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Abstract— The non-stationarity characteristic of the solar power 

renders traditional point forecasting methods to be less useful due 

to large prediction errors. This results in increased uncertainties 

in the grid operation, thereby negatively affecting the reliability 

and increased cost of operation. This research paper proposes a 

unified architecture for multi-time-horizon predictions for short 

and long-term solar forecasting using Artificial Neural Networks 

(ANN) and Recurrent Neural Networks (RNN). The paper 

describes an end- to-end pipeline to implement the architecture 

along with methods to test and validate the performance of the 

prediction model. The results demonstrate that the proposed 

method based on the unified architecture is effective for multi- 

horizon solar forecasting and achieves a lower root-mean-squared 

prediction error compared to the previous best performing 

methods which use one model for each time-horizon. The 

proposed method enables multi-horizon forecasts with real-time 

inputs, which have a high potential for practical applications in 

the evolving smart grid. 

Keywords— Artificial Neural Network, Forecasting, 

Predictive Analysis, Recurrent Neural Network, Renewable 
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I. INTRODUCTION 

 

Today’s power grid has become dynamic in nature 
mainly because of three changes in the modern grid: 1. 
Higher penetration level of renewables, 2. Introduction and 
rapidly increasing deployment of storage devices, and 3. 
Loads becoming active by participating in demand response. 
This dynamic modern grid faces the challenge of strong 
fluctuations due to uncertainty. There is a critical need of 
gaining real time observability, control, and improving 
renewable generation forecast accuracy to enhance the 
resiliency and to keep the operational costs sustainable. 
Independent system operators (ISOs) have already been 
facing challenges with higher renewable penetration on the 
grid due to the uncertainties resulting from short-term 
forecasting errors. In the year 2016, California ISO doubled 
its frequency regulation service requirements, causing a 
sharp rise in the cost of requirements, to manage the 

recurring short-term forecasting errors in renewable 
generation [1]. The Western Electricity Coordinating 
Council (WECC) could save $5 billion per year by 
integrating wind and solar forecasts into unit commitment, 
according to the study conducted by Lew et al [2]. Thus, it 
is clear that the increased grid penetration levels of solar 
with its inherent variability caused by a combination of 
intermittence, high-frequency and non-stationarity, poses 

 
problems for grid reliability and increases the grid 
operation costs at variousThis paper is a preprint (IEEE 
“accepted” status). IEEE copyright notice. 2018  IEEE. 
Personal use of this material is 

 
permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including 
reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any 
copyrighted 

time-scales. For example, day-ahead solar forecast 
accuracy plays a significant role in the effectiveness of 
Unit Commitment (UC); very-short-term solar forecast 
errors due to fluctuations caused by the passing clouds 
lead to sudden changes in PV plant outputs that can 
cause strain to the grid by inducing voltage-flickers and 
real-time balancing issues. Thus, solar power generation 
forecasting is an area of paramount research, as the need 
for robust forecast for all timescales (weekly, day-ahead, 
hourly and intra-hour) is critical for effectively 
incorporating the increasing amount of solar energy 
resources at a global level and contributing to the 
evolution of the smart grid. Moreover, improving the 
accuracy of solar forecasting is one of the low cost 
methods for efficiently integrating solar energy into the 
grid. 
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The rest of the paper is organized as follows. The 
literature is reviewed and the significant shortcomings of 
the current forecasting approaches are recognized in 
Section II. Section II further introduces the capabilities 
of the proposed unified architecture and the novel 
algorithm to fill in the gap between the need to improve 
the forecasting techniques and the existing approaches. 
Section III introduces the proposed unified architecture 
based on RNNs and the training procedure used for 
implementing the neural network. Exploratory data 
analysis, evaluation metric and the structure of the input 
data, and the proposed algorithm are presented in 
Section IV. Section V discusses the results and their 
interpretation. The paper is concluded with Section VI, 
which also identifies the future avenue of research in 
this method of solar forecasting. 

 
II. LITERATURE REVIEW AND PROBLEM IDENTIFICATION 

 

Forecasting methods which have been used for 
renewable generation and electric load forecasting 
prediction can be mainly classified into five categories: 
1) Regressive methods, such as Autoregressive (AR), 
AR integrated moving average (ARIMA), and 
exponential smoothing (ES) models [3], [4], [5], 
nonlinear stationary models; 2) Artificial Intelligence 
(AI) techniques, such as Artificial Neural Networks 
(ANN) [6]- [10], k-nearest neighbors [11]-[14], 

 
fuzzy logic systems (FLSs) [15]-[17]; 3) 

Numerical Weather Prediction (NWP) 

 
[18]; 4) Sensing (remote and local) [19]. 5) Hybrid 
models, such as neuro-fuzzy systems [20]-[21], ANN 
and satellite derived cloud indices [22], to name a few. 

 
Numerical Weather Prediction (NWP) models are 

based on physical laws of motion and thermodynamics 
that govern the weather. For the places where ground 
data is not available, 

 
NWP models are powerful tools to forecast solar radiation. 
However, they pose significant limitations in predicting the 
precise position and extent of cloud fields due to their 
relatively coarse spatial resolution. Their inability to resolve 
the micro-scale physics associated with cloud formation 
renders them with relatively large error in terms of cloud 
prediction accuracy. In order to mitigate this limitation, 
NWPs are simulated at regional level (called Regional 
NWP) models, downscaled to derive improved site-specific 
forecasts. NWP has another limitation of temporal- 
resolution. The timescale of output variables of NWP 
models is from 3 hour - 6 hours for the Global Forecast 
System (GFS) and 1-hour (for mesoscale model), which is 
not useful for predicting the ramp-rate and very-short-term 
output fluctuations. 

 
For the areas where the previous ground-based 

measurement are not available, satellite based irradiance 
measurement proved to be a useful tool [22]. The images 
from satellite are used to analyze the time evolution of air 

mass by the superimposition of images of the same area. 
Radiometer installed in the satellite records the radiance, 
states of the atmosphere (clear sky to overcast) impacts the 
radiance. Satellite sensing has the main limitation of 
determining an accurate set point for the radiance value 
under clear sky conditions and under dense cloudiness 
condition from every pixel in every image. Another 
limitation of solar irradiance forecasting using remotes 
sensing with satellite is the algorithms that are classified as 
empirical or statistical [23]- [24]. These algorithms are 
based on simple statistical regression between surface 
measurements and satellite information and do not need 
accurate information of the parameters that model the solar 
radiation attenuation through the atmosphere. So the 
ground-based solar data is required for these satellite 
statistical algorithms anyway. 

 
The aforementioned limitations of NWP and sensing 

models have steered the short-term solar forecasting 
research towards time-series analysis using statistical 
models and more recently AI techniques. Statistical 
techniques can mainly be classified as [25]: 1) Linear 
stationary models (Autoregressive models, Moving Average 
models, Mixed Autoregressive Moving Average Models, 
and Mixed Autoregressive Moving Average models with 
exogenous variables); 2) Nonlinear stationary models; 3) 
Linear non-stationary models (Autoregressive integrated 
moving average models and Autoregressive integrated 
moving average models with exogenous variables). Though 
these conventional statistical techniques provide a number 
of advantages over NWP and sensing methods, but these are 
often limited by strict assumptions of normality, linearity, 
variable independence. Artificial Neural Networks (ANN) 
are able to represent complex non-linear behaviors in higher 
dimensional settings. When exogenous variables like 
humidity, temperature and pressure are considered in the 
process of solar forecasting - ANNs act as universal 
function approximators to model the complex non-linear 
relationships between these variables and their relationship 
with the Global Horizontal Irradiance (GHI). An ANN with 
multiple hidden layers can be called A Deep Neural 
Network (DNN). With the advancements 

 
in computational capabilities, DNNs have proven to be 

effective and efficient in solving complex problems in 
many fields including image recognition, automatic speech 
recognition and natural language processing etc [26]. 
Although, feed- forward neural network models have been 
used for solar forecasting problem, the use of Recurrent 
Neural Networks (RNN) models have not been explored yet, 
to the best of the author’s knowledge. RNN is a class of 
ANN that capture the dynamics of sequences using directed 
cyclic feedback connections [27]. Feedforward neural 
networks rely on the assumption of independence among the 
data points or samples. The entire state of the network is 
lost after processing each data point (sample). Unlike 
vanilla feedforward neural networks, recurrent neural 
networks (RNNs) exhibit dynamic temporal behavior by 
using their internal memory to process arbitrary sequences if 
inputs, which can be harnessed in predicting the irradiance 
for the next time step by considering the input from many 
previous times steps. Recent advances in parallelism, 
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network architectures, optimization techniques, and graphics 
processing units (GPUs) have enabled successful large-scale 
learning with RNNs overcoming their traditional limitations 
of being difficult to train due to having millions of 
parameters. 

 
Several methods have been proposed for solar 

forecasting in the past but most of them were modeled 
for a particular time-horizon and no single model 
performed well compared to others for multi-time- 
horizon forecasting/prediction. In addition, the state-of- 
the-art methods used for solar forecasting primarily 
focuses on averaged rather than instantaneous forecasts. 
This paper proposes two approaches using RNNs. 1). A 
single system that is capable of being trained to output 
solar forecast for 1-hour or 2-hour or 3-hour, or for 4- 
hour time horizons. ii) A unified architecture that can 
predict/forecast the solar irradiance for multi-time- 
horizons; for example, the trained model can 
predict/forecast the solar irradiance values for the 1- 
hour, 2-hour, 3-hour and 4-hour time horizons. Our 
proposed method is capable of taking a time-series data 
as the input and provides predictions with a forward 
inference time in the order of milliseconds, enabling 
real-time forecasts based on live measured data. This 
offers a great value for industrial applications that 
require real- time multi-time-horizon forecasting for 
overcoming the current operational challenges with high 
penetration of renewable source of energy. 

 
III. ARCHITECTURE AND ALGORITHM 

 

The RNN resembles a feedforward neural network 
except for additional directed edges. These edges span 
adjacent time steps, introducing the notion of temporal 
component to the model. Theoretically, the RNN 
architecture enables the network to make use of past 
information in sequential data. 

 
A. Recurrent Neural Network – Unified 

Architecture 

The input to an RNN is a sequence, and its target can 

be a sequence or a single value. An input sequence is 

denoted by (x(1), x(2),...x(T)), where each sample/data- 

point x(t) is a real valued vector. The target sequence is 

denoted by (y(1), y(2),...y(T)) and the predicted target 

data-point is denoted by 

 
(y(1), y(2),...y(T)). There are three dimensions to the input of 

the RNN (shown in Figure 1): 1) Mini-batch Size; 2) 

Number of columns in the vector per time-step; and 3) 

Number of time- steps. Mini-batch size is the sample 

length (data-points in the time-series). Number of columns 

are the input features in the input vector. The number of 

time-steps is the differentiating factor of RNN, which 

unfolds the input vector over time. 

 
In a typical multilayer feedforward neural network, the 

input vector is fed to the neurons at the input layer, which 

then gets multiplied by the activation function to produce 

the intermediate output of the neuron, this output then 

becomes the input to the neuron in the next layer. The net 

input (denoted by input_sumi) to this neuron belonging to 

the next layer is the weight on connections (W) multiplied 

by previous neuron’s output with the bias term, as shown 

in Equation 1. An activation function (denoted by g) is 

then applied to the input_sumi to produce the output from 

the neuron Equation 2 and 3. 

 
�����_���� = W� ∙ x� + � (1) 

 
�� = (�����_��� ) (2) 

 
�� = (W� ∙ x� + ) (3) 

 

 
Figure 1 Input representation for the Recurrent Neural Network 

For RNN network, at time t, neurons with recurrent 

edges receive input from the current sample x(T) and also 

from hidden node values h(t-1) in the network’s previous 

state (Equation 4). Given the hidden node values h(t) at 

time t, the output y(T) at each time t is calculated (Equation 

5). 

 
 

 
ℎ(�) = �(Wℎ��(�) + Wℎℎℎ(�−1) + �ℎ) (4) 

 
 

 
�^ ( � ) = �(W�ℎℎ(�) + ��) (5) 

 
 

 
where, Whx is the conventional weight matrix between the 
input and the hidden layer and Whh is the recurrent 
weights matrix between the hidden layer and itself at 
adjacent time 

 
steps. bh and by are bias parameters. The proposed 
architecture uses Rectified Linear Units (ReLU) as the 
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activation function. The network unfolds the given input 
at time t as shown in Figure 1. 

 
B. Algorithm description 

The unfolded network is trained across the time steps 
using an algorithm called backpropagation through time 
(BPTT) [28]. The loss function used for this regression 
problem is Mean Squared Loss (MSE). The loss function 
finds the error between the target output and the predicted 
output from the network. Gradients are computed using 
back- propagation-through time [28] and the stochastic 
gradient descent optimizer is used to update the weights 
so as to minimize the loss. The RMSE is calculated for 
benchmarking purposes. 

 
 

 
The motivation to use a RNN is to identify and learn 

the complex relationship between sequences of various 
exogenous variables and their combined impact on the 
solar irradiance. This, in the author’s view, enables the 
algorithm to recognize non-linear contributing factors for 
example the atmospheric conditions, which may lead to 
cloud formation in nearby time horizon. This is one of the 
reasons the prediction RMSE is lower in the proposed 
approach compared to other reported approaches. 

 
C. Solar Forecasting – input features 

and predictions 

The algorithm and the unified architecture developed 
in this paper were trained and tested on data from the 
NOAA‘s SURFRAD [31] sites similar to the previous 
works in the literature [29][32]. The input features are: 
downwelling global solar (Watts/m^2), upwelling global 
solar (Watts/ m^2), direct- normal solar (Watts/ m^2), 

 
the model.  ��� is averaged over forecasting 

 
hourly predictions. The averaged hourly clear sky index 

ending at time f.h. is denoted by (�.ℎ.) and calculated as 

shown in Equation 6. 

downwelling diffuse solar (Watts/ m^2), downwelling 
thermal infrared (Watts/ m^2), downwelling IR case 
temp. (K), downwelling IR dome temp. (K), upwelling 
thermal infrared (Watts/ m^2), upwelling IR case temp. 
(K), upwelling IR dome temp. (K), global UVB 
(milliWatts/ m^2), photosynthetically active radiation 
(Watts/ m^2), net solar (dw_solar - uw_solar) (Watts/ 
m^2), net infrared (dw_ir - uw_ir) (Watts/ m^2), net 
radiation (netsolar+netir) (Watts/ m^2), 10-meter air 
temperature (C), relative humidity (%), wind speed 
(ms^1), wind direction (degrees, clockwise from north), 
and station pressure (mb). According to Dobbs [29], 
Global downwelling solar measurements best represent 
the Global Horizontal Irradiance (GHI) at the SURFRAD 
sites, which was validated in this paper through 
exploratory data analysis. [Figure 3] shows the daily 
averages of Clear Sky GHI and global downwelling solar 
at SURFRAD site for a year, both the variable follow the 
same trend. [Figure 4] shows that both these variables are 
positively correlated. 

 
 Bird model is used to calculate clear sky 

GHI [30]. At time t, clear sky GHI is denoted by �� , 
representing the theoretical GHI at time t assuming zero 
cloud coverage. At time t, the ratio between the 

instantaneously observed �� � and the theoretical 

maximum �� � is called clear sky 

 
index, denoted by ��(�), this parameter is introduced in 

[29]. 

 
(�) is used as the dependent variable for training and testing 

(�) 

quantities, as shown by the regression line plotted on to 

the scatter plot. 

horizon, for 

 
B. Evaluation Metric 

The algorithm uses Mean Squared Error (MSE) as a 

 

∑�.ℎ. � 

��(�) 

 
measure to find the difference between the target and 
the 

 
output that the neural network produces during the 
training process, this is shown in Equation 7. Later in 
the process, for 

 �=�.ℎ.−60 � 

60 (6) 

 
the purpose of benchmarking, the Root Mean 
Squared Error is calculated by taking square 
root of the MSE values. 
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IV. EXPLORATORY DATA ANALYSIS AND PROPOSED 

ALGORITHM 
 
 

 

$%& = 1 ∑� 

(' − '  ̂)
2
(7) 

 
 

 
A. Exploratory Data Analysis 

 

 
Figure 2 Cleary Sky and Observed Irradiance 

 
 

 

 

Figure 3 Correlation between Observed and Clear Sky GHI 

Figure[2] shows the variation of the observed global 
downwelling solar and clear sky global horizontal irradiance 
for the year 2010 at Boulder, CO. Figure [3] shows the 
correlation between the two for same year and same site. 
There is a positive and strong correlation between the 
two 

= 1 7 

Where ' is a vector of target values and '^ is a vector of n 
predicted values. 

 
C. Algorithm 

 

 
Figure 4 Flow chart of the proposed method 

The flowchart of the proposed Unified Recurrent 
Neural Network Architecture based method is shown in 
Figure 4. The overall algorithm can be divided into three 
mail blocks: 

 
 
 

 
1) Preprocessing 

 

The site-specific data is imported and clear sky global 
horizontal irradiance values for that site are obtained from 
the Bird Model. The two are merged. Dataset is split into 
train and testing sets. The clear sky index parameter is 
created as the ratio of observed global downwelling solar 
(Watts /m^2) and GHI (Watts /m^2). Kt is a dimensionless 
parameter. The missing values in the data are replaced by 
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the mean and/or the neighborhood values. Exploratory data 
analysis is conducted to identify and eliminate extreme 
outliers in order to normalize the data. 

 
2) RNN training and testing 

 

A Recurrent Neural Network based model architecture is 
instantiated by specifying the architectural parameters: 
input dimension (number of nodes at the input layer; 22), 
hidden dimension (number of nodes in the hidden layer; 15), 
layer dimension (number of hidden layers; 1) and output 
dimension (number of nodes in the output layer; 4). 
Sequence length, which unfolds as time-steps is also defined 
here along with the batch size. The model is trained and test 
by iterating through the whole dataset based on pre-set 
number of epochs. We used a batch size of 100 for 1000 
number of epochs for obtaining the results discussed in this 
paper. 

 
3) Post-processing 

 

Once the training and testing is over, the stored MSE is 
first de-normalized and then it is used to calculate RMSE. If 
the RMSE is not satisfactory the hyperparameters (learning 
rate and number of epochs) are tuned and the model is 
trained again. When a satisfactory (or as expected) RMSE is 
achieved, the training process of the algorithm terminates. 

 
V. RESULTS AND DISCUSSION 

 

The algorithm is trained using the data for the year 2010 
and 2011 from the SURFRAD observations sites in Boulder, 
CO; Desert Rock, NV; Fort Peck, MT; Sioux Falls, SD; 
Bondville, IL; Goodwin Creek, MS; and Penn State, PA. 
The test year for each respective site was chosen to be 2009 
for the purpose of benchmarking against [29] and other 
previously reported results in the literature. Results from the 
two methods proposed in this paper are presented in the 
following two sub- sections. 

 

 
Figure 5 Test Mean Squared Error Plot 

A. Fixed Time Horizon Predictions 

 

The first method uses the proposed RNN 
architecture and algorithm to predict for 1-hour, 2-hour, 

3-hour and 4-hour time horizons, independently. In 
other words, four independent models are developed for 
1-hour, 2-hour, 3-hour and 4-hour predictions for each 
of the seven SURFRAD sites. Figure 5 shows the test 
loss over 1000 epochs (with a batch size of 100 and test 
set of 3300 samples from the test year 2009) for all the 
seven sites. The RMSE values in Table 1 show that the 
proposed architecture and algorithm has lower RMSE 
values for all four forecasting horizons and all the seven 
sites, compared to the best RMSE values reported in 

 
[29] from a suite of other machine learning algorithms 
(Random Forests, Support Vector Machine, Gradient 
Boosting and vanilla Feed-Forward). 

 
B. Multi-time-horizon prediction 

 

In this method, the architecture predicts for all four 
forecasting time horizons (1-hour, 2-hour, 3-hour, and 4- 
hour) in parallel; i.e. one model per SURFRAD site is 
developed which makes predictions for all the four time 
horizons. This method is the multi-time-horizon 
implementation of the proposed architecture. None of 
the methods discussed in the literature have been shown 
to be capable of producing multi- time-horizon 
predictions. Table 2 enlists the RMSE values obtained 
for the test years 2009, 2015, 2016 and 2017. To 
quantify the overall performance of the predictive model 
in terms of its combined forecasting accuracy for all four 
forecasting horizons, the mean of the RMSE values is 
calculated. Although, even the best RMSE values 
reported in the literature (for example in [29][32]) were 
for a single time horizon forecast at a time, the proposed 
method achieves a significantly lower RMSE in 
predictions across all the short- term (1 hour to 4 hours) 
forecasting time-horizons as seen in Table 2. 

 
 
 
 

 
Capability to predict for multi-time-horizons makes 

the proposed method very relevant for industry 
applications. The real-time data can be fed to the RNN 
and due to its lower forward inference time, predictions 
can be made for multiple time horizons. The proposed 
method is implemented using PyTorch and the code and 
additional information can be found on this site: 
http://sakshi-mishra.github.io/. 
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VI. CONCLUSION AND FUTURE WORK 

 

Short-term solar forecasting is of great importance 
for optimizing the operational efficiencies of smart 
grids, as the uncertainties in the power systems are ever- 
increasing, spanning from the generation arena to the 
demand-side domain. A number of methods and 
applications have been developed for solar forecasting, 
with some level of predictive success. The main 
limitation of the approaches developed so far is their 
specificity with a given temporal and/or spatial 
resolution. For predictive analysis problems, the field of 
AI has become promising with the recent advances in 
optimization techniques, parallelism, and GPUs. AI 
(especially deep neural networks) thrives on data, and 
with decreasing cost of sensor and measurement 
equipment, plethora of solar data is getting available. 
Data availability is 

 
only going to keep increasing in the coming years. The 
proposed novel Unified Recurrent Neural Network 
Architecture harnesses the power of AI to form a high- 
fidelity solar forecasting engine. This architecture has the 
potential to be implemented as a complete forecasting 
system, which spans the entire spectrum of spatial and 
temporal horizons with a capability to take real-time data as 
input to produce multi-time-scale (intra-hour, hourly and 
day-ahead scales) predictions. In addition, the proposed 
algorithm outperforms traditional Machine Learning 
methods in terms of quality of the forecast and its low 
forward inference time makes it a robust real-time solar 
forecasting engine. 

 
Although a deeper neural network will have more 

capacity, we experimentally observed that it leads to 
high variance in the model and therefore a reduced 
generalization power for the particular problem dealt in 
this paper. The performance of the proposed method 
can be further improved in several ways including 
hyper-parameter tuning and architectural changes like 
the activation functions used or the type of layers. 
Extension of the proposed architecture with LSTM cells 
and intra-hour forecasting horizons are potential future 
research avenues in this domain. 

 
Table 1 

Method 1 (Fixed Time Horizon Predictions) Results 

 

 

Year 2009 Bondville Boulder Desert Rock Fort Peck Goodwin 

Creek 

Penn State Sioux Falls 

F.H. RNN ML RNN ML RNN ML RNN ML RNN ML RNN ML RNN ML 

1-hour 16.8 62 17 74 41.7 52 21.2 56 24.8 71 8.64 67 27.2 52 

2-hour 20.73 98 20.7 108 57.23 72 29.7 81 25.2 103 10.5 97 32.1 81 

3-hour 18.78 116 21.2 123 60.54 83 25.5 94 26.9 125 11.8 114 30.6 96 

4-hour 17.98 121 22.9 125 49.71 82 29.4 93 22 120 10.7 117 35.3 103 

Mean 

 
RMSE 

18.57 99.25 20.45 107.5 52.29 72.25 26.45 81 24.73 104.8 10.41 98.75 31.3 83 

 

 

 

 

 

 

Table 2 
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Method 2 (Multi-time-horizon prediction) Results 

 
Year Forecast 

 
Horizon 

Bondville Boulder Desert 

 
Rock 

Fort Peck Goodwin 

 
Creek 

Penn 

 
State 

Sioux 

 
Falls 

 

 

 

 

2009 

1-hour 0.706 0.593 0.469 0.709 0.647 0.679 0.686 

2 -hour 1.119 1.055 0.984 1.352 1.173 1.134 1.247 

3-hour 4.524 4.010 4.527 6.311 4.586 3.161 5.061 

4-hour 52.130 49.453 153.270 69.987 58.984 28.396 73.409 

Mean 

 
RMSE 

14.619 13.779 39.812 19.589 16.347 8.342 20.100 

 

 

 

 

2015 

1-hour 0.717 0.559 0.437 0.689 0.643 0.734 0.680 

2-hour 1.166 1.026 0.952 1.302 1.190 1.180 1.252 

3-hour 4.719 4.006 4.268 5.845 4.764 3.118 5.216 

4-hour 57.839 49.349 85.952 57.687 35.814 25.796 50.823 

Mean 

 
RMSE 

16.110 13.735 22.902 16.381 10.603 7.707 14.493 

 

 

 

 

2016 

1-hour 0.731 0.593 0.456 0.726 0.669 0.738 0.723 

2-hour 1.184 1.079 0.979 1.372 1.204 1.187 1.331 

3-hour 4.639 4.227 4.685 6.406 4.760 3.174 5.781 

4-hour 69.837 89.990 90.553 73.523 45.026 21.994 56.113 

Mean 

 
RMSE 

19.098 23.973 24.169 20.507 12.915 6.773 15.987 

 

 

 

 

2017 

1-hour 0.744 0.593 0.444 0.726 0.649 0.711 0.721 

2-hour 1.190 1.059 0.949 1.368 1.179 1.149 1.323 

3-hour 4.577 4.010 4.319 6.245 4.593 3.211 5.715 

4-hour 81.434 49.453 44.589 114.072 32.431 29.307 59.761 

Mean 

 
RMSE 

21.986 13.779 12.575 30.603 9.713 8.594 16.879 
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