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Abstract—Affecting over 10 percent of the world’s 
population, and almost 80 to 90 percent of those 
suffering from learning disabilities, Dyslexia happens to 
be the most common neuro-cognitive disorder. It 
impairs the overall linguistic cognition of patients, such 
as recognizing sounds, relating them to written content, 
speech and even handwriting.  

Needless to say, there is a pressing need to develop 
reliable systems to detect symptoms indicative of 
Dyslexia, without significant human intervention. This 
project proposes combining two most confirmatory 
features of Dyslexic patients - their speech patterns and 
their handwriting. A multimodal Deep Learning neural 
network is most suited for this classification, which will 
consider the classification outputs pertaining to both 
kind of inputs, and would come up with a confident 
result, backed with a high degree of accuracy.  

Starting with data collection, the system will be 
developed in various phases, which include model 
training, rigorous testing, UI development and finally 
deployment. The model will be built using the Keras 
API from Google’s TensorFlow Deep Learning 
Framework, in Python. Once trained, the model will be 
integrated with the frontend to develop a fully 
functional software. Additionally, hardware setup can 
be integrated, to upscale the software to a highly 
portable Dyslexia Detection system. The use cases of 
this system will not only be limited to medical institutes, 
but also in domestic settings for quick and early 
detection of symptoms. 

Keywords—machine learning, CNN, Dyslexia detection, AI 
based education 

I. INTRODUCTION 

 
 
 
 
 
 

 
 

A. Dyslexia is a neurological learning disorder that affects 
reading, writing, and spelling abilities, though it is not 
related to intelligence. Early detection is crucial, as 
timely intervention can significantly improve learning 
outcomes for affected children. Traditional assessment 
methods, however, are often time-consuming, 
subjective, and resource-intensive, making large-scale 
screening difficult. With the advancement of Artificial 
Intelligence (AI) and Machine Learning (ML), 
automated and reliable models are being developed to 
support early diagnosis. This study focuses on building 
an AI and ML-based model that analyzes handwriting 
and linguistic patterns to detect dyslexia more 
accurately, efficiently, and cost-effectively. 

B. Students with dylexia often face difficulties in reading 
and writing, which negatively impacts their learning 
outcomes. Traditional detection methods are time-
consuming and lack accuracy. There is a growing need 
for an automated,reliable, and accessible solution. The 
motivation behind this study is to apply machine 
learning to handwriting analysis, enabling early 
identification of dyslexia and providing timely support 
for improving timely support for improving educational 
experiences. 

 

II. LITERATURE REVIEW 

 
This project aims to address these gaps by developing a 

machine learning model that detects dyslexia from 
handwriting samples. The approach focuses on effective 
preprocessing, feature extraction, and classification to build 
a scalable, cost-effective, and accurate solution. The 
proposed model can assist teachers, parents, and 
psychologists in early detection and open pathways for 
digital intervention tools. 
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TABLE 1: Existing works 

III. METHODOLOGY 

 

A. Data Collection 

Handwritten samples were collected from multiple 
sources, including self-collected data and publicly available 
datasets (Mostly Roboflow datasets for dyslexic and normal 
handwriting, which were merged maintaining 1:1 class 
ratio). The datasets consist of images of various dyslexic 
and non-dyslexic handwriting samples with slight 
augmentation to increase samples and add variety. 

 

B. Preprocessing 

To ensure consistency and quality of input, all samples 
were preprocessed using the following steps: 

 

 Resizing: Images are resized to (224x224) 
pixels 

 Normalization: Divide pixel intensities by 255 
to scaled down values between 0 and 1 

 Augmentation: Random horizontal flips, 
zooms and contrast adjustments made to 
increase variety in available photos and reduce 
chance of overfit 

 

     C. Model Development 

     A hybrid approach was adopted using both classical 
machine learning and deep learning models: 

Traditional ML Models: Support Vector Machine 
(SVM), Random Forest, and k-Nearest Neighbors (k-NN) 
were tested with handcrafted features. 

Deep Learning Models: Convolutional Neural Networks 
(CNNs) were employed for automatic feature learning. 
Transfer learning models such as ResNet and VGG16 were 
also explored for enhanced accuracy. 

 

     D. Training and Validation 

The dataset was divided into 70% training, 20% 
validation. The training was carried out using Adam 
optimizer with categorical cross-entropy loss for 
classification tasks. Data augmentation techniques such as 
rotation, skewing, and scaling were applied to simulate 
natural handwriting variations. 

 

     E. Deployment 

 A Graphical User Interface (GUI) was 
developed to integrate the modules. The GUI 
allows users to: 

 Upload handwriting samples. 

 Select the desired functionality (recognition, 
dyslexia detection, signature verification, or 
personality analysis). 

 Receive real-time results with visual feedback. 

 

IV. IMPLEMENTATION 

 
A. Hardware and Software Used 

Hardware: 

 Flatbed scanner for digitizing handwritten samples 

 Graphics Processing Unit (GPU, optional) for deep 
learning model training 

 

Software: 

 Programming Language: Python  

 Libraries: TensorFlow, Keras, NumPy 

 Dataset Handling: Pandas, PIL 

 GUI Development: Streamlit 

Author 
&Year 

Approach Dataset Model Accuracy 

Radford 
et al. 
(2021) 

Reading-
aloud audio 
(real + 
nonsense 
words) with 
error-rate 
features 

Children 
reading 
word lists 

Neural 
Network 

~90% 

Tas et 
al. 
(2023) 

Speech 
features 
(MFCCs, 
reading rate, 
ASR 
confidence) 

25 Turkish 
children (12 
dyslexic, 13 
control) 

SVM, KNN ~95.6% 

Liu et 
al. 
(2024) 

DysDiTect 
Chinese 
handwriting 
(dictation 
task) 

1,064 
children, 
100K+ 
samples 

CNN + 
LSTM + 
Attention 

~83.2–85% 

Patil et 
al. 
(2024) 

English 
handwriting 
recognition 

138,500 
images 
(ages 6–12) 

CNN + 
BiLSTM 
(CTC loss) 

~95.6% 
(F1≈92.6%) 

Robaa 
et al. 
(2024) 

Multilingual 
handwriting 
with 
explainable 

Collected 
handwriting 
samples 

CNN + 
Vision 
Transformer 
(XAI) 

~99.7% 

Figure 1: Flowchart for inference and model description 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 11 2025

PAGE NO: 23



 

 

 

        B. Data Collection 

Handwritten data was obtained from RoboFlow datasets for 
normal and dyslexic handwriting, which were merged 
keeping a suitable class balance. 

 

V. RESULTS AND DISCUSSION 

A. Results 

The developed models were evaluated using multiple 
performance metrics: 

 Binary accuracy: 0.89 

 Training loss: 0.33 

 Validation accuracy: 0.90 

 Validation loss: 0.32 

     B. Analysis of Results 

 

Deep learning models (CNN, RNN) outperformed 
traditional ML methods (SVM, Random Forest) in 
recognition and dyslexia detection tasks due to their ability 
to learn complex handwriting features. 

In signature verification, handcrafted features combined 
with CNN embeddings reduced false acceptance/rejection 
rates significantly. 

The performance of personality analysis was 
comparatively lower due to subjective variations in 
graphological features, highlighting the need for larger 
annotated datasets. 

 

   C. Comparison with Existing Methods 

Compared to existing handwriting recognition models, 
the proposed CNN-based approach achieved higher 
accuracy with fewer preprocessing steps. In dyslexia 
detection, the system showed better sensitivity to irregular 
spacing and letter reversals than previous rule-based 
approaches. 

 

VI. CONCLUSION AND FUTURE WORK 

This project demonstrated the effectiveness of 
handwriting-based analysis across multiple domains: 
recognition, dyslexia detection, signature verification, and 
personality evaluation. The proposed hybrid methodology 
achieved competitive results, validating the robustness of 
deep learning for handwriting tasks. 

However, limitations include dependency on large 
annotated datasets, computational requirements for deep 
models, and subjectivity in personality-based predictions. 

Future work will focus on: 

 Expanding datasets with more diverse 
handwriting samples 

 Integrating dynamic handwriting features such 
as pen pressure and speed (using digital tablets) 

 Developing lightweight models for real-time 
mobile deployment 

 Combining with other strong pointers such as 
eye movement detection across AOI (Area of 
Interest) 
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