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Abstract—Timely and precise forecasting of cardiovascular
disease (CVD) represents a fundamental component of contempo-
rary clinical informatics, providing opportunities to significantly
enhance patient outcomes via early intervention strategies. This
study conducts a comprehensive comparative examination of ma-
chine learning (ML) and deep learning (DL) algorithms for CVD
forecasting. The algorithms are assessed using the unique prog-
nostic and diagnostic complexities presented by the Framingham
and Cleveland clinical datasets. The evaluation encompasses three
conventional ML algorithms: Logistic Regression (LR), Support
Vector Machine (SVM), and Random Forest (RF), compared
against a soft-voting hybrid ensemble approach. Additionally,
an innovative hybrid deep learning framework is developed and
assessed, integrating a one-dimensional Convolutional Neural
Network with Long Short-Term Memory (LSTM) architecture.
Experimental findings demonstrate that algorithm performance
is substantially dependent on dataset properties. The Random
Forest algorithm attained optimal predictive performance of
95.24% on the Cleveland (diagnostic) dataset. Conversely, with
the Framingham (prognostic) dataset, the hybrid ML algorithm
yielded the most favorable precision (85.73%), though all al-
gorithms displayed notably poor recall rates, highlighting the
difficulty presented by class imbalance. The CNN-LSTM algo-
rithm exhibited encouraging and balanced results with 86.24%
precision on the Cleveland data. This research emphasizes the
necessity of customizing algorithm selection and assessment
criteria to particular clinical prediction applications and provides
detailed analysis of the technical and clinical ramifications.

Index Terms—Cardiovascular Disease, Machine Learning,
Deep Learning, Predictive Modeling, Random Forest, CNN-
LSTM, Ensemble Learning, Clinical Informatics.

I. INTRODUCTION

Ardiovascular diseases (CVDs) persist as the foremost

cause of mortality worldwide, presenting a formidable
challenge to public health systems and demanding innova-
tive solutions for risk stratification and early detection [I].
The capacity to accurately forecast the onset of CVDs from
clinical and lifestyle parameters is pivotal for transitioning
from reactive treatment to proactive, personalized preventive
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care. In this context, machine learning (ML) has emerged as a
transformative paradigm in computational medicine, providing
sophisticated tools to discern complex, non-linear patterns
within patient data that often elude conventional statistical
models [2].

This research confronts the challenge of engineering ac-
curate and reliable CVD prediction systems. The central
objective is to conduct a rigorous, head-to-head comparison of
diverse modeling techniques, spanning from established ML
algorithms to more intricate deep learning architectures. To
this end, the performance of these models is evaluated on two
distinct, publicly accessible datasets: the Framingham Heart
Study dataset, tailored for long-term prognostic assessment of
coronary heart disease (CHD), and the Cleveland Clinic Foun-
dation dataset, focused on the immediate diagnostic prediction
of heart disease [3].

The principal contributions of this paper are fourfold:

« A systematic implementation and comparative evaluation
of Logistic Regression, Random Forest, and Support
Vector Machine models.

e The design and analysis of a soft-voting hybrid ML
model engineered to synergize the predictive strengths
of individual classifiers.

e The development of a novel hybrid CNN-LSTM deep
learning architecture specifically adapted for tabular clin-
ical data.

o A comprehensive analysis of model performance across
the two disparate datasets, yielding critical insights into
how data characteristics dictate model selection and ulti-
mate efficacy.

The remainder of this paper is organized as follows: Section
IT reviews related work. Section III delineates the datasets and
methodology. Section IV details the implementation frame-
work. Section V presents the empirical results. Section VI of-
fers an in-depth case study analysis. Section VII discusses the
findings and outlines future work, and Section VIII concludes
the paper.
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II. RELATED WORK

The application of machine learning to cardiovascular dis-
ease prediction is a mature research area, having evolved in
sophistication in lockstep with advancements in computational
power and algorithmic design. This section contextualizes the
current study by reviewing the historical trajectory and recent
innovations in this domain.

Early forays into automated CVD prediction predominantly
leveraged traditional statistical and machine learning models.
Logistic Regression (LR), valued for its simplicity and in-
terpretable probabilistic outputs, has served as a ubiquitous
baseline in numerous studies [4]. Similarly, Support Vector
Machines (SVMs) have been widely applied, esteemed for
their efficacy in high-dimensional spaces and their capacity
to model non-linear decision boundaries via the kernel trick
[9]. While foundational, these models often face limitations
in capturing the highly complex and non-linear interactions
inherent in clinical datasets.

Subsequent research underscored the superior performance
of ensemble methods, which amalgamate multiple "weak
learners" to construct a single, robust classifier. The Random
Forest (RF) algorithm, in particular, has consistently emerged
as a top performer in comparative studies on CVD prediction
[5], [10]. Its success is attributable to its intrinsic ability
to manage high-dimensional data, its resilience to overfitting
through bagging and feature randomness, and its capacity to
model intricate feature interactions without requiring extensive
data preprocessing.

Building upon the success of individual ensemble models,
researchers have explored hybrid or stacked architectures to
further amplify predictive accuracy. The principle of ensemble
learning, as articulated by Rokach [6], posits that combining
diverse models can yield superior performance compared to
any single constituent model. This is typically realized through
voting schemes or more complex stacking arrangements. The
soft-voting ensemble implemented in this study, which av-
erages the probabilistic outputs of LR, SVM, and REF, is a
direct application of this principle, aiming to formulate a more
generalized and stable predictor.

More recently, the field has witnessed a surge of interest in
applying deep learning (DL) techniques to structured, tabular
clinical dataa domain traditionally dominated by tree-based
methods. The central challenge lies in adapting architectures
conceived for spatial (images) or temporal (text, time-series)
data to a standard feature vector. The use of one-dimensional
Convolutional Neural Networks (1D-CNNs) has been pro-
posed as an effective method for automated feature extraction
from bio-signals and other sequential data [7], [8]. In this
paradigm, a patient’s feature vector can be conceptualized as
a sequence, allowing the 1D-CNN to learn and identify salient
local patterns or interactions among adjacent features.

The combination of a 1D-CNN with a Long Short-Term
Memory (LSTM) network, as developed in this paper, rep-
resents a novel approach for this problem domain. LSTMs
are purpose-built to model long-range dependencies and con-
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Fig. 1. The overall methodological workflow, from data acquisition and
preprocessing to model training and comparative evaluation.
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textual information within sequences [!1]. In the proposed
architecture, the CNN functions as a sophisticated feature
extractor, whose output is then processed by an LSTM to learn
higher-level representations of the patient’s overall clinical
state. While this hybrid DL strategy has shown promise in
other medical prediction tasks [7], its direct, rigorous com-
parison against a robust suite of traditional and ensemble
ML models on distinct prognostic and diagnostic CVD tasks
remains an area ripe for investigation. This study aims to fill
that knowledge gap.

III. DESIGN AND METHODOLOGY

The methodology for this study was architected to ensure
a rigorous and reproducible comparison of the predictive
models. This section details the datasets, the data prepro-
cessing pipeline, the implemented model architectures, and
the evaluation metrics. The end-to-end process, from data
acquisition to model evaluation, is illustrated in Fig. 1.

A. Dataset Description

Two publicly available datasets were selected to evaluate

model performance on distinct clinical prediction tasks:

1) Framingham Heart Study Dataset: This dataset fa-
cilitates a prognostic task, aiming to predict the 10-
year risk of developing coronary heart disease (CHD). It
contains 16 attributes spanning demographic, behavioral,
and clinical domains.

2) Cleveland Clinic Foundation Dataset: Sourced from
the UCI Machine Learning Repository [3], this dataset
is employed for a diagnostic task: predicting the cur-
rent presence of heart disease. It comprises 14 clinical
attributes, including chest pain type, cholesterol levels,
and ECG results.

B. Data Preprocessing Pipeline

A standardized preprocessing pipeline was constructed us-
ing Scikit-learn to prepare the data for modeling. The key steps
included:
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o Missing Value Imputation: Missing numerical features
were imputed using the column median, while categorical
features were imputed with the most frequent category,
implemented via ‘Simplelmputer*.

o Feature Scaling: Numerical features were standardized
using Z-score normalization (‘StandardScaler®) to ensure
a mean of 0 and a standard deviation of 1, a step crucial
for distance-based and gradient-based algorithms.

« Categorical Encoding: Categorical features were trans-
formed into a numerical format using one-hot encoding to
prevent the model from assuming an ordinal relationship.

These steps were encapsulated within a ‘Pipeline‘ object to
prevent data leakage and ensure methodological consistency
across all experiments.

C. Machine Learning Model Architectures

A suite of traditional and ensemble machine learning models
was implemented.

1) Baseline Models: The analysis utilized three well-
established classifiers as baselines:

o Logistic Regression (LR): A linear model providing a
probabilistic output for binary classification.

« Support Vector Machine (SVM): A non-linear classifier
employing a Radial Basis Function (RBF) kernel to find
an optimal separating hyperplane.

« Random Forest (RF): An ensemble of decision trees that
leverages bagging and feature randomness to generate
robust and accurate predictions.

2) Hybrid Ensemble Model: To synergize the diverse
strengths of the baseline models, a hybrid ensemble was
created using Scikit-learn’s ‘VotingClassifier‘. A ‘soft® voting
strategy was adopted, which averages the predicted proba-
bilities from LR, SVM, and RF. The class with the highest
averaged probability is chosen as the final prediction, as
defined by:

M
J= argmiax ijpij @))
j=1

where p;; is the probability predicted by model j for class i,
and w; is the weight assigned to model j. For this implemen-
tation, all weights were set to 1.

D. Deep Learning Model Architecture: CNN-LSTM

A novel hybrid deep learning architecture was designed to
apply sequence modeling principles to the structured tabular
data.

1) Rationale and Data Reshaping: The core idea is to treat
a patient’s feature vector as a sequence, enabling the model
to learn not only from individual feature values but also from
their interactions and contextual order. To facilitate this, the
2D input data ‘(samples, features)’ was reshaped into a 3D
tensor ‘(samples, timesteps, features)‘, where ‘timesteps‘ was
set to the number of input features.

2) Architectural Layers: The architecture, formalized in
Algorithm 1, combines two powerful neural components:

1) 1D Convolutional Layer (CNN): This layer functions
as a feature extractor, applying learnable filters to detect
local patterns and salient interactions among the clinical
features.

2) LSTM Layer: The feature maps produced by the CNN
are passed to a Long Short-Term Memory (LSTM) layer,
which is adept at capturing longer-range dependencies
and contextual relationships within the sequence of
extracted features.

‘Dropout‘ layers were interspersed for regularization to miti-
gate overfitting.

Algorithm 1 CNN-LSTM Model Architecture

1: Input: Reshaped  feature  tensor  of  shape
(None, Nfeatures s 1)
2: Layer 1: Convl1D(filters = 64, kernel_size =

2, activation = ’relu’)

Layer 2: MaxPoolinglD(pool_size = 2)

Layer 3: Dropout (rate = 0.3)

Layer 4: LSTM(units = 64)

Layer 5: Dense(units = 32, activation = ’relu’)

Layer 6: Dropout (rate = 0.3)

Output Layer: Dense(units = 1, activation =

"sigmoid’)

9: Compile: optimizer =
"binary_crossentropy’

S

"adam’, loss =

E. Evaluation Metrics

Model performance was assessed using a standard suite of
classification metrics: Accuracy, Precision, Recall (Sensitiv-
ity), F1-Score, and the Area Under the Receiver Operating
Characteristic Curve (ROC AUC). This comprehensive set of
metrics provides a holistic view of a model’s predictive power,
which is especially critical in clinical contexts where class
imbalance can render accuracy a misleading indicator.

IV. IMPLEMENTATION

This section outlines the technical implementation of the ex-
perimental framework. The entire workflow, from data inges-
tion to model evaluation, was developed in Python, leveraging
a suite of key open-source libraries for scientific computing
and machine learning.

A. Technical Environment

The implementation was built upon the following core
libraries:

o Pandas & NumPy: Utilized for data manipulation, load-
ing datasets into DataFrames, and performing efficient
numerical operations, including the data reshaping re-
quired for the deep learning model.

o Scikit-learn: This comprehensive library was pivotal for
implementing the data preprocessing pipeline, training the
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traditional ML models (LR, SVM, RF), constructing the
voting ensemble, and calculating performance metrics.

o TensorFlow with Keras API: Employed for building,
training, and evaluating the hybrid CNN-LSTM deep
learning model, providing a high-level, flexible interface
for network construction.

« Matplotlib & Seaborn: Used for data visualization,
including plotting performance metrics, training history,
and confusion matrices.

B. Machine Learning Pipeline Implementation

To ensure a standardized and reproducible workflow for the
traditional ML models, Scikit-learn’s ‘Pipeline‘ and ‘Colum-
nTransformer® classes were leveraged. This design choice
integrated preprocessing and classification into a single, mod-
ular framework, critically preventing data leakage from the
test set into the training process. The ‘ColumnTransformer®
allowed for the parallel application of median imputation
and standardization to numerical features, while categorical
features were handled with most-frequent imputation and
one-hot encoding. This preprocessed data was then passed
directly to the “VotingClassifier*, configured for ‘soft‘ voting
to aggregate the probabilistic outputs of the LR, RF, and
SVM base learners. This unified pipeline streamlined the entire
process from raw data to final prediction, ensuring consistency
and enhancing reproducibility.

C. Deep Learning Model Implementation

The deep learning framework was centered on a hybrid
CNN-LSTM architecture, implemented using the Keras Se-
quential API within TensorFlow. This architecture was specif-
ically designed to capture both localized feature interactions
and broader sequential dependencies within the dataset. After
standard preprocessing, the 2D feature matrix was reshaped
into a 3D tensor to be compatible with ‘ConvlD® layers.
The CNN component acted as a feature extractor, using one-
dimensional convolutions and max-pooling to identify salient
patterns. Dropout layers were strategically introduced after the
pooling and dense layers to mitigate overfitting. The extracted
feature sequence was then fed into an LSTM layer to model
temporal relationships. Finally, fully connected dense layers
culminating in a sigmoid activation function performed the
binary classification. The model was compiled utilizing the
Adam optimizer and the binary cross-entropy loss function.
Training was conducted for a fixed number of epochs, with a
portion of the training data reserved for validation to monitor
for overfitting and ensure generalization.

V. RESULTS

The trained models were rigorously evaluated on their
respective held-out test sets. This section presents the empir-
ical findings from three main experiments, with performance
quantified using the metrics defined in the methodology.

A. Experiment 1: Performance on Framingham Dataset

The first experiment assessed the ML models on the prog-
nostic task of predicting 10-year CHD risk. The results,
summarized in TABLE I, reveal a significant challenge. While
the hybrid ensemble model achieved the highest accuracy at
85.73%, a critical finding is the extremely low recall and F1-
scores across all models. For instance, the hybrid model only
achieved a recall of 0.0565, meaning it failed to identify over
94% of patients who were actually at risk. This indicates a
profound difficulty in detecting the positive class, a classic
symptom of severe class imbalance within the Framingham
dataset, rendering the models clinically unreliable for this
specific task despite their high accuracy.

TABLE I
MODEL PERFORMANCE ON THE FRAMINGHAM DATASET

Model Accuracy (%) Precision Recall F1-Score ROC AUC
Logistic Regression 85.85 0.625 0.0806 0.143 0.708
Random Forest 85.26 0.476 0.0806 0.138 0.685
SVM 85.61 0.750 0.0242 0.047 0.593
Hybrid Model 85.73 0.636 0.0565 0.104 0.705

B. Experiment 2: Performance on Cleveland Dataset

The second experiment evaluated the same ML models
on the diagnostic task of predicting heart disease presence.
The results, presented in TABLE II and visualized in Fig. 2,
demonstrate a stark contrast to the Framingham experiment.
The Random Forest classifier emerged as the unequivocal top
performer, achieving an outstanding accuracy of 95.24% and
a nearly perfect Fl-score of 0.953. Its ROC AUC score of
0.995 signifies exceptional discriminative power. The hybrid
ensemble also performed robustly with 90.48% accuracy,
showcasing the suitability of these models for a well-posed
diagnostic problem with more balanced data.

TABLE 11
MODEL PERFORMANCE ON THE CLEVELAND DATASET

Model Accuracy (%) Precision Recall F1-Score ROC AUC
Logistic Regression 79.37 0.777 0.826 0.801 0.875
Random Forest 95.24 0.948 0.958 0.953 0.995
SVM 88.10 0.876 0.889 0.883 0.948
Hybrid Model 90.48 0.901 0911 0.906 0.975

C. Experiment 3: CNN-LSTM Model Performance

The final experiment evaluated the novel hybrid deep
learning model on the Cleveland dataset. The CNN-LSTM
architecture achieved a test accuracy of 86.24% and an ROC
AUC of 0.862. The detailed classification report, shown in Fig.
3, reveals the model’s key strength: its balanced performance.
The precision, recall, and F1-scores for both the negative (class
0) and positive (class 1) classes are highly consistent (0.86-
0.87). This equilibrium is highly desirable in clinical appli-
cations, as it indicates the model is not biased and is equally
effective at identifying both healthy and diseased patients. The
training history in Fig. 4 shows stable convergence without
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Fig. 2. Model Accuracy Comparison on the Cleveland Dataset, visually
demonstrating the superior performance of the Random Forest model.

significant overfitting, validating the model’s generalization
capabilities.

CNN-LSTM Train vs Val Accuracy

85

Accuracy (%)

80

—e— Train Acc
—e— Val Acc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Epochs

18 19 20

Fig. 3. Classification Report for the CNN-LSTM Model on the Cleveland
Dataset, showing balanced performance across both classes.
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Fig. 4. CNN-LSTM Model Training and Validation Accuracy History over
20 Epochs, demonstrating stable convergence without significant overfitting.
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Fig. 5. Confusion Matrix for the Random Forest model on the Cleveland
Dataset. The high TP and low FN counts illustrate its excellent diagnostic
recall.

VI. CASE STUDY ANALYSIS

To ground the empirical results in a practical context,
this section analyzes model performance through two distinct
clinical case studies. These cases illustrate how the interplay
between the dataset, the clinical goal, and the evaluation
metrics determines a model’s real-world utility.

A. Case 1: Optimizing for Diagnostic Certainty (Cleveland
Dataset)

1) Scenario: A clinical decision support system is deployed
to aid physicians in diagnosing heart disease in symptomatic
patients. The paramount objective is to maximize the identi-
fication of true positives (high sensitivity) while minimizing
false negatives, as missing a diagnosis carries severe clinical
consequences. The diagnostic-focused Cleveland dataset is
ideal for this task.

2) Analysis: The results from Experiment 2 (TABLE II)
unequivocally identify the Random Forest (RF) model as the
superior choice for this scenario. Its performance metrics are
clinically compelling:

« High Recall (Sensitivity) of 0.958: This is the most
critical metric for this use case. The RF model correctly
identified nearly 96% of all patients who had heart
disease, making it a highly reliable screening tool with a
very low risk of missing a positive case.

« High Precision of 0.948: When the model predicts dis-
ease, it is correct almost 95% of the time. This minimizes
false alarms, preventing unnecessary patient anxiety and
costly follow-up procedures.

« Exceptional ROC AUC of 0.995: This near-perfect score
confirms the model’s outstanding ability to discriminate
between diseased and healthy individuals.

The confusion matrix for the RF model, conceptually visu-
alized in Fig. 5, is dominated by a high True Positive (TP)
count and a minimal False Negative (FN) count, affirming its
diagnostic reliability.

B. Case 2: The Pitfall of Accuracy in Prognosis (Framingham
Dataset)

1) Scenario: A public health program aims to identify
individuals at long-term (10-year) risk of CHD for preventive
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Hybrid Model Confusion Matrix
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Fig. 6. Conceptual Confusion Matrix for the Hybrid Model on the Framing-
ham Dataset. The large TN count drives high accuracy, while the high FN
count reveals the model’s clinical failure.

interventions. The prognostic Framingham dataset is used for
this screening task.

2) Analysis: The results from Experiment 1 (TABLE I)
serve as a crucial cautionary tale regarding the use of accuracy
as a primary metric in the face of class imbalance.

o Misleadingly High Accuracy: All models reported ac-
curacies above 85%, which, if viewed in isolation, would
suggest strong performance.

o Critically Low Recall: In stark contrast, the recall scores
were abysmal. The best model achieved a recall of only
0.0565, meaning it failed to identify over 94% of at-risk
individuals.

This discrepancy arises because the models achieved high
accuracy by simply predicting the majority class (no risk)
for nearly every patient. In a clinical setting, such a model
is not merely useless but actively harmful, providing a false
sense of security to the very individuals who need intervention.
The conceptual confusion matrix for this scenario (Fig. 6)
would show a massive True Negative (TN) count driving
the high accuracy, while the dangerously high False Negative
(FN) count reveals its clinical failure. This case powerfully
demonstrates that for imbalanced prognostic tasks, metrics like
Recall, F1-Score, and ROC AUC are far more informative than
raw accuracy.

VII. DISCUSSION AND FUTURE WORK

The experimental results and case studies furnish several
critical insights into the application of machine learning for
CVD prediction. This section discusses these findings, ana-
lyzing the interplay between model architecture, dataset char-
acteristics, and clinical utility, before outlining key directions
for future research.

A. The Critical Impact of Dataset Characteristics

The most salient finding is the dramatic performance dis-
parity between the Framingham and Cleveland datasets. This
underscores a core tenet of applied machine learning: no
single model is universally superior. An algorithm’s efficacy is
inextricably linked to the data’s nature and the specific prob-
lem it addresses. The Cleveland dataset, with its diagnostic
focus and relatively balanced classes, presented a well-posed
problem that was readily solved by standard classifiers. In

contrast, the Framingham dataset represented a far more com-
plex prognostic task compounded by severe class imbalance.
This imbalance led the models to adopt a naive strategy of
predicting the majority class, resulting in high accuracy but
abysmal recall, rendering them clinically inept.

B. Analysis of Model Performance

1) The Dominance of Random Forest on Balanced Data:
The exceptional performance of the Random Forest on the
Cleveland dataset (95.24% accuracy, 0.995 ROC AUC) stems
from its architectural strengths. As a robust ensemble, it
effectively models complex, non-linear feature relationships
and is inherently resistant to overfitting, making it a powerful
and reliable choice for well-posed diagnostic problems.

2) The Promise of the CNN-LSTM Architecture: While its
raw accuracy on the Cleveland dataset was lower than RF’s,
the CNN-LSTM model’s primary strength was its balanced
performance. Its nearly identical precision and recall for both
classes (Fig. 3) is a highly desirable property in clinical
settings, indicating an unbiased model. The novel approach
of treating patient features as a sequence for combined CNN-
LSTM processing is a promising direction for tabular clinical
data.

C. Limitations and Future Work

This study, while comprehensive, has limitations that pave

the way for future research:

o Hyperparameter Optimization: The models were
trained with default or basic hyperparameters. Future
work should implement systematic tuning using methods
like GridSearchCV or Bayesian Optimization to unlock
the full potential of each architecture.

o Mitigating Class Imbalance: The poor results on the
Framingham dataset highlight the need for explicit strate-
gies to handle imbalance. Future research should explore
data-level techniques like SMOTE (Synthetic Minority
Over-sampling Technique) and algorithm-level methods
such as class weighting to force the model to focus on
the minority class.

o Enhancing Model Interpretability: The "black-box"
nature of Random Forest and deep learning models is
a barrier to clinical adoption. Future work must integrate
model-agnostic interpretability tools like SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations) to provide feature-level
insights, thereby fostering clinical trust and transparency.

o Investigating Advanced Architectures: While the CNN-
LSTM showed promise, newer architectures like Trans-
formers, which have demonstrated remarkable success in
other domains, could be adapted for structured clinical
data. Future studies should explore these cutting-edge
models to potentially push the boundaries of predictive
accuracy.

VIII. CONCLUSION

This investigation provided a comprehensive comparative
examination of machine learning and deep learning approaches
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for predicting cardiovascular disease, generating essential un-
derstanding regarding the relationship between model archi-
tecture, data properties, and practical clinical application. The
primary discovery from this work demonstrates that although
Random Forest demonstrates excellence in well-structured
diagnostic problems with equilibrated datasets, attaining out-
standing accuracy, the innovative CNN-LSTM framework rep-
resents an attractive option that delivers more equilibrated per-
formance—a characteristic of critical significance in numer-
ous clinical contexts. Additionally, this investigation presents
an important warning, illustrated through the Framingham
dataset, that elevated accuracy may serve as a deceptively mis-
leading indicator when class imbalance exists. It emphasizes
the imperative of focusing on measures such as recall and
Fl-score for developing clinically meaningful applications.
In summary, this work establishes a comprehensive method-
ology for model selection and assessment in cardiovascular
predictive analytics and argues that subsequent research must
transition toward a multidimensional optimization objective
that incorporates not only accuracy, but also stability, equity,
and clinical explainability.
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