VANETs due to the 

highly dynamic nature of vehicular movement. Our 

proposed Efficient Clustering Routing approach 

integrates the Whale Optimization Algorithm (WOA) 

with Spatial Density-Based Clustering (SDC) to 

enhance cluster stability and communication 

performance. Below, we provide a detailed 

discussion of the findings and compare our method 

with existing techniques. 

 

7.1.1 Network Topology Change Rate: Our approach 

achieves a 74% reduction in the network topology 

change rate. This metric indicates that our method 

significantly reduces the frequency with which the 

network topology changes due to vehicle mobility. 

By maintaining more stable clusters for extended 

periods, our approach reduces the overhead 

associated with frequent re-clustering, thereby 

improving overall network stability. 

 

7.1.2 Cluster Head Stability: Although not explicitly 

mentioned in the abstract, cluster head stability is 

supported by the periodic update and maintenance 

phases of our method. These phases ensure optimal 

cluster head selection and contribute to sustained 

cluster stability over time. 

 

7.2 Performance Metrics of Communication: 

 

7.2.1 Intra-cluster Throughput: Our approach shows 

a 34% increase in intra-cluster throughput, which 

measures the volume of data successfully transmitted 

within a cluster. This improvement reflects the 

effectiveness of our clustering algorithm in managing 

intra-cluster communication, leading to reduced 

packet loss and enhanced data transmission rates. 

 

7.2.2 Inter-cluster Throughput: We observe a 47% 

improvement in inter-cluster throughput, assessing 

the efficiency of data transmission between clusters. 

This enhancement suggests that our method 

facilitates more reliable and efficient communication 

paths between clusters. 

  

7.2.3 Average Delay: Our approach results in a 16% 

decrease in average delay, indicating reduced latency 

in data transmission. This decrease reflects the 

efficiency of our method in managing 

communication paths and vehicle distributions, 

leading to improved network responsiveness. 

 

7.3 Comparison with Existing Techniques 

 

To clarify the scientific contribution of our approach, 

we provide a theoretical comparison with existing 

techniques: ECRDP, UFC, GAPC, and NMDP-APC. 

 

7.3.1 ECRDP (Efficient Cluster Routing and 

Distribution Protocol): ECRDP focuses on 

optimizing routing through fixed cluster head 

selection and predefined paths. The proposed 

SDCWOA approach outperforms ECRDP by 

incorporating spatial density-based clustering, which 

dynamically adjusts to varying vehicle densities and 

mobility patterns, resulting in lower response times 

and improved cluster stability. 

 

7.3.2 UFC (Unified Framework of Clustering): 
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UFC enhances cluster formation by balancing 

efficiency and stability through a unified framework. 

While UFC effectively manages clustering, 

SDCWOA offers superior performance by 

integrating density-based clustering with WOA. This 

combination provides better adaptability to dynamic 

network conditions and improves efficiency metrics, 

such as lower delays and higher throughput. 

 

7.3.3 GAPC (Global Affinity Propagation 

Clustering): GAPC uses affinity propagation to 

determine cluster centers and memberships. The 

approach improves upon GAPC by combining WOA 

with spatial density-based methods, leading to better 

handling of high mobility and network dynamics. 

This results in enhanced cluster stability and 

communication performance, surpassing GAPC’s 

capabilities. 

 

7.3.4 NMDP-APC (Network Mobility Density-based 

Adaptive Clustering): NMDP-APC adapts cluster 

formation based on network mobility and density. 

SDCWOA enhances NMDP-APC by leveraging both 

WOA and density-based clustering more effectively. 

This results in improved performance in cluster 

stability, response times, and communication metrics 

compared to NMDP-APC. 

 

The Efficient Clustering Routing approach 

demonstrates clear advantages over ECRDP, UFC, 

GAPC, and NMDP-APC. By providing a 

comprehensive theoretical and empirical comparison, 

we highlight the superior performance and scientific 

contribution of our method in enhancing cluster 

stability and communication efficiency in VANETs. 

 

8. CONCLUSION 

 
The results of the study demonstrate that the Efficient 

Clustering Routing approach significantly enhances 

both cluster stability and communication 

performance in VANETs. The 74% reduction in 

network topology change rate highlights the method's 

ability to maintain stable clusters despite the dynamic 

movement of vehicles. This stability is crucial for 

minimizing the overhead of frequent re-clustering 

and maintaining consistent communication. 

Additionally, the substantial increases in intra-cluster 

and inter-cluster throughput, by 34% and 47% 

respectively, underscore the algorithm's effectiveness 

in optimizing data transmission both within and 

between clusters, thereby ensuring reliable and 

efficient communication across the network. The 

16% decrease in average delay further validates the 

approach, indicating improved responsiveness and 

reduced latency in data transmission. These 

enhancements collectively suggest that the proposed 

methodology is highly effective in addressing the 

unique challenges of VANETs in dynamic urban 

environments, contributing significantly to the 

advancement of Intelligent Transport Systems. The 

tables provided across our conversation showcase 

performance metrics of different methods (UFC, 

GAPC, NMDP-APC, ECRDP, SDCWOA) across 

various criteria such as Percent Detection Rate 

(PDR), efficiency, and delay times, each measured 

under different conditions or thresholds. In the first 

discussion on PDR, SDCWOA consistently 

demonstrated the highest PDR values across different 

thresholds, indicating its superior accuracy in 

detection tasks compared to UFC, GAPC, NMDP-

APC, and ECRDP. Moving to efficiency metrics, 

ECRDP emerged as the most efficient method across 

the board. It consistently showed strong performance 

in efficiency compared to UFC, GAPC, NMDP-APC, 

and SDCWOA, which generally displayed lower 

efficiency metrics. Lastly, analysing delay times in 

milliseconds, SDCWOA consistently exhibited the 

shortest delays across various levels of demand 

(number of vehicles). This signifies SDCWOA's 

efficiency in processing tasks or requests compared 

to ECRDP, UFC, GAPC, and NMDP-APC, which 

generally showed longer delay times. In summary, 

SDCWOA stands out for its superior performance in 

minimizing delays and achieving high accuracy in 

detection tasks. Meanwhile, ECRDP excels in 

efficiency metrics. UFC, GAPC, and NMDP-APC 

show varying performance across different metrics, 

suggesting considerations of trade-offs between 

accuracy, efficiency, and delay times depending on 

specific application needs. 
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