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Abstract - Finite innovation rate (FRI) signal reconstruction is a significant area of signal processing that 

seeks to precisely retrieve negative signals with the use of a few parameters. Reconstructing continuous, 

band-free signal classes with a limited number of parameters from low-rate discrete samples is made 

possible by the Finite Rate of Innovation (FRI) sampling theory. This challenge frequently becomes an 

estimation of the spectrum, which can be done by techniques that estimate the signal subspace that tends to 

vanish at a certain signal-to-noise ratio (PSNR). We are thinking of another approach that makes advantage 

of data in tagged files in order to prevent this issue. We put forth two model-based learning techniques: 

building encoder-decoder deep neural networks to describe the detection process and denoising depth 

unfolded spectrum estimation. Comparing simulation results for both learning algorithms to traditional 

subspace-based techniques, a notable improvement in breaking PSNR is observed. Although encoder-

decoder networks outperform deep unrolled networks and perform comparable to classical FRI approaches 

at low noise levels, the latter can reconstruct FRI signals even in the absence of an identified sample kernel. 

Additionally, we produced more precise predictions and attained competitive results in both positive and 

negative rate pulse detection from in vivo calcium imaging data. Applications in sectors like 

communications and pharmaceuticals can benefit from the reconstruction of the FRI signal by mathematical 

methods, structural design, and negative signal recovery. This allows for data capture and compression 

while storing crucial information with less resources. 
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1. INTRODUCTION 

Limited Innovation Rate (FRI) Signal processing is a straightforward problem with numerous applications, 

including radar, biomedical imaging, and communications. Due to their limited freedom, FRI signals can 

be represented by unusual objects such as impact location and shape [1]. But because of their short range, 

FRI signals are frequently ignored, which makes reconstructing them challenging [2]. Recovering the low 

level measurement's underlying signal is the primary goal of the FRI signal reconstruction process. The 

procedure entails figuring out the material pulses of the signal's place and form. To do this, a variety of 

mathematical and signal processing techniques such cluster modeling, smoothing, and optimization are 

applied [3, 4]. This technique exploits the difference between FRI signals to accurately reconstruct the 

signal from limited data, ultimately restoring the original signal with high accuracy.  

Signals from discrete samples that are invariant with continuous translation are perfectly reproduced by 

classical sampling theory. The results have been extended to signals that are not limited to being 

independent at a certain moment in time in recent years with the advent of finite rate of innovation (FRI) 

sampling theory [5, 6, 7]. Given that the amplitude and position of the K pulses will determine the signal, 

the most basic FRI signal is a stream of K pulses with a recency rate of 2K. This has prompted the 

employment of a number of techniques, including electrocardiography (ECG), radar, functional magnetic 

resonance imaging (fMRI), ultrasound imaging, and calcium monitoring. Current FRI signal reconstruction 

techniques frequently alter the continuous location estimation problem into a frequency estimation problem, 
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which can be resolved using spectrum estimation techniques as the matrix pen method and Prony's Cadzow 

denoiser. Through the use of numerical value decomposition (SVD), the signal subspace is estimated using 

this technique.  

The reconstruction silently followed the plain's Cramer-Rao vineyard. But when the peak signal-to-noise 

ratio (PSNR) falls below a particular level, it becomes worse [8, 9, 10]. This is expected to be caused by 

confusion between the signal subspace and the variation subspace, or the orthogonal subspace in the noise. 

Compressed sensing (CS), in addition to the traditional FRI method, enables the determination of the pulse 

stream's position on the grating. To replicate the signal, however, requires knowledge of the sampling kernel 

since both the CS and FRI approaches require determining the sampling kernel's Fourier coefficients at a 

specific frequency.. The details of the nucleus' structure are unclear for several applications, including 

calcium imaging in neurology [11, 12]. While atomic or convex relaxation models have been extended to 

reconstruct continuous lines using CS, they still have issues that are comparable to those with the FRI 

model, namely the need to recognize the significance of the pulse image. As an alternative, the FRI signal 

can be reconstructed from the under sample obtained by several cores without being aware of its shape 

thanks to compressed multi-channel blind deconvolution. In this essay, however, we'll focus on the scenario 

in which there is just one pulse image. Here, we use a data-driven learning strategy in an attempt to 

overcome these constraints [13, 14, 15]. Deep neural networks are being used in certain research to do 

spectrum estimation for tasks like determining the frequency of different sound waves or the direction in 

which they arrive [16, 17]. In this research, we concentrate on building interpretable networks using the 

current FRI architecture. 

Prior to addressing the frequency conversion issue in the traditional FRI technique, we first suggest the 

depth unwrapping noise removal technique to address the performance issue. While transferring iterative 

techniques to network layers with learnable parameters, deep decompression maintains the domain 

information of the data; in our example, the spectral sample matrix goes to Eplitz and low level [18, 19]. 

Here, we select the predicted Wirtinger gradient descent (PWGD) algorithm, which enables learning to be 

excluded from the network architecture. PWGD is a minor variation of Cadzow denoising. Dirac's 

reconstruction is possible after the unwinding network is connected to the Prony technique.. Our objective 

is to minimize the expected denoising matrix by utilizing the suggested zero eigenvalue-based loss 

functions [19, 20]. The filter's orientation with respect to the ground truth is eliminated while projecting 

into the orthogonal subspace. By doing this, the likelihood of subspace exchange events is decreased, 

enhancing PSNR burstiness. Alternatively, we propose to avoid the spectral estimation by learning the gψ(•) 

encoder network, which is intended to infer directly from the well-known Dirac position model. This is 

because the transition from the continuous estimation problem to the exponential frequency problem still 

requires knowledge of the kernel structure. Next, we carry out the optimization by expanding the fθ (•) 

decoder network, which simulates the signals that the FRI process receives and restructures them based on 

its forecasts. and wavelength [21, 22, 23]. The FRI Encoder-Decoder Network (FRIED-Net) is formed by 

them collectively. We can either fix or make the clipper's parameters learnable based on the known 

sampling kernel. In cases where the sample nucleus is unknown and the FRI signal cannot be reconstructed 

using the traditional method, this entails using calcium imaging [24, 25]. As the former offers the 

normalization impact of the encoder network output, work loss accounts for the error of the reconstructed 

work and the resynthesized discrete model. 

 

 

2. EXISTING SYSTEM 
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FRI signal time coding is a recent study. Alexandru and Dragotti tackled this issue initially, looking at an 

exponentially replicating kernel-based event-driven model of the Dirac pulse stream. They created a brand-

new reconstruction method that consistently returns the form to its original state [46, 47]. Samples used in 

reconstruction algorithms must sustain less than the time interval between two successive pulses. Although 

this is useful for reconfiguring, it can become expensive because the choice of available cores depends on 

the signal. The new modification must also serve as an example of acknowledging limitations. Arrangement 

of By modifying the IF-TEM's parameters, the reconstruction algorithm will produce the sample necessary 

for flawless reconstruction by using the alpha synapse function to filter the Dirac pulse stream. In order to 

overcome this issue, we developed the Fourier domain reconstruction approach, which serves as the 

foundation for this paper. 

2. Real-time FRI signal encoding was recently demonstrated by Naiman et al. using a hardware prototype. 

Their approach encodes the event time—which is the TEM's output—using a counter. The FRI signal is 

returned using the start time [48, 49, 50]. We stumbled upon the works of Naiman and his buddies while 

researching our paper. IFTEM's reconstruction issue in the presence of noise was addressed. Their method 

is comparable to, but they innovate by getting rid of words that make transitions forward unstable. Its 

drawback is that the signal might be repeated incessantly. 

3. Following the concepts introduced in, we ascertain the temporal input of the FRI signal and refine the 

idea of Fourier domain reconstruction. We take into account two time-shifting techniques (C-TEM and IF-

TEM) and design a model based on reconstruction and the model. Unlike other approaches, our method is 

less constrictive and the kernel model selection is not only reliant on the signal. FRI signals that can be 

represented as pulses with different weights and times can use this approach. We also demonstrate how 

various changes over time can be accommodated by adapting the development process. We also examine 

how measurement noise affects forward pass and signal measurement and devise a robust signal 

reconstruction method.. The approach can be used to construct correct structures, according on 

experimental data. The primary file contains the results for Dirac pulses, whereas the supplementary 

material contains the results for B-spline flow. 

The erosion of traditional symbols has been accompanied by the emergence of several new, alternative 

channels for ideas. Apart from the above listed aspects, the higher classes have shown interest in luxury 

(Zanette, Pueschel, and Touzani 2022), convenience (Currid-Halkett 2017), and business (Bellezza, 

Paharia, and Keinan 2017). These subjects are alternative because they deviate from the luxury 

consumption standard in terms of energy use, variety, and advancement in at least one area (Dubois et al., 

2017). 2021).  

As a physical layer on the CR network, research on the Multiple-input Multiple-output (MIMO)-OFDM 

system, one of the best hybrid multi-carrier systems. In order to maximize the CR network's overall 

capacity, the ideal power distribution algorithm has been thoroughly examined under various circumstances 

[26, 27]. Theoretically, this method can maintain PU band interference at a reasonable level while 

optimizing overall capacity. We also provide the ideal solution in order to reduce the algorithm's complexity 

[28, 29, 30]. The continuous location estimation problem is frequently converted into a frequency 

estimation problem by the current FRI signal reconstruction techniques. 

 

Disadvantages: 

The idea of the Gaussian method is not correct.   

• In this model, the number of subcarriers used by users is limited.  

• The total capacity of the CR network is limited.  
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• This limits the model to only consider a MIMO wireless system with the same antenna instead of narrow 

Haze.  

Objectives: 

The Finite Rate of Innovation (FRI) sampling theory makes it possible to reconstruct classes of non-band 

restricted broadcast signals from low-rate discrete samples with very small amounts of free 

parameters[41,42, 43]. A common solution to this problem is to estimate the spectrum using methods that 

estimate the signal subspace that tends to disappear at a given signal-to-noise ratio (PSNR). To avoid this 

problem, we are considering an alternative strategy that utilizes information in tagged files. We propose 

two model-based learning methods: denoising depth unfolded spectrum estimation and constructing 

encoder-decoder deep neural networks to characterize the detection process. There is a discernible 

improvement in breaking PSNR when comparing the simulation results for both learning algorithms to the 

conventional subspace-based methods ..While classical FRI techniques perform similarly at low noise 

levels and outperform deep unrolled networks, encoder-decoder networks may reconstruct FRI signals even 

when a sample kernel is not recognized [44, 45]. We also obtained competitive results in terms of true and 

false positive rates while providing more accurate estimations in the pulse analysis of in vivo calcium 

imaging data. 

PROPOSED SYSTEM 

We show that K Diracs flows may be used to reconstruct the Diracs function using two different deep 

modeling approaches. When reconstructing finite rate of innovation (FRI) data, Fast Fourier Transform 

(FFT) facilitates peak localization and spectrum analysis while Rectified Linear Units (ReLU) provide 

nonlinearity and adaptability that improve signal quality and accuracy [31, 32, 33]. While FFT uses 

frequency component analysis to assist in determining the heart's location, ReLU shows irregularities by 

utilizing the unique characteristics of the FRI signal, which streamlines the signal representation and 

improves the reconstruction procedure overall. Deep expansion Wirtinger gradient descent and FRIED-Net 

handle the situation regardless of whether the sample kernel is known [34, 35]. Frequency estimation 

problems can be converted from continuous estimation problems using spectrum estimation techniques like 

matrix pen and Prony's Cadzow denoising method. Using numerical value decomposition (SVD) to estimate 

the signal subspace, this method entails signal subspace estimation [36, 37]. We illustrate this by contrasting 

our learning method, which is based on the creation of K Diracs flows, with the performance of the classical 

FRI method. The FRIED-Net that we have presented can learn and reconstruct the FRI signal 

 

 

 

Flow diagram: 
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Fig. 1: Block diagram of proposed method 

 

Our method uses a neural network to subtract the FRI noise from the noise model, which allows it to 

reconstruct the FRI signal directly, whereas the standard FRI method often requires knowledge of the kernel 

model [38, 39, 40]. Furthermore, without influencing the reconstruction, we can find the represented kernel 

by figuring out the θ parameters of the back propagation. We apply FRIED Net to calcium imaging data to 

illustrate this. 

3.1 Explanation of Modules 

 

3.1.1 Data Selection 

A dataset is an assemblage of data assembled for the purpose of machine learning research. Digital images 

used to assess, educate, and test machine learning and artificial intelligence (AI) algorithms—mainly 

computer vision algorithms—are included in the category of image data [32]. The process of locating 

relevant data, sources, and data collection instruments is known as data selection. The process of choosing 

data comes before data collecting. One kind of composite file is an image. Binary format is typically used 

for image files. 

3.2.2 Subcarrier allocation 

By allocating subcarriers among rival users, subcarrier assignment determines the master user and the 

corresponding listener of each subcarrier. In order to offer additional transmission, a secondary signal 

known as a subcarrier has its frequency modified to match the main frequency, or carrier. It permits several 
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divisions to be carried by a single transmission. Sidebands of RF carriers that have been altered to send 

more data are known as subcarriers. Stereo sound on a mono radio or black and white on a TV are two 

examples. It is possible to break down the subcarrier allocation problem at the subcarrier level and solve it 

concurrently [41, 42]. The user with the highest subcarrier signal-to-noise ratio (SNR) in a secure 

transmission may possess the subcarrierThe signal-to-noise ratio (SNR) of background noise systems is 

contingent upon the subcarrier's output power and gain. The only difference between the SNR and 

subcarrier gain is that each user transmits at the same power. Consequently, the first user has the most 

subcarrier gain, while the eavesdropper has the second-best gain. The best subcarrier allocation plan can be 

implemented independently of power distribution and even before power distribution. 

3.3.3 Transmitter 

An significant consideration in many technical domains is bandwidth. It clarifies the distinction between 

high and low frequencies in signal transmission, including radio transmissions, in signal processing. Hertz 

(Hz) is used to measure signal bandwidth. The difference between an electromagnetic wave signal's highest 

and lowest frequencies is known as its signal bandwidth. In short, it's the range of frequencies within which 

an electromagnetic wave (signal) functions. Hertz (symbol Hz)[44] is its unit. Reducing signal power to a 

manageable level outside of the intended frequency range is known as band limitation. The fuzzy principle 

distinguishes between two kinds of signals: A signal is said to as band-limited (BL) if its Fourier transform 

is zero outside of the last time; otherwise, it is referred to as non-bandlimited (NBL). 

3.3.4 Breakdown PSNR 

While prior research like this one indicates that Cadzow's denoising improves the performance of classical 

subspace-based reconstruction as described by the Cramer-Rao constraint, they will still fall short of the 

PSNR criterion [47]. It is hypothesized that during spectrum estimation, confusion between the signal and 

noise subspaces leads to the collapse of subspace-based approaches. 

Receivers: 

Receivers use electronic filters to isolate the desired RF signal from all other receivers. The signal is 

isolated. . Electrical generators can be powered via antennas  

3.3.5 Functional Analysis 

A mathematical tool for comprehending and representing nonlinear issues is Fourier analysis. It enables us 

to decompose a periodic function into sine and cosine waves, two basic functions. As part of the 

performance breakdown, we first suggest deep unfolding the denoising procedure, which is applied in 

standard FRI approaches prior to solving the transformed frequency estimation problem. 

Advantages: 

➢ SU can receive subcarriers and PU can achieve good transmission without interference from SU.  

➢ Excellent performance in non-collaborative and collaborative models to achieve SU success. 

3.2 Implementation Process 

3.2.1 Learning-Based FRI Reconstruction 

With learning parameters, express the algorithm deeply into the network layer while maintaining data 

integrity. Article This section presents FRI reconstruction using two works as a basis: FRI encoder-decoder 

network (FRIED-Net) and depth expansion projection Wirtinger gradient descent. While the latter takes 

into account the former FRI problem and permits reconstruction without knowing the pulse picture, the 

former seeks to improve the denoising process of the frequency estimation problem to limit the incidence 

of subspace variation events in the conventional FRI process.A. Unwound Depth Projection Gradient 

Distance Wirtinger We first present the depth unwound methodology of the noise reduction process prior 
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to the Pronys method. A method called algorithm expansion is used to turn algorithms back into deep neural 

networks.  

The unwinding deep network essentially follows a parameter optimization technique by using training data 

to allow the program's parameters to be learned via backpropagation [48]. The Cadzow denoising technique, 

which substitutes the K-level matrix set for the projection of the Toeplitz matrix set, is the most often used 

iterative denoising procedure. As a result, we are looking into an alternative method that does not use 

subspace estimation—namely, directly connecting the FRI detection process information to our network 

design. We created the FRI Encoder-Decoder Network (FRIED-Net), an autoencoder-like model, because 

FRI signals are described by several parameters. 

3.2.2 In Classic FRI Techniques:  

In our discussion on Data Requirement, Effectiveness, and Professional Development, we explain how 

learning-based strategies can triumph over setbacks. The primary outcomes of the K = 2 simulations are 

displayed in Table II, along with the data that we used to replicate the pulses. Since both traditional FRI 

and Deep Unfolded PWGD use Prony's approach in sampling kernel φ(t), they need to know this 

information in order to convert the FRI reconstruction problem into a spectrum estimation. In FRIED-Net, 

the decoder can either be learned or fixed based on whether it is known, whereas the encoder can be trained 

independently without knowing φ(t). Since we just need the encoder to rebuild the locations, φ(t) is not 

needed in this case during the evaluation stage. Because FRIED-Net uses more than 100 times as many free 

parameters than Deep Unfolded PWGD, it is therefore more suitable for applications where the pulse is 

uncertain, such as calcium imaging[49,50]. Nevertheless, this is offset by the high complexity required by 

one SVD every iteration for both Deep Unfolded PWGD and classical FRI. Next, by splitting the 

reconstruction performance into two cases—before and after the standard FRI techniques fail—we may 

talk about the reconstruction performance. While the performance of FRIED-Net plateaus despite the 

decoder refining the estimates, both the Pronys approach with Cadzow and Deep Unfolded PWGD closely 

match the Cramer-Rao bound when the PSNR is high and the locations are far apart.. All of our suggested 

learning-based methods can overcome the breakdown PSNR for the breakdown region. This is due to the 

fact that our learning-based techniques often make good use of the ground truth labels in the training data 

as a system's past knowledge. For this specific FRI reconstruction issue, traditional FRI techniques. 
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4. EXPERIMENTAL RESULTS 

 

Figure 2: (a)Original FRI Signal (b)Node Initallization  (c)Digital Signal Input  

(d)Symbol of M-array QAM modulation (e) M-array QAM modulation (f) Signal at Transmitter  

 

Fig.2(a)shows input Signals with the sub carries allocation to transmitted the signal from source 

todestination and A rectified linear unit (ReLU) is an activation function that introduces the property of 

non-linearity to a deep learning model and solves the vanishing gradients issue. "It interprets the positive 

part of its argument. It is one of the most popular activation functions in deep learning. Fig .2(b) sows the  

node is a point of intersection/connection within a data communication network. In an environmentwhere 

all devices are accessible through the network, these devices are all considered nodes. The individual 

definition of each node depends on the type of network it refers to. Fig.2(c)shows  here a digital signal is a 

signal that exists in one of two states: high or low, open or closed, on or off.  

Fig.2(d) and Fig.2(e&f) M-array quadrature amplitude modulation (M-QAM) is a modulation scheme 

that conveys data by modulating the data transmission onto the amplitude via two carrier signals. 
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Figure3: (a) Rayleigh CDF with sig = 1.00 (b) Rayleigh Distribtion (c) Signal at Transmission 

channel. 

Fig.3(a) Represents the by using the Rayleigh distribution and rectified linear unit algorithms are to 

calculate the depth of information in a signal to don’t loss any information in the receiver channel. 

Fig.3(b) shows the rayleigh fading models assume that the magnitude of a signal that has passed through 

such a transmission medium (also called a communication channel) . 

Fig.3(c) Represents the it will vary randomly, or fade, according to a Rayleigh distribution — the radial 

component of the sum of two uncorrelated Gaussian random variables 

Figure4 : (a)Symbol after M-array QAM demodulation (b) M-array QAM demodulation 

                (c) Received Data signal from Channel 

Fig.4(a) Represents the  M-array demodulation at the receiver side with quadreature amplitude modulation 

technique to get information without loss and accurate information .Fig.4(b) It shows we can get 

information in the receiver side M-array quadrature amplitude modulation (M-QAM).Fig.4(c) It represents  

the  modulation scheme that conveys data by modulating the data transmission onto the amplitude via two 

carrier signals 

 

 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 5 2024

Page No: 421



 

Figure 5 : (a)FFT Signal (b)Binary Reconstructed message (c)Average block error probability 

                  (d) BER Plot (e) BER Plot for proposed work (f) Carrier-To-interference Ratio  

 

Fig.5(a) Represents the FFTs are mainly used to visualize signals. However, there are also applications 

where FFT results are used in calculations. For example, very simple levels of defined frequency bands can 

be calculated by adding them via an RSS (Root Sum Square) algorithm. Fig.5(b) shows the another 

application is the comparison of spectra. These signals are called “binary” signals. We give different names 

to the binary signal levels; “1” and “0”; “true” and “false”; “on” and “off”. Fig.5(c) shows these names may 

represent any particular voltage or current level. Typically, we assign the logic value “1” to the higher 

output voltage and “0” to the lower output voltage. Fig.5(d and e) Represents the signal-to-interference 

ratio (SIR or S/I), also known as the carrier-to-interference ratio (CIR or C/I), is the quotient between the 

average received modulated carrier power S or C. Fig.5(f) Shows the average received co-channel 

interference power I, i.e. crosstalk, from other transmitters than the useful signal. 

 

 

4.1 Application to Neuroscience - Calcium Imaging 

In this part, we demonstrate the practical application of our suggested FRIED-net to spike detection from 

calcium imaging data. Understanding how neural networks function in people and animals depends in large 

part on the monitoring of brain activity. Fluorescent calcium sensors offer a means of concurrently 

monitoring cell size since brain activity alters intracellular calcium concentrations. Previous research had 

adequately reproduced this using FRI theory, suggesting that calcium transients simulate a decreasing 

exponential flow. Here, we demonstrate the application of FRIED-Net in a manner akin to the simulations, 

but without defining the kernel model as a distortion parameter.  

4.2 Method 

1) Calcium Imaging Dataset 

We made use of the rule-1 dataset, which includes recordings of loosely closed cell attachment in 

GCaMP6f-expressing neurons as well as contemporaneous imaging. In this case, the calcium imaging data 

corresponds to the noisy samples ˜y[n], while the ground truth spikes tk for the training data are obtained 

from the contemporaneous cell-attached recording. The temporal resolution of the spikes is 100 ms, and 

each image has a duration of 240 seconds and is sampled at 60 Hz. We then choose nine files from that 

same cell, eight of which contain training data and one contains testing data. 

2) Data Preprocessing and Spike Detection 

We must preprocess the data to make sure they behave as FRI signals and are appropriate for usage in 

DNNs before using them for FRIED-Net. First, we remove the surrounding fiber of the signal in the region 

of interest in order to perform nerve fiber correction. This keeps environmental contamination out of the 

data and guarantees that calcium transients come from the recording alone, simulating the FRI signal. 

3) FRIED-Net training:  

While the direct network (which uses simply the FRIED-Net encoder) is better at approximating the size 

and number of spikes, the entire FRIED-Net is better at identifying small numbers. The squared error of 

the reconstructed model and the anticipated position add up to the loss function. We merely train FRIED-

Net's encoder as a direct link for the long window; the loss function is simply the squared error of the total 

area. 

Advantages: 
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➢ The SU can know the available subcarriers and the PU can achieve good transmission without the 

intervention of the SU.  

➢ Best practices in non-collaborative and collaborative models to achieve all successful goals of SU.  

➢ This combination has three advantages. First, this network does not need to know the FRI pulse pattern, 

which is not the case in existing methods. Second, the network does not face the different problems that 

arise in training examples. Additionally, the proposed algorithm can adapt to changes in the sample. 

Numerical results show that for a given number of samples, the structured design reduces and cleans the 

reconstruction of the FRI signal relative to the independent data-driven design for weak samples.  

 

4.3 Application 

23Finite Rate of Innovation (FRI) signals, radar, lidar, sonar, ultrasound, and so forth. Perfect for time-of-

flight imaging uses like The FRI signal receives a sampling rate below Nyquist because of its limited 

flexibility.  

Audio, video, sensor data, picture, and many other forms of data can all be found in a FRI signal. 

Applications for electronics include speech recognition, management, image, audio and video, and 

communications.  

5. CONCLUSIONS 

Rectified Linear Unit (ReLU) offers nonlinearity and adaptability, while Fast Fourier Transform (FFT) 

assists with spectrum analysis and peak finding in the setting of finite cost innovation (FRI) signals. When 

combined, these aid in the precise and effective creation of signals. While FFT uses frequency component 

analysis to help establish the position of the heart, ReLU uses the peculiarities of the FRI signal to show 

irregularities, simplifying the signal representation and enhancing the reconstruction process as a whole. 

Whether or not the sample kernel is known, the circumstances are handled via FRIED-Net and deep 

expansion Wirtinger gradient descent. We illustrate this by contrasting our learning method, which is based 

on the creation of K Diracs flows, with the performance of the classical FRI method. The suggested FRIED-

Net can learn and reconstruct the FRI signal even in the absence of sample background knowledge. Our 

method uses a neural network to subtract the negative FRI from the noise model, which allows it to 

reconstruct the FRI signal directly, whereas the standard FRI method often requires knowledge of the kernel 

model. Furthermore, without influencing the reconstruction, we can learn the represented kernel by figuring 

out the θ parameters of the backpropagation. We apply FRIED Net to calcium imaging data to illustrate 

this. 

REFERENCES 

[1]  S. Mulleti, H. Zhang and Y. C. Eldar, "Learning to Sample: Data-Driven Sampling and 

Reconstruction of FRI Signals," in IEEE Access, vol. 11, pp. 71048-71062, 2023, doi: 

10.1109/ACCESS.2023.3293637. 

 [2]  I. Maravic and M. Vetterli, "Sampling and reconstruction of signals with finite rate of innovation in 

the presence of noise," in IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2788-2805, 

Aug. 2005, doi: 10.1109/TSP.2005.850321. 

 [3]  V. C. H. Leung, J. -J. Huang, Y. C. Eldar and P. L. Dragotti, "Learning-Based Reconstruction of FRI 

Signals," in IEEE Transactions on Signal Processing, vol. 71, pp. 2564-2578, 2023, doi: 

10.1109/TSP.2023.3290355. 

[4]  X. Shao, F. Zhang, W. Zhang and J. Na, "Finite-Time Composite Learning-Based Elliptical 

Enclosing Control for Nonholonomic Robots Under a GPS-Denied Environment," in IEEE 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 5 2024

Page No: 423



Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 9, pp. 5282-5294, Sept. 2023, 

doi: 10.1109/TSMC.2022.3215474. 

 [5]  M. Wu, Z. Gao, Y. Huang, Z. Xiao, D. W. K. Ng and Z. Zhang, "Deep Learning-Based Rate-Splitting 

Multiple Access for Reconfigurable Intelligent Surface-Aided Tera-Hertz Massive MIMO," in IEEE 

Journal on Selected Areas in Communications, vol. 41, no. 5, pp. 1431-1451, May 2023, doi: 

10.1109/JSAC.2023.3240781.  

[6]  N. Fu, S. Yun and L. Qiao, "An Efficient Estimation Method for the Model Order of FRI Signal 

Based on Sub-Nyquist Sampling," in IEEE Transactions on Instrumentation and Measurement, vol. 

72, pp. 1-13, 2023, Art no. 6505513, doi: 10.1109/TIM.2023.3320730.  

 [7]   Z. Wei, N. Fu, S. Jiang and L. Qiao, "Deep Atomic Norm Denoising Network for Jointly Range-

Doppler Estimation With FRI Sampling," in IEEE Signal Processing Letters, vol. 30, pp. 628-632, 

2023, doi: 10.1109/LSP.2023.3279777.  

[8]   P. S. Reddy, A. Premkumar, B. Saikiran, B. S. Raghavendra and A. V. Narasimhadhan, "Finite Rate 

of Innovation Signal Reconstruction using Residual Neural Networks," 2020 IEEE 4th Conference 

on Information & Communication Technology (CICT), Chennai, India, 2020, pp. 1-6, doi: 

10.1109/CICT51604.2020.9312079.  

 [9]   S. Yun, H. Xu, N. Fu and L. Qiao, "Sub-Nyquist Sampling and Measurement of FRI Signals With 

Additive Shot Noise," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-

11, 2023, Art no. 6501911, doi: 10.1109/TIM.2023.3261912. 

[10] Z. Azam, M. M. Islam and M. N. Huda, "Comparative Analysis of Intrusion Detection Systems and 

Machine Learning-Based Model Analysis Through Decision Tree," in IEEE Access, vol. 11, pp. 

80348-80391, 2023, doi: 10.1109/ACCESS.2023.3296444.  

 [11]  H. Pan, T. Blu and P. L. Dragotti, "Sampling Curves With Finite Rate of Innovation," in IEEE 

Transactions on Signal Processing, vol. 62, no. 2, pp. 458-471, Jan.15, 2014, doi: 

10.1109/TSP.2013.2292033. 

 [12]  V. C. H. Leung, J. -J. Huang and P. L. Dragotti, "Reconstruction of Fri Signals Using Deep Neural 

Network Approaches," ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 5430-5434, doi: 

10.1109/ICASSP40776.2020.9053383. 

[13]  R. Alexandru and P. L. Dragotti, "Time encoding and decoding of multidimensional signals with 

finite rate of innovation," 2021 55th Asilomar Conference on Signals, Systems, and Computers, 

Pacific Grove, CA, USA, 2021, pp. 842-846, doi: 10.1109/IEEECONF53345.2021.9723165.  

[14]  V. C. H. Leung, J. -J. Huang, Y. C. Eldar and P. L. Dragotti, "Reconstruction of FRI Signals using 

Autoencoders with Fixed Decoders," 2021 29th European Signal Processing Conference 

(EUSIPCO), Dublin, Ireland, 2021, pp. 1496-1500, doi: 10.23919/EUSIPCO54536.2021.9615992. 

 [15]  H. Ye, Z. Fu, J. Xu, K. Long and Z. Huang, "An Improved Single Image Super-Resolution Algorithm 

Based on Finite Rate of Innovation Theory," 2017 2nd International Conference on Multimedia and 

Image Processing (ICMIP), Wuhan, China, 2017, pp. 255-259, doi: 10.1109/ICMIP.2017.52. 

[16]  A. Mamistvalov, A. Amar, N. Kessler and Y. C. Eldar, "Deep-Learning Based Adaptive Ultrasound 

Imaging From Sub-Nyquist Channel Data," in IEEE Transactions on Ultrasonics, Ferroelectrics, 

and Frequency Control, vol. 69, no. 5, pp. 1638-1648, May 2022, doi: 

10.1109/TUFFC.2022.3160859. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 5 2024

Page No: 424



 [17]  X. Wei and P. L. Dragotti, "FRESH—FRI-Based Single-Image Super-Resolution Algorithm," 

in IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3723-3735, Aug. 2016, doi: 

10.1109/TIP.2016.2563178.  

[18]  X. Deng, P. Song, M. R. D. Rodrigues and P. L. Dragotti, "RADAR: Robust Algorithm for Depth 

Image Super Resolution Based on FRI Theory and Multimodal Dictionary Learning," in IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 30, no. 8, pp. 2447-2462, Aug. 

2020, doi: 10.1109/TCSVT.2019.2923901.  

[19]  M. Kalfa et al., "Reliable Extraction of Semantic Information and Rate of Innovation Estimation for 

Graph Signals," in IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 119-140, 

Jan. 2023, doi: 10.1109/JSAC.2022.3221950.  

 [20]  B. Ravelo, W. Rahajandraibe, Y. Gan, F. Wan, N. M. Murad and A. Douyère, "Reconstruction 

Technique of Distorted Sensor Signals With Low-Pass NGD Function," in IEEE Access, vol. 8, pp. 

92182-92195, 2020, doi: 10.1109/ACCESS.2020.2994630. 

 [21]  Z. Huang and S. Ravishankar, ‘‘Single-pass object-adaptive data undersampling and reconstruction 

for MRI,’’ IEEE Trans. Comput. Imag., vol. 8, pp. 333–345, 2022.  

[22]  X. Xiao et al., “A learning-based approach to direction of arrival estimation in noisy and reverberant 

environments,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), 2015, pp. 2814–2818. 

[23]  G. Wang, T. Luo, J. Nielsen, D. C. Noll, and J. A. Fessler, ‘‘B-spline parameterized joint optimization 

of reconstruction and K-space trajectories (BJORK) for accelerated 2D MRI,’’ IEEE Trans. Med. 

Imag., vol. 41, no. 9, pp. 2318–2330, Sep. 2022. 

[24]  B. Tolooshams, S. Mulleti, D. Ba, and Y. C. Eldar, “Unrolled compressed blind-deconvolution,” 

IEEE Trans. Signal Process., vol. 71, pp. 2118–2129, 2023  

[25]  V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for 

signal and image processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021. 

 [26]  N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep learning: Key 

approaches and design guidelines,” in Proc. IEEE Data Sci. Learn. Workshop, 2021, pp. 1–6. 

[27]  J. Wang, Q. Yang, Q. Yang, L. Xu, C. Cai, and S. Cai, ‘‘Joint optimization of Cartesian sampling 

patterns and reconstruction for single-contrast and multi-contrast fast magnetic resonance imaging,’’ 

Comput. Methods Programs Biomed., vol. 226, Nov. 2022, Art. no. 107150. 

 [28]  M. V. W. Zibetti, G. T. Herman, and R. R. Regatte, ‘‘Fast data-driven learning of MRI sampling 

pattern for large scale problems,’’ 2020, arXiv:2011.02322. 

[29]  C. Zeng, J. Ye, Z. Wang, N. Zhao, and M. Wu, ‘‘JSRNN: Joint sampling and reconstruction neural 

networks for high quality image compressed sensing,’’ 2022, arXiv:2211.05963.  

[30]  C. Qian, ‘‘Distributed Pareto optimization for large-scale noisy subset selection,’’ IEEE Trans. Evol. 

Comput., vol. 24, no. 4, pp. 694–707, Aug. 2020  

[31]   B. Tolooshams, S. Mulleti, D. Ba, and Y. C. Eldar, “Learning filter-based compressed  

         Blinddeconvolution,” arXiv:2209.1s4165, Sep. 2022.    

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 5 2024

Page No: 425


