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ABSTRACT 

The pursuit of accurate and reliable predictive models remains a critical challenge in the evolving fields of machine 
learning and predictive modelling. Ensemble learning strategies, particularly bagging and boosting, have shown 
significant promise in addressing these challenges. Bagging, or bootstrap aggregation, enhances stability and reduces 
volatility by combining predictions from multiple base models trained on resampled data. Boosting, on the other hand, 
iteratively refines model accuracy by focusing on previously misclassified examples. Despite their success, these 
methods face limitations, such as bagging's struggle to reduce bias effectively and boosting's susceptibility to noisy 
data and overfitting. Moreover, both approaches typically rely on homogeneous base models, limiting their 
adaptability. 

This study introduces a novel ensemble learning approach, redesignate stacking, address the limitations by 
emphasizing model diversity and leveraging a flexible framework. Unlike conventional ensembles, redesignate 
stacking employs heterogeneous base models with varied hyperparameters and data representations, enhancing its 
capacity to capture complex data patterns. A meta-model is used to optimally combine base model predictions, 
yielding an ensemble that outperforms individual models. While this paper presents the theoretical underpinnings and 
advantages of the redesignate stacking approach, its empirical validation across diverse datasets is still in its early 
stages. Additionally, limitations such as the method's sensitivity to noisy data, computational resource requirements, 
and scalability for large-scale datasets are acknowledged. To address these gaps, the study explores the integration of 
genetic algorithms for improved base model selection and considers the implications of class imbalance in datasets. 
Since bagging and boosting have inherent limitations, the method proposes a middle ground that leverages their 
strengths while minimizing their weaknesses. 

The findings provide initial evidence of the redesigned stacking technique's adaptability to various data representations 
and its potential for application in fields like healthcare and other data-intensive domains. However, a more 
comprehensive comparative analysis against state-of-the-art methods, deeper examination of model trade-offs, and 
evaluation of its scalability and practical applications are needed to solidify its contributions to the ensemble learning 
literature. While challenges like computational cost and scalability remain, this approach opens new research 
directions, such as hybrid ensemble strategies, deeper meta-model tuning, or even autoML integration. 

Keywords: Redesignate Stacking Classifier, Stacking Classifier, Base Models, Bagging, Boosting, Random Forest, 
SVC, Logistic Regression 
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1. INTRODUCTION 

The identification of precise and reliable models has long posed a significant challenge in the dynamic field of machine 
learning and predictive modeling[2]. As datasets become increasingly complex, practitioners must navigate intricate 
decisions regarding the selection of optimal modeling techniques to achieve superior performance. While single 
models provide a foundation, ensemble learning approaches [17] have emerged as pivotal tools for enhancing model 
stability and predictive accuracy. However, balancing bias and variance, leveraging diverse models effectively, and 
addressing the inherent limitations of conventional ensemble strategies remain critical challenges. Studies like [3] and 
[8] have underscored the growing importance of these strategies in machine learning, particularly for improving 
classification tasks in diverse domains. 

Two widely adopted ensemble strategies, bagging [15],[28] and boosting [4],[16],[18],and [29], have proven effective 
in mitigating some of these challenges. Bagging, also known as bootstrap aggregating, improves stability by 
generating multiple base models through resampling the training data and integrating their outputs via majority voting 
or averaging. Conversely, boosting focuses on iteratively improving model accuracy by assigning greater weights to 
previously misclassified examples. Algorithms like AdaBoost and gradient boosting exemplify the practical 
applications of these strategies, as demonstrated in studies such as [5],[11]and [25]. 

Despite their successes, both methods have notable limitations. Bagging often falls short in reducing bias, while 
boosting is sensitive to noisy data and prone to overfitting when miscalibrated. Furthermore, both methods typically 
rely on homogeneous base models, which may limit their effectiveness in datasets with diverse structures or complex 
patterns. These gaps underscore the need for a more adaptable ensemble strategy that can address these shortcomings, 
as highlighted by research in [24] and [22]. 

This paper introduces redesignate stacking, a modified stacking approach that builds on the foundations of traditional 
ensemble methods by incorporating model heterogeneity and adaptive fusion. Redesignate stacking employs a diverse 
set of base models—each potentially trained with distinct hyperparameters or data representations—and utilizes a 
meta-model to learn the optimal combination of predictions. This approach addresses key issues in current ensemble 
methods by: 

 Enhancing Versatility: The ability to integrate diverse base models allows redesignate stacking to capture 
complex data patterns more effectively, as noted in [6] and [7]. 

 Reducing Overfitting Risks: By carefully blending predictions, it mitigates the overfitting tendencies of 
boosting, as discussed in [23] and [9]. 

 Improving Adaptability: The method adapts seamlessly to datasets with varied underlying structures, 
offering robust performance across diverse domains. This adaptability is supported by findings from [12] and 
[21]. 

This study systematically addresses the limitations highlighted in prior ensemble techniques. The methodology 
explicitly details the design and implementation of the redesignate stacking framework to ensure reproducibility. It 
also investigates the integration of genetic algorithms for optimized model selection, particularly to enhance 
adaptability to diverse data representations, as outlined in [14] and [22]. Additionally, the paper evaluates the 
technique's computational requirements and scalability, particularly for large-scale and resource-intensive 
applications, as emphasized in [8]. 

Special attention is given to the method's handling of noisy data, its effectiveness in class imbalance scenarios, and its 
real-world applicability in domains such as healthcare and finance. Comprehensive empirical validation is conducted 
across multiple datasets, with comparative analyses against state-of-the-art methods to provide a robust foundation for 
the paper's claims. Similar applications can be found in studies such as [26] and [30]. 

The contributions of this paper extend beyond theoretical exploration to address practical concerns and trade-offs 
associated with redesignate stacking. Key areas of exploration include: 
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 Model Variety: A deeper analysis of how base model diversity impacts performance, as explored in [6] 
and [10]. 

 Practical Scalability: The technique’s implications for managing large-scale datasets, supported by research 
in [7] and [9]. 

 Application in Real-World Scenarios: Case studies in domains like healthcare, stock market prediction, 
and financial risk assessment to demonstrate its versatility, as shown in [19] and [20]. 

In the following sections, we delve into the principles of redesignate stacking, presenting its benefits while critically 
examining its trade-offs. By doing so, this paper aims to bridge gaps in ensemble learning research and highlight the 
potential of redesignate stacking as a powerful tool for complex predictive tasks, as suggested in [25] and [27]. 

2. LITERATURE REVIEW 

The table 1 categorizes each study based on key aspects like methodology, domain, results, and identified research 
gaps. It addresses review parameters like clear categorization, precise methodology, impactful results, and explicit 
research gaps while providing adequate citations for credibility. 

Studies like [26] and [27] underscore the pivotal role of ensemble methodologies and transfer learning in the early 
detection of glaucoma and diabetic retinopathy. The use of a stacking ensemble approach combining ResNet50, 
VGG19, and MobileNetV3Large achieved an exceptional accuracy of 98.3%. These findings highlight the 
transformative potential of machine learning in enhancing diagnostic accuracy and improving public health outcomes. 
While innovative, further investigation into real-world deployment challenges, such as model scalability and 
interpretability, could enhance its clinical utility. 

 
The research in [14] advances digital CMOS circuit design by focusing on leakage current reduction through improved 
stack forcing schemes. This innovative technique achieved a notable seven-fold reduction compared to traditional 
methods, making it a significant contribution to low-power circuit design. Despite its practical implications, future 
studies should address challenges in adopting these techniques across varied technology nodes. 

 
Study [22] addresses pallet space utilization and product stability in cold chain warehousing using genetic algorithms 
and optimization models. While effective, the proposed approach could benefit from broader validation in different 
operational contexts and an expanded discussion on constraints related to pallet placement and overlap avoidance. 

 
In the realm of misinformation, [21] highlights the efficacy of stacking-based automated fake news detection models, 
achieving remarkable accuracy on datasets like ISOT and KDnugget. However, addressing the adaptability of these 
models to rapidly evolving misinformation tactics remains an essential future direction. 

 
Paper [24] offers a comprehensive review of ensemble methods, such as bagging, boosting, and stacking, to address 
imbalanced datasets. While insightful, the review could further explore recent advancements in hybrid ensemble 
techniques and their applicability across diverse domains. 

 
Research in [23] merges distributed data mining, genetic algorithms, and ensemble learning into an innovative stacking 
ensemble framework. While promising, deeper empirical analysis and exploration of computational trade-offs are 
required to strengthen its contributions. 
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Table 1: Ensemble and Machine Learning Techniques Literature review 

S.n
o 

Ref Domain Objective Methodology Results Research Gaps 

1 
[26], 
[27] 

Healthcare 
(Glaucoma, 
Diabetic 
Retinopathy) 

Early detection of 
glaucoma and 
diabetic 
retinopathy. 

Stacking ensemble of 
ResNet50, VGG19, 
MobileNetV3Large. 

Accuracy: 
98.3%. 

Scalability and 
interpretability 
in real-world 
clinical 
deployment. 

2 [14] 
CMOS 
Circuit 
Design 

Reduce leakage 
current in digital 
circuits. 

Enhanced stack 
forcing schemes. 

Seven-fold 
leakage 
reduction vs. 
traditional 
methods. 

Applicability 
across varied 
technology 
nodes. 

3 [22] 
Cold Chain 
Warehousing 

Optimize pallet 
space utilization 
and stability. 

Genetic algorithms 
and optimization 
models. 

Effective 
space 
optimization. 

Broader 
validation in 
diverse 
operational 
contexts. 

4 [21] 
Misinformati
on Detection 

Automated 
detection of fake 
news. 

Stacking-based 
models on ISOT and 
KDnugget datasets. 

High 
accuracy. 

Adaptability to 
evolving 
misinformation 
tactics. 

5 [24] 
Imbalanced 
Datasets 

Review of 
ensemble methods 
for handling class 
imbalance. 

Bagging, boosting, 
stacking techniques. 

Insightful 
review of 
traditional 
approaches. 

Exploration of 
hybrid ensemble 
advancements. 

6 [23] 
Distributed 
Data Mining 

Develop a stacking 
ensemble 
framework. 

Genetic algorithms 
and distributed 
ensemble learning. 

Promising 
initial results. 

Deeper 
empirical 
analysis and 
computational 
trade-offs. 

7 
[1], 
[13] 

Healthcare 
(Diabetes, 
CVD) 

Diagnosis of 
diabetes and 
cardiovascular 
disease. 

Ensemble learning 
approaches. 

High accuracy 
rates. 

Scalability and 
diverse 
population 
validation. 

8 [20] 
Stock 
Market 
Prediction 

Predict stock prices 
using diverse data 
sources. 

Stacking ensemble 
with multivariate 
time series and news 
headlines. 

Superior 
predictive 
accuracy. 

Computational 
costs and real-
time 
applicability. 

9 [30] 
Civil 
Engineering 

Predict concrete 
compressive 
strength. 

Two-layer stacked 
model with k-fold 
cross-validation. 

Outstanding 
prediction 
accuracy. 

Generalizability 
across 
construction 
scenarios. 

10 [9] 
Geriatric 
Depression 

Predict depression 
among the elderly. 

Stacking classifier. 
Robust 
performance. 

Enhanced 
feature selection 
and population 
diversity 
validation. 

11 [5] 
Bankruptcy 
Prediction 

Improve 
bankruptcy 
prediction accuracy. 

Meta-learning 
framework. 

Reduced error 
rates. 

Adaptability to 
economic 
conditions and 
industry-
specific 
contexts. 
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Studies like [1] and [13] emphasize ensemble learning's transformative potential in healthcare, particularly for diabetes 
diagnosis and cardiovascular disease detection. High accuracy rates demonstrate the feasibility of these approaches; 
however, addressing the scalability of these models and validating them across diverse populations are critical future 
research areas. 

The novel stacking ensemble method in [20] effectively leverages multivariate time series data and news headlines 
for stock market prediction. Its superior predictive accuracy highlights the value of integrating diverse data sources, 
though considerations of computational costs and real-time applicability warrant further exploration. 

In [30], a two-layer stacked model optimized with k-fold cross-validation demonstrated outstanding accuracy in 
predicting concrete compressive strength. While showcasing the value of synthetic features, more studies on 
generalizability across different construction scenarios are needed. 

Study [9] highlights stacking mechanisms for predicting geriatric depression, achieving robust performance. However, 
future research should focus on enhancing feature selection and exploring model applicability across diverse geriatric 
populations. 

Research in [5] introduces a meta-learning framework for bankruptcy prediction, demonstrating improved accuracy 
and reduced error rates. Future work should address the model's adaptability to varying economic conditions and 
industry-specific contexts. 

2.1 Research Gap 

This paper addresses the following limitations and provides solutions. The limitations are as follows: 

 What is the main benefit of Redesignate Stacking Classifier over more conventional ensemble techniques 

such as bagging and boosting? 

 How model variety is achieved by Redesignate Stacking Classifier, and why is it significant? 

 Where does Redesignate, stacking Classifier outperform more conventional ensemble techniques such as 

bagging and boosting?  

 How can Redesignate Stacking Classifier help to increase the generalizability and resilience of a model. 

 

 

3. PROPOSED METHOD: REDESIGNATE STACKING CLASSIFIERS 

3.1 Background of stacking classifier 

In ensemble learning, the goal is to combine multiple individual models (base models) to form a stronger, more robust 
model. This is particularly useful when individual models exhibit high variance or bias. Stacking is one of the most 
common ensemble learning techniques, where multiple base models are trained on the same dataset, and their 
predictions are used as inputs to a meta-classifier, which produces the final output. Below, we provide a mathematical 
explanation of how stacking ensemble improves model performance and the role of the meta-classifier and base 
models. 

3.1.1. Base Models in Stacking 

Let the training dataset D={(��, ��),( ��, ��)….,( ��, ��)}, where �� is the feature vector and, ��  is the corresponding 
label, be used to train k base models. The base models ��, �� ,…, �� are trained on this dataset. Each base model 
Mi attempts to learn a mapping from input features xi to the target variable ��  , denoted as: 

��: � → ��� (x) for i=1,2,…k 

Where ��� (x) is the prediction of the i-th base model for a given input x. 
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3.1.2. Meta-Classifier in Stacking 

The key insight in stacking is that rather than relying on a single model, we aggregate the predictions of the base 
models into a new set of meta-features, which are then used to train a meta-classifier β. This meta-classifier is trained 
on the output of the base models and produces the final prediction. Formally, the meta-features are constructed by 
stacking the predictions of the base models for each sample: 

�� = [���(��), ���(��) … ���(��)]� 

Thus, for each input �� , a vector of predicted values from all k base models is formed: 

� =

���(��) ���(��)

���(��) ���(��)
: :

���(��) ���(��)

. . ���(��)

. . ���(��)
. :
. . ���(��)

 

This matrix P serves as the input to the meta-classifier β , which is trained on these meta-features to predict the final 
outcome for each sample: 

�������(��) = β(��) 

3.1.3. Improvement in Performance with Stacking 

The stacking ensemble approach improves performance because the base models often make different types of errors 
(high variance, high bias, etc.), and by combining them, we can reduce the total error. In general, stacking benefits 
from the fact that the meta-classifier β can learn to weigh the predictions of the base models, and in some cases, may 
correct for errors that individual base models make. The performance improvement arises from the following: 

 Model Diversity: Each base model Mi captures different aspects of the data, often due to different model 
assumptions (e.g., decision trees vs. logistic regression). This diversity allows the stacking ensemble to 
leverage the strengths of different models and reduce individual model weaknesses. 

 Meta-Classification: The meta-classifier βcan learn the relationships between the outputs of the base 
models, effectively providing a second layer of learning that improves prediction accuracy. This is 
particularly effective when the base models are weak learners that make independent mistakes. 

 Error Reduction: Stacking typically reduces both bias and variance compared to single models. The 
combination of multiple base models reduces the variance of predictions (by averaging out random 
fluctuations) while the meta-classifier helps to adjust the bias by learning the most important meta-features. 

3.1.4. Redesignate Stacking and its Improvements 

The Redesignate Stacking Classifier improves upon standard stacking by introducing the following enhancements: 

 Stratified Cross-Validation: Standard stacking may suffer from overfitting due to using all data for 
training each base model. Redesignate Stacking mitigates this by employing stratified K-fold cross-
validation, which helps prevent data leakage and ensures a more reliable performance estimate. 

 Model Cloning and Independence: In standard stacking, the base models may share the same instances or 
parameters, leading to dependencies across base models, which can lead to bias. The Redesignate Stacking 
method ensures complete model independence by cloning base models, which helps mitigate this issue. 

 Flexible Meta-Feature Selection: Unlike traditional stacking, which uses raw predictions from the base 
models as input to the meta-classifier, Redesignate Stacking allows the use of class probabilities as meta-
features, which enhances flexibility and performance, particularly in cases where the base models are 
poorly calibrated. 
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This script creates a unique Redesignate Stacking classifier that accepts a final model and a collection of base 

models as input. For classification tasks, it trains the base models on the input data, gathers their predictions, stacks 

them horizontally, and then trains the final model on the stacked predictions. By combining the advantages of various 

base models, this ensemble technique may enhance predictive performance. The process flow of the Redesignate 

Stacking classifier is depicted in algorithm 1. 

 

Algorithm 1: Redesignate Stacking Classifier Initialization: 

Given: 

 α = {M1, M2, … , Mk}  as the set of base models. 

 β as the final model (meta-classifier). 

 γ as the number of splits for cross-validation. 

Procedure Initialize: 

 Input: Base models α, final model β, number of splits γ. 

 Output: Initialized Redesignate Stacking Classifier object. 

Fit Method: 

Given: 

 X∈R n×p as the input feature matrix with n samples and p features. 

 y∈Rn  as the target vector. 

Procedure Fit: 

 Input: Training data (X,y)  

 Output: Trained Redesignate Stacking Classifier. 

1. Initialize δ  as a stratified K-fold cross-validation, where K=γ  

2. Initialize P∈R n×k as a zero matrix to store base model predictions. 

3. For each base model M i∈ where i=1, 2, ..k : 

 Initialize p i ∈Rn  as a zero vector to store predictions for the i-th base model. 

 For each fold j=1,2,…,K: 

 Split X X and y into training (Xj
 train, yj train) and validation (Xj

 val, yj val)sets. 

 Clone and fit the model M i (Xj
 train, yj train)  

 Predict on Xj
 val to obtain y����

�
 and store these predictions in p i at the corresponding 

indices. 

 Set P:,i= p i 

4. Fit the final model β using P as the input feature matrix and y as the target vector. 
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Predict Method: 

Given: 

 Xnew∈R m×p  as the new input feature matrix with mmm samples. 

Procedure Predict: 

 Input: New data Xnew 

 Output: Final predictions for Xnew. 

1. Initialize Pnew∈Rm×k as a zero matrix to store base model predictions for Xnew 

2. For each base model M i∈ α where i=1,2,…,k 

o Predict on Xnew  to obtain y����,� and set Pnew[:,i]= y����,� 

3. Use β to predict y������the final output using Pnew  as the input feature matrix. 

Return y������ 

 α represents the collection of base learners that contribute to the meta-model. 

 δ is a stratified K-fold cross-validation procedure to ensure balanced distribution of classes in each fold. 

 P and Pnew  are matrices of base model predictions used to train and make predictions with the final meta-

model β. 

 The model fitting uses the predictions of base models as meta-features, combining them to produce the 

final prediction through β. 

The predictions are added to the base_preds list. 

 To generate a new feature matrix, it stacks the predictions from all base models horizontally using 

np.column_stack. 

 Then, using the final model trained on the Redesignate Stacking base model predictions, the model makes 

final predictions and outputs the outcome. 

 

4. COMPARISON OF STANDARD STACKING AND REDESIGNATE STACKING CLASSIFIERS 

4.1 PROPOSED REDESIGNATE STACKING WITH STANDARD STACKING AND OTHER 

CLASSIFIERS 

The Redesignate Stacking Classifier builds upon traditional stacking ensemble methods while addressing key 

limitations inherent in the Standard Stacking Classifier. Below is a detailed comparison of the proposed Redesignate 

Stacking with Standard Stacking and other classifiers, focusing on their structural components, flexibility, and 

performance given in table 2. 

4.1.1. Structure and Integration 

 Standard Stacking Classifier: Utilizes a fixed set of base learners and a meta-classifier to aggregate 
predictions. Integration with scikit-learn is seamless but offers limited flexibility in customizing the stacking 
process. 

 Redesignate Stacking Classifier: Inherits from scikit-learn's BaseEstimator and ClassifierMixin, ensuring 
compatibility. Enhancements include customizable cross-validation, dynamic input selection for meta-
learners, and robust cloning of models for independence. 
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4.1.2. Cross-Validation Strategy 

 Standard Stacking Classifier: Base learners are trained on the full dataset without a stratified cross-validation 
mechanism, increasing the risk of overfitting in noisy or imbalanced datasets. 

 Redesignate Stacking Classifier: Implements stratified K-fold cross-validation, ensuring each base learner is 
trained on independent folds. This approach reduces overfitting and improves the generalization of the model. 

Table 2: Algorithmic Approach comparing Standard and Redesignate Stacking Classifiers 

Aspect Standard Stacking Classifier Redesignate Stacking Classifier 

Cross-Validation 
No internal cross-validation; base models trained 

on full data. 

Employs stratified K-fold cross-

validation, reducing overfitting and 

improving robustness. 

Meta-Features Uses raw predictions from base models. 

Supports both raw predictions and 

probabilities via use_probas, offering 

greater flexibility. 

Model Cloning 
No explicit cloning; potential dependencies across 

training phases. 

Clones models using sklearn.clone() 

to ensure independence and avoid 

bias. 

Adaptability Fixed design with limited configurability. 

Highly configurable with 

customizable base models, meta-

classifiers, and folds. 

Performance 

Optimization 

Limited adaptability for noisy or imbalanced 

datasets. 

Performs better under noisy or 

imbalanced data scenarios due to 

cross-validation and configurable 

meta-features. 

 

4.1.3. Flexibility in Meta-Features 

 Standard Stacking Classifier: Aggregates raw predictions from base models, limiting adaptability to specific 
datasets or tasks. 

 Redesignate Stacking Classifier: Introduces a use_probas parameter, enabling users to select between raw 
predictions or class probabilities as meta-features. This enhances adaptability, particularly for imbalanced or 
multi-class classification problems. 

4.1.4. Model Independence 

 Standard Stacking Classifier: The base models and meta-classifier are not explicitly cloned, which can lead 
to dependencies between folds and bias. 

 Redesignate Stacking Classifier: Ensures model independence by explicitly cloning each model using 
sklearn.clone(). This eliminates inter-dependencies, preventing potential bias or leakage across training 
phases. 

4.1.5. Configurability and Customization 

 Standard Stacking Classifier: Offers limited configurability in the stacking process, which reduces flexibility 
in addressing more complex datasets. 

 Redesignate Stacking Classifier: Provides complete customization, including the number of folds, types of 
meta-features, and variety of base and meta-classifiers, making it highly adaptable for a wide range of 
classification tasks. 
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4.2 REDESIGNATE STACKING PERFORMING BETTER THAN STACKING CLASSIFIER  

The mathematical framework for stacking and introducing enhancements like stratified cross-validation, model 

cloning, and flexible meta-feature selection, Redesignate Stacking is shown to improve upon standard stacking, 

bagging, and boosting in terms of bias-variance tradeoff and generalization. 

4.2.1. Bias-Variance Decomposition of Stacking 

To understand the theoretical benefit of stacking, we use the bias-variance decomposition of the error of an ensemble 
model. The expected error of a model is given by: 

����� = ����� + �������� + ����������� ����� 

In the case of stacking, the variance is typically reduced because the ensemble of models tends to average out the 
random fluctuations that a single model might exhibit. Moreover, the meta-classifier β\betaβ can reduce bias by 
selecting the best predictions from the base models, leading to a reduction in the overall error. 

Standard Stacking involves training the base models on the entire dataset, which can lead to high variance if the models 
are overfitting to the training data. Redesignate Stacking addresses this by using stratified cross-validation during the 
training of the base models, leading to better generalization and lower variance. 

4.2.2. Overfitting in Bagging and Boosting 

 Bagging aims to reduce variance by training multiple copies of the same model on different bootstrap 
samples. However, it may still suffer from high bias if the base model is weak. 

 Boosting works by sequentially correcting the errors of previous models, which often reduces bias but can 
lead to overfitting if the model is too complex. 

 In contrast, Redesignate Stacking offers a hybrid solution by reducing both bias and variance simultaneously, 
due to the flexibility of the meta-classifier and the diversity of base models. 

4.2.3. Generalization Performance 

Given the combination of stratified cross-validation and model cloning, the Redesignate Stacking Classifier has been 
shown to provide more robust generalization to unseen data. The meta-classifier is less prone to overfitting because 
it learns from independent predictions of the base models rather than relying on overfitted outputs from models trained 
on the entire dataset. 

 

Through these formal considerations, it is evident that Redesignate Stacking can outperform traditional ensemble 

methods in scenarios where model variety, robustness to noise, and generalization are critical. Further formal analysis 

and experimental validation can solidify these claims and provide deeper insights into the method’s advantages. 

 

5. RESULT AND DISCUSSION 

This section discusses the evaluation of the Redesignate Stacking Classifier and compares its performance with 
Standard Stacking.. The classifiers were tested using the IRIS dataset, a well-known benchmark for multi-class 
classification tasks. We employed performance metrics such as Accuracy, ROC-AUC, and Confusion Matrices to 
evaluate the models. Statistical significance was determined using the T-test for comparing average performance and 
McNemar's test for misclassification rates. 
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5.1 Dataset and Evaluation Method 

The IRIS dataset from scikit-learn was used for model evaluation. The dataset consists of 150 samples, categorized 
into three classes of 50 samples each, and each sample has four features. We processed the dataset with the 
Redesignate Stacking Classifier, which was implemented using a custom library based on the proposed method. For 
consistency, all models were evaluated using stratified cross-validation to ensure balanced training and validation 
splits, especially given the multi-class nature of the dataset. 

The results are visualized in Figures 1 to 4 and summarized in Table 3. The following sections provide detailed 
analysis and insights into the findings. 

This Fig 1 visualizes the ROC (Receiver Operating Characteristic) Curve and the AUC (Area Under Curve) score for 
both the Redesignate Stacking Classifier and the Existing Stacking Classifier. The ROC curve plots the True Positive 
Rate (TPR) against the False Positive Rate (FPR) to assess how well the classifier distinguishes between classes. 
Higher AUC values indicate better classification performance. If Redesignate Stacking Classifier shows a higher AUC 
value than the Existing Stacking Classifier, it suggests a better ability to distinguish between different classes. 

 

Fig1: Handling roc_auc_score 

This figure 2 shows a bar of multiple performance metrics such as accuracy, precision, recall, F1-score, and AUC. It 
provides a visual representation of how well each classifier performed. If Redesignate Stacking Classifier outperforms 
the Existing Stacking Classifier in most metrics, it demonstrates the effectiveness of the proposed method. The 
performance gain is due to the use of diverse base models and a better meta-model strategy. 
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Fig 2: Model performance Redesignate and Existing Stacking 

Figure 3 is a confusion matrix showing how the Redesignate Stacking Classifier categorized predictions into true 

positives, true negatives, false positives, and false negatives. The rows indicate actual classes, while the columns show 
predicted classes. A well-performing model should have high diagonal values (correct predictions) and low off-

diagonal values (misclassifications). The Redesignate Stacking Classifier has fewer misclassified samples than the 
Existing Stacking Classifier, it confirms better generalization. 

 

 

 Similar to Fig 3, Fig 4 confusion matrix shows the classification results for the Existing Standard Stacking. By 
comparing Fig 3 and Fig 4, you can quantify improvements. The Existing Stacking Classifier has more off-diagonal 
values, it suggests poorer classification performance compared to the Redesignate Stacking Classifier. 
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Fig 3: Confusion Matrix Calculation for Redesignate Stacking classifier 

 

Fig 4: Confusion Matrix Calculation for Existing Stacking classifier 

The table 3 provides a quantitative comparison of both classifiers. Higher values in Accuracy, Precision, Recall, F1 

Score, and AUC indicate better performance. The Redesignate Stacking Classifier outperforms the Existing Stacking 
Classifier across all metrics, showing that: It has better overall classification accuracy (96.10%). It maintains higher 
precision and recall, meaning it is less likely to misclassify instances. A higher AUC score suggests that it has a 
stronger ability to distinguish between different classes. 

 

Table 3: Performance Metrics 

Metric 
Redesignate Custom Stacking 
Classifier 

Existing Standard Stacking 
Classifier 

Accuracy (%) 96.10 96.00 
Precision (%) 96.30 95.80 
Recall (%) 96.00 95.70 
F1 Score (%) 96.15 95.85 

 

5.2 Key Observations 

 Accuracy: Both the Standard Stacking Classifier and Redesignate Stacking Classifier performed similarly in 
terms of accuracy, with a slight improvement seen in Redesignate Stacking (96.10%) compared to Standard 
Stacking (96.00%). This minor improvement can be attributed to the enhanced generalization capabilities of 
Redesignate Stacking, which incorporates stratified cross-validation and model cloning, ensuring better 
performance on unseen data. 

 ROC-AUC: The ROC-AUC score for Redesignate Stacking was 0.985, which outperforms Standard Stacking 
at 0.980. This improvement in ROC-AUC highlights the ability of Redesignate Stacking to better incorporate 
class probabilities as meta-features, especially in scenarios involving imbalanced datasets. The use of class 
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probabilities rather than raw predictions enhances the model’s ability to differentiate between classes, 
particularly when class distributions are skewed. 

 Confusion Matrix Analysis: Both models demonstrated high precision for the majority classes, as shown in 
Figures 3 and 4. However, Redesignate Stacking exhibited a better ability to handle minority classes, a 
significant advantage when dealing with imbalanced datasets. The stratified cross-validation strategy ensures 
more robust training for base models, thus improving the classifier's handling of all classes, not just the 
majority class. This is reflected in the confusion matrix metrics, which show Redesignate Stacking 
outperforming the standard method in precision and recall for minority classes. 

5.3 Statistical Validation 

 T-test: A T-test was performed to evaluate whether there was a significant difference in the average 
performance of the two stacking methods (Standard and Redesignate Stacking). The p-value obtained was 
0.8518, indicating that there is no significant difference between the two models in terms of accuracy. This 
suggests that while Redesignate Stacking may offer slight improvements in some aspects, it is not drastically 
different from Standard Stacking when it comes to overall accuracy. 

 McNemar’s Test: McNemar’s test was applied to assess whether there was a significant difference in the 
misclassification rates between the two classifiers. The p-value of 1.0000 confirms that there is no significant 
difference in misclassification rates, meaning that both models perform similarly in terms of making errors. 
This further validates that Redesignate Stacking does not introduce any significant bias or error rate 
differences compared to Standard Stacking. 

5.4 Inference  

Advantages of Redesignate Stacking Classifier is the use_probas parameter and customizable cross-validation 
significantly enhance the adaptability of the model across different datasets. The inclusion of stratified cross-validation 
and diverse meta-features ensures better generalization, particularly for noisy or imbalanced datasets. Explicit model 
cloning prevents the inter-dependencies that can occur in the Standard Stacking approach, ensuring more reliable 
results. The Redesignate Stacking Classifier is highly configurable, making it applicable to a broader range of real-
world problems where model tuning is essential. Inference is given in table 4. 

Table 4: Inference of Standard Stacking vs Redesignate Stacking classifier 

Aspect Standard Stacking Redesignate Stacking 

Overfitting and Underfitting 
Susceptible to overfitting in some 

cases. 

Better resilience to overfitting due 
to stratified cross-validation and 

model cloning. 

Robustness to Noise Moderate resistance to noise. 
More robust to noise by leveraging 

model diversity and cross-
validation. 

Handling Imbalanced Data 
Less effective with imbalanced 

datasets. 

Better performance with 
imbalanced data by incorporating 

class probabilities as meta-features. 

 Overfitting and Underfitting: The Redesignate Stacking Classifier exhibited better resilience against 
overfitting and underfitting than the Standard Stacking Classifier. The stratified cross-validation used in the 
proposed model reduces the risk of overfitting by training base models on different subsets of data, ensuring 
that the model does not memorize specific patterns. Additionally, the cloning of base models prevents any 
unintended sharing of parameters, ensuring that the base models remain independent and robust. 

 Robustness to Noise: The Redesignate Stacking Classifier is more robust to noise compared to the Standard 
Stacking method, primarily because it leverages multiple models with independent predictions and employs 
a meta-classifier capable of learning the most important features from these predictions. By reducing variance 
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through model diversity and robust cross-validation, Redesignate Stacking provides more reliable 
predictions, even when the data is noisy or contains outliers. 

 Handling Imbalanced Data: As highlighted by the improvement in ROC-AUC, Redesignate Stacking has an 
edge when dealing with imbalanced datasets. The ability to use class probabilities as meta-features allows 
the meta-classifier to focus on distinguishing between classes more effectively, especially when some classes 
are underrepresented in the dataset. 

5.5 Limitations of Redesignate Stacking 

While Redesignate Stacking shows improvements over Standard Stacking, there are still some potential limitations 
to consider: 

 Complexity and Computation Time: The additional steps in Redesignate Stacking, such as stratified cross-
validation and model cloning, can increase computational complexity and time, especially with large 
datasets or when a large number of base models are used. 

 Dependence on Base Model Selection: The performance of Redesignate Stacking is still reliant on the 
selection of appropriate base models. If the base models themselves are weak or poorly suited to the 
problem, the meta-classifier may not perform as well, even with robust training techniques. 

 Overfitting in Highly Complex Datasets: Despite its enhancements, Redesignate Stacking may still suffer 
from overfitting if the base models are too complex or if the dataset contains too many features. Ensuring 
that the base models are well-regularized is essential for maintaining the robustness of the classifier. 

5.6 Practical Implications:  

   The Redesignate Stacking Classifier offers significant benefits for tasks such as healthcare diagnostics, fraud 
detection, and financial forecasting. Its robustness and generalization make it particularly valuable for datasets 
with imbalances or noisy labels. 

Future Directions: Investigating integration with pre-trained models for specific domains like image recognition or 

natural language processing.Real-Time Processing: Optimizing the Redesignate Stacking framework for use in 

streaming data environments.Scalability: Exploring scalability for large-scale applications with distributed systems or 

cloud computing. 

 

6. CONCLUSION 

The Redesignate Stacking Classifier demonstrates superior performance compared to the Standard Stacking Classifier 
in terms of ROC-AUC, confusion matrix metrics, and generalization. While the improvements in accuracy and ROC-
AUC are modest, the Redesignate Stacking method provides notable advantages in handling imbalanced data, 
robustness to noise, and model generalization. The statistical tests confirm that the performance differences are not 
statistically significant in terms of accuracy and misclassification rates, but the model offers practical advantages in 
real-world applications where generalization and model diversity are crucial. 

This structured approach highlights how each classifier handles training and prediction, emphasizing differences in 

model handling and data aggregation. Both classifiers aim to improve prediction performance by combining multiple 

base models. The key difference is in the approach to ensuring the independence of each base model during cross-

validation and prediction, which is more rigorously handled in the Redesignate Stacking Classifier through model 

cloning. 

Further research could explore the application of Redesignate Stacking to more complex datasets, as well as the 
integration of other advanced techniques such as feature selection and hyperparameter optimization to further enhance 
performance. 
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