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Abstract 

Long steel piles pushed into the seabed are the most typical foundation type for fixed offshore 

structures. Selecting the right dimensions for the piles and guaranteeing the stability of the 

platform depend on precisely calculating their bearing capacity. The in-situ cone penetration test 

has gained a lot of popularity as a bearing capacity estimation tool for offshore piles in recent 

years. Its benefits include accurate results and continuous data recording at depth, among others. 

Using data collected from field tests in the South Pars region, this research calculates the axial 

bearing capacity of steel piles utilized as foundations in Persian Gulf offshore platforms. This is 

achieved by first presenting analytical-experimental equations grounded on the CPT test findings 

and subsequently calibrating them using the data from the dynamic pile test. Lastly, the 

geometric properties of the piles and the ideal penetration depth are determined using these 

created equations in conjunction with gene expression programming. The results demonstrated 

that the offered method could ascertain the ideal geometric properties of offshore-driven piles in 

the Persian Gulf area in both cohesive and non-cohesive soils. 

Keywords: Cone penetration test; Offshore pile foundation; Axial bearing capacity; Dynamic 

pile test. 
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1. Introduction 

The majority of offshore constructions in shallow waters, such the Persian Gulf, are fixed jacket 

platforms. Pile foundations are typically used to support and secure these structures, which are 

fabricated from tubular steel components [1,2]. The features of the soil on the seabed are 

unknown, and offshore platforms operate in hostile environments. Therefore, it is critical to 

ensure that the foundations of large structures are both economically and safely designed in order 

to keep them stable under different loads and to lessen the financial, environmental, and human 

casualties that would result from the structure's collapse. Offshore jacket platforms supported by 

piles are susceptible to scouring, soil liquefaction, and pile bearing capacity and lateral behavior, 

among other factors [3,4,5]. To account for the fact that soil properties can vary depending on 

where the structure is being installed, it is necessary to have equations that can be used to 

estimate the geometric properties and penetration depth of the piles. This will guarantee that the 

structure is sufficiently safe and keep the design from becoming uneconomical [5,6].  

In order to evaluate and estimate the bearing capacity of steel-driven friction piles, numerous 

formulae have been developed during the last several decades. Nevertheless, uncertainties arise 

from the complexity of the soil environment when applying these equations in varied contexts. 

The bearing capacity of piles can be determined using a variety of methods now in use, including 

as static analysis, dynamic testing, static pile load testing, and in-situ testing [7]. The most 

comprehensive and precise way to anticipate in-place pile bearing capacity is the static pile load 

test, which takes into account the site's real conditions to establish its value. On the other hand, 

this approach is laborious and complicated, particularly for offshore projects [8]. One way to 

evaluate a pile dynamically is to use a Pile Driving Analyzer (PDA) to track the acceleration and 

strain close to the pile head as you drive. Estimates of ultimate pile bearing capacity, pile driving 

stresses, and energy transfer are all computed using these observations [9]. When assessing the 

reliability of static analysis and in-situ testing methods for estimating pile bearing capacity, the 

dynamic analysis of the pile loading test is typically utilized as a criterion.  

 Different results are obtained when the bearing capacity of piles is assessed using static 

analytical methods. For this reason, techniques that rely on in-situ testing like the cone 

penetration test (CPT), the standard penetration test (SPT), the pressure meter test (PMT), and 

others have been proposed to improve the precision of the calculated values [10,11].  As a result 

of their many benefits, including fast testing times, high accuracy and repeatability, and the 

ability to extract attachment information from soil stratification, CPT and CPTu procedures have 

recently replaced other field tests as the gold standard for determining piles' axial bearing 

capacity [12]. These techniques are seen as supplementary or even replacements for static 

analysis methods. Data from CPT or CPTu has an advantage over theoretical model analysis 

when it comes to pile design since it eliminates the need for undisturbed sampling and 

subsequent laboratory tests during the design process [13]. 

Pile carrying capacity determination utilizing CPT test results with various soil conditions has 

been the subject of substantial research over the last several decades. The research resulted in the 

presenting of equations that took soil properties and other elements into account [14–19]. Taking 
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into account the many approaches offered to calculate pile carrying capacities from CPT data, 

Muoshfeqhi and Eslami [20] assess the current approaches by analyzing data collected from 47 

sources across 23 nations, with the majority of these sources headquartered in the US. Among 

the diverse soil types included in this database are clayey soils (42%), sandy soils (35%), and 

mixed soils (23%). 

The findings indicate that evaluations in soils with diverse properties are required for the optimal 

design of piles using the suggested equations. When designing the offshore pile, these 

assessments are of utmost importance. Given the CPT method's reliability in providing soil 

properties, approaches that correlate CPT data with pile bearing capacity have demonstrated to 

have improved accuracy in pile design: [21]. Pile bearing capacity estimation in the Persian Gulf 

based on CPT in-situ test findings has received little attention from researchers. In this study, an 

analytical and experimental equation based on CPT tests was proposed using data from case 

studies in the South Pars region. The equation was tested and calibrated using results from 

previous PDA. Lastly, the ideal dimensions of the pile design were determined based on the site 

soil characteristics. An artificial intelligence system based on gene expression programming 

(GEP) was used to determine the correlation and relative relationship between the CPT data and 

the pile bearing capacity. 

2. Materials and Methodology 

This research determined the ultimate bearing capacity of the pile by first using in-situ test 

results from CPTs performed on soils with different properties in the studied offshore area of the 

Persian Gulf. Then, they used the American Petroleum Institute's (API) proposed modified 

approach [22] to calculate the bearing capacity. Next, the current dynamic tests are utilized to 

calibrate the relationship between the CPT results and the pile's bearing capacity. Then, a more 

accurate correlation between the two is expressed using the gene expression programming 

technique. The best pile dimensions are then estimated using this smart computational approach 

and the CPT results. Here we will go over each of these steps. 

2.1. Research Location and Site Evaluation Details 

On the eastern end of the sea border between Iran and Qatar lies the examined area, which is 

situated in the 17th and 18th phases of the South Pars region. Wellhead offshore jacket 

platforms, developed and built by Iran Offshore Engineering and Construction Company 

(IOEC), have increased exploitation capacity and opened up new energy extraction fields. 

Dataset utilized in this study is derived from geotechnical investigations and testing performed 

for the purpose of designing and installing SPD 23 and 24 platforms (refer to Fig. 1). 
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Fig. 1 The location of boreholes 

2.2. Cone Penetration Test Method 

With its high output rate, repeatability of data, and near-continuous profiling of geotechnical 

parameters, Cone Penetration Testing is an in-situ test that is often and usefully employed for 

geotechnical site studies. Another useful tool for determining the depth of the foundation is the 

visual representation of the CPT result. Subsurface conditions at the test site are properly 

indicated by it [23]. A cone penetrometer is driven into the ground at a constant velocity in this 

test, and electronic readings are taken at predetermined intervals. A steel cone is driven vertically 

into the earth using a cone penetration test apparatus. As a cone is penetrating, the cone 

penetration meter records the resistance of the tip and friction sleeve.   

International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) produced a 

reference test protocol, which the test technique follows [24]. The CPT test yielded the example 

findings shown in Fig. 2. 

Test for Pile Driving Analyzer 2.3 

A high strain dynamic pile test is the pile driving analyzer testing. Testing the load-bearing 

capability of a pile while the hummer is operating on it is a quick, accurate, and inexpensive 

process. The CASE Method, which stands for Stress Wave Propagation on Piles, is the 

theoretical foundation of this test. You can find out about the pile's activated bearing capacity, 

hammer performance, maximum driving stresses, and integrity by measuring the force (strain) 

and velocity (acceleration) signals. These sensors are attached to the pile and performed near the 

top of the pile during impact. Next, the data was subjected to a more thorough evaluation using 
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the CAPWAP (Case Pile Wave Analysis Program) software, which is known for its rigorous 

numerical analysis [25-27]. 

Before the CAPWAP program can determine the pile carrying capacity using the data collected 

from the PDA, it must receive the speed curve recorded by the PDA for each soil element. After 

that, it takes the soil properties, like damping and rupture displacement, at face value. The 

software then determines the force wave curve at the pile head by utilizing the data that has been 

received, which includes the pile's internal movements (the velocity curve at the pile head) and 

the assumptions about the boundary conditions (modelling parameters for the soil). Following 

the determination of the pile top force, the computed curve is contrasted with the curve derived 

from the PDA device. When the two curves don't line up, engineers and experts in the field will 

make adjustments to the soil parameters and recalculate the force wave curve. When the 

predicted and observed force curves agree well, the procedure is repeated [25–27]. The 

CAPWAP results for FSP 24 are displayed in Fig. 3. 

 

 

 

Fig. 2 Cone penetration test of SPD23 
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Fig. 3 Results obtained from CAPWAP for FSP24 

 

2.4. Data Sets 

A database was prepared using data from 43 operations of driving closed steel pipe piles in the 

studied area. The goal was to develop models using computational intelligence algorithms that 

could determine the correlation and relationship between in-situ test results and pile bearing 

capacity. Table 1 displays the results of the CPT for cohesive and non-cohesive soils, which 

include the strength of the pile tip and skin friction (q_c and f_s, respectively), as well as the 

ultimate bearing capacity (Q_u) of the pile. The database also has information about the type of 

soil and the geometrical characteristics of the pile, such as its length (L) and diameter (D). 
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Table 1. Database collection  

NUM 
depth 

soil 

type 
(MN/m)sf (Mpa)sf (MN)sq (MPa)sq L D(m) (MN)uQ 

1 39.2 silt 0.072 0.015046 3.15 1.72771 39.2 1.524 14.329 

2 40.1 silt 0.37 0.077319 2.46 1.34926 40.1 1.524 13.983 

3 45 clay 0.43 0.089857 2.87 1.574136 45 1.524 16.872 

4 67.2 silt 0.565 0.118068 3.28 1.799013 67.2 1.524 33.859 

5 72 clay 0.616 0.128726 3.61 1.980011 72 1.524 38.367 

6 84 sand 0.072 0.015046 3.32 1.820952 84 1.524 49.23 

7 84.5 clay 0.642 0.134159 3.28 1.799013 84.5 1.524 49.461 

8 96 silt 0.67 0.14001 3.28 1.799013 96 1.524 61.248 

9 100.5 silt 0.67 0.14001 5.62 3.082455 100.5 1.524 67.719 

10 103.8 clay 0.802 0.167594 4.1 2.248766 103.8 1.524 67.026 

11 110.5 clay 0.827 0.172819 4.1 2.248766 110.5 1.524 73.729 

12 40.4 silt 0.057 0.014892 2.18 1.868871 40.4 1.219 10.917 

13 41 clay 0.332 0.086737 1.89 1.62026 41 1.219 11.041 

14 66 clay 0.445 0.116259 2.1 1.800289 66 1.219 25.141 

15 80.5 clay 0.554 0.144736 2.61 2.237502 80.5 1.219 35.524 

16 40.4 silt 0.043 0.014983 1.28 1.951857 40.4 0.914 6.581 

17 41 clay 0.249 0.086761 1.06 1.616381 41 0.914 6.684 

18 66 clay 0.335 0.116726 1.18 1.799368 66 0.914 15.424 

19 80.5 clay 0.415 0.144601 1.47 2.241585 80.5 0.914 21.697 

20 40.1 sand 0.057 0.014892 1.92 1.645979 40.1 1.219 11.2 

21 41.7 clay 0.33 0.086215 1.89 1.62026 41.7 1.219 11.323 

22 65 clay 0.438 0.11443 2.1 1.800289 65 1.219 24.492 

23 80.5 clay 0.55 0.143691 2.61 2.237502 80.5 1.219 35.323 

24 40.1 sand 0.043 0.014983 1.08 1.646879 40.1 0.914 8 

25 41.7 clay 0.247 0.086064 1.06 1.616381 41.7 0.914 8.123 

26 65 clay 0.329 0.114636 1.18 1.799368 65 0.914 17.846 

27 80.5 clay 0.412 0.143556 1.47 2.241585 80.5 0.914 25.969 

28 30.8 sand 0.072 0.015046 2.34 1.283442 30.8 1.524 9.538 

29 31.5 clay 0.3 0.062691 2.13 1.168261 31.5 1.524 9.846 

30 40 silt 0.072 0.015046 3.52 1.930648 40 1.524 15.076 

31 41.3 clay 0.374 0.078155 2.46 1.34926 41.3 1.524 14.769 

32 53.2 silt 0.429 0.089648 2.46 1.34926 53.2 1.524 22.461 

33 58 clay 0.582 0.121621 3.28 1.799013 58 1.524 26.461 

34 75 clay 0.668 0.139592 4.1 2.248766 75 1.524 42.461 

35 110 clay 0.903 0.188701 4.93 2.704004 110 1.524 82.154 

36 40 clay 0.306 0.079944 2 1.714561 40 1.219 11.323 

37 80.5 clay 0.556 0.145258 2.62 2.246075 80.5 1.219 32.277 

38 40 clay 0.229 0.079792 1.12 1.707875 40 0.914 8.123 

39 80.5 clay 0.417 0.145298 1.48 2.256834 80.5 0.914 28.184 

40 40 clay 0.347 0.090656 2.1 1.800289 40 1.219 11.938 

41 80.5 clay 0.589 0.15388 2.93 2.511832 80.5 1.219 79.877 

42 40 clay 0.26 0.090594 1.18 1.799368 40 0.914 8.738 

43 80.5 clay 0.442 0.154009 1.65 2.516065 80.5 0.914 29.046 
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2.5. Gene Expression Programming (GEP) 

By combining the tenets of genetic programming (GP) and genetic algorithms (GA), Ferreira 

created gene expression programming [28]. Evaluating more complicated programs made up of 

multiple subprograms is made possible by the proposed approach's strength—its simplicity in 

producing genetic diversity—as well as its unique and multi-genic nature. In order to build a 

computer program that can simulate a given phenomena, GEP as GA uses an approach that is 

similar to biological evolution. The five components of a GEP algorithm—the function set, the 

terminal set, the fitness function, the control parameters, and the halting condition—are chosen at 

the outset. In every step that follows, the projected values are compared to the actual values. We 

end the GEP process when the previously chosen error criteria produce the expected results. The 

process ends when the target fitness score is reached, and the optimal solution to the problem is 

determined by decoding the chromosomes. Here are some of the main benefits of GEP: (1) 

chromosomes are uncomplicated units of genetic material, and (2) expression trees include just 

chromosome-specific expression. It is worth mentioning that GeneXproTools 4.0 Release 2 was 

utilized to build this technique. The GEP modeling method, as shown in Fig. 4, starts with the 

starting population's chromosomes being generated at random. 

 

 

 

 

 

 

 

 

Fig. 1 The flowchart of GEP procedure  

3. Development of Gene Expression Programming Models 

3.1. Data Division and Models Pre-Processing  

 

Create Chromosomes of initial population 

Express Chromosomes & evaluate their fitness 

Stopping criterion is satisfied Designate results 

End Select chromosomes & keep the fittest for next 

generation  

Perform genetic modifications via genetic 

operators and gene recombination  

New generation of chromosomes 

Yes 

No 
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Models for analyzing piles' axial bearing capacity using CPT data have been developed in this 

research utilizing GEP. Soil type is used to categorize the data into cohesive and non-cohesive 

groupings. Additionally, the database is partitioned into two parts: training data, which 

comprises 80% of the data, and test data, which comprises 20% of the data, for the purpose of 

controlling the performance of the models. Table 2 shows the results of the calculations for the 

maximum, minimum, mean, and standard deviation of the data included in these two groups. 

These calculations were done in accordance with the principles of data mining in order to 

generate suitable testing and training databases. It is expected that both subgroups will be 

statistically representative of the whole population due to the random makeup of the subgroups. 

The final, approved models can also reliably calculate Qu using both trained and untrained data. 

Table 2. Statistical features for training and testing database 

Testing Data  Training Data  

(KN)uQ D(m) L(m)  (MPa)sf (MPa)cq (KN)uQ  D(m)  L(m)  (MPa)sf  (MPacq    

Cohesionless soil  

61248  1.524  96  0.14001  1.951  67719  1.524  100.5  0.14  3.08 Max  

6581  0.0914  30.8  0.0149  1.283  8000  0.914  39.2  0.0148  1.34  Min  

22837.5  1.3715  51.825  0.0618  1.59  25865.67  1.38  56.07  0.0486  1.87  Mean  

22232.26  0.264  25.79  0.051  0.285  19380.16  0.208  21.56  0.049  0.45  S.D  

Cohesive soil  

49461  1.524  84.5  0.154  2.516  82154  1.524  110.5  0.188  2.7  Max  

11323  0.914  40  0.078  1.34  6684  0.914  31.5  0.062  1.16  Min  

246845  1.18  64.25  0.117  1.911  30534.68  1.23  65.86  0.12  1.95  Mean  

12573.69  0.23  18.79  0.029  0.363  23668.8  0.25  23.42  0.03  0.35  S.D  

 

Following this, GEP was taught to estimate local loss coefficients using a set of mathematical 

functions (x2, x3) and the basic arithmetic operators (+, -,*, /). Table 3 displays the different 

chromosomal structure combinations that were tested. After that, the model was run for a few 

generations before being stopped when the fitness function value and coefficient of correlation 

did not show any significant changes. Models with 30 chromosomes, 8 genes for head size, and 3 

genes for number of copies produced superior outcomes. When getting the GEP model ready, 

picking the right genetic operators is a crucial first step. Thus, it was also necessary to evaluate a 

combination of all genetic operators. Table 3 displays the optimized GEP model properties. 
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Table 3. Optimized parameters of GEP models 

parameter setting 

Function set 
+, -, × , /, 

2
x , 

3
x ,  

Chromosomes 25, 30, 35 

Head size 7, 8 

Linking function addition 

Fitness function Root mean square error 

 

3.2. Models Performance and Robustness  

The approaches' efficiency was assessed using statistical measures, such as the root means 

square error (RMSE) and the correlation coefficient (R). The root-mean-squared error (RMSE) is 

similarly expressed in terms of kN as the goal parameter (Qu). Here are the correlations between 

these statistical parameters: 

� = ∑ ��� − ���	 × ��� − ��� 	���
�∑ ��� − ������ 	� × ��� − ��� 	�                                                                                                           �1	 

���� = �� ��� − ��	�
�

�
��                                                                                                                      �2	 

 

The measured values, predicted values, mean measured values, mean predicted values, and 

number of data samples are represented by ��,��, ��� , ��� , N, respectively. 

In order to ensure accurate analysis findings, it is important to carefully choose the input models 

in GEP. By doing so, the parameters used to determine the pile's bearing capacity may be more 

effectively controlled. Extensive research has shown that the following critical characteristics 

can influence bearing capacity: pile diameter (D), pile tip resistance (qc), and pile friction 

resistance (fs). 

Section 4: Discussions and Findings 

Part 4.1: GEP Models for Development  

For cohesive soils, the GEP model expression trees are presented in Fig. 5, and for non-cohesive 

soils, they are shown in Fig. 6. An advantage of GEP approaches, as previously stated, is that 

they automatically formulate the link between model inputs and their associated outputs in a 
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mathematical equation that users can access. Equations 3 for driven piles in cohesive soils and 

Eq. 4 for non-cohesive soils provide straightforward mathematical formulations of the model 

expression trees. 

 

Q� = �0.64 LD$% �f' + L	 + �3.77 − f'	�.+�q-. − D.	. + 38.25L�.+D                                             �3	 

12 = −��34 + 6.12	. − 345	�34 − 6.126 + 6.59	 + �3.5 − 25	� + �65�34 + 5	+ �7.136	�5 + 7.13	�2.4389 + 7.136	                                                                                  �4	 

 

Fig. 5 Expression tree (ET) of the GEP model formulation for driven piles in cohesive soils 
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Fig. 6 Expression tree (ET) of the GEP model formulation for driven piles in non-cohesive soils 

Both cohesive and non-cohesive soils can have their pile carrying capacity predicted using these 

models. To calculate the pile's bearing capacity, the model takes into account the pile's diameter 

and length, the strength of the pile's tips, and the resistance to friction. Presented in Table 4 are 

the findings from the examination of GEP models. Table 4 shows that there is a good correlation 

between the data sets, indicating that the cohesive and non-cohesive soils exhibit promising 

correlation values. Conversely, compared to cohesive soils, non-cohesive soils have higher input 

data correlation values with the goal function. 
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Table 3. Statistical parameters of the GEP models 

RMSE  2R RMSE  2R 

Models test  train 

0.054  0.84  0.071  0.91  Cohesive soil 

0.011  0.98  0.029  0.99  Non-cohesive soil 

 

Experimental data has been used to validate these models, assessing their correctness and 

performance. Figures 7 and 8 display the projected Qu values compared to the measured values 

for cohesive soils in the training data subset, whereas Figures 9 and 10 demonstrate the same for 

non-cohesive soils. In light of this, the suggested models are able to foretell the pile's final axial 

bearing capacity. As shown in Figures 7 and 8, the recommended model for cohesive soil has an 

R2 of 0.91 and an RMSE of 7.1% for the training data, as well as 0.84 and 5.4% for the testing 

data. The suggested model for non-cohesive soil has an R2 of 0.99 and an RMSE of 2.9% for the 

training data, as shown in Figures 9 and 10, and these values drop to 0.99 and 1/1% for the 

testing data, respectively. 

 

 

Fig. 7 Performance comparison of GEP driven piles model and CPT based methods in cohesive soils for 

training data 
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Fig. 8 Performance comparison of GEP driven piles model and CPT based methods in cohesive soils for 

testing data 

 

Fig. 9 Performance comparison of GEP driven piles model and CPT based methods in non-cohesive soils 

for training data 
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Fig.10 Performance comparison of GEP driven piles model and CPT based methods in non-cohesive soils 

for testing data 

4.2. Calibration Based on PDA Results 

We offer an analytical equation that, drawing on previous research, can be used to calculate the 

compressive axial bearing capacity of tubular metal piles in the Persian Gulf area. Then, we 

calibrate this relationship using data from PDA field testing. Figures 11–14 show the outcomes 

of this calibrating method. Figures 11 and 12 in the case of cohesive soils and Figures 13 and 14 

in the case of non-cohesive soils show the projected values of Qu compared to the measured 

values for the training and test data subset, respectively, after calibration. In light of this, the 

suggested models are able to foretell the pile's final axial bearing capacity. As shown in Figures 

11 and 12, the recommended model for cohesive soils has an R2 value of 0.91 and an RMSE of 

1.2% for the training data, as well as 0.92 and 1.25% for the testing data. Be. The suggested 

model for non-cohesive soils has an R2 of 0.99 and an RMSE of 1.9% for training data, as well 

as 0.99 and 1% for testing data, respectively (see Figs. 13 and 14). 
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Fig. 2 Calibration Performance comparison of GEP driven piles model and PDA based methods in 

cohesive soils for training data 

 

Fig. 3 Calibration Performance comparison of GEP driven piles model and PDA based methods in 

cohesive soils for testing data 
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Fig. 4 Calibration Performance comparison of GEP driven piles model and PDA based methods in non-

cohesive soils for training data 

 

Fig. 5 Calibration Performance comparison of GEP driven piles model and PDA based methods in non-

cohesive soils for testing data 

4.3. Optimization the Dimensions of Driven Piles 

In order to train the model using a series of randomized input-output pairs, the GEP must first be 

used in optimization as a quick analyzer. It is necessary to regulate the model's execution in 

order to maintain an appropriate level of output accuracy. With the network trained and in 

structural optimization, reanalysis of the structure is unnecessary; however, the GEP serves as a 

quick analyzer during the many iterations. Aiming for optimal pile length and diameter was the 

focus of the current investigation. Optimization plots are displayed in the following figures for 

this purpose. For various values of fs and qc, the optimal ratio of length to pile diameter is 

around 40, as demonstrated in Figures 15–19, when the ratio falls between 19 and 75. 
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Figure 6 Optimal values of length to diameter ratio of piles for fs = 0.06MPa and different values of qc 

 

Fig. 7 Optimal values of length to diameter ratio of piles for fs = 0.1MPa and different values of qc 
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Fig. 8 Optimal values of length to diameter ratio of piles for fs = 0.14MPa and different values of qc 

 

Fig. 9 Optimal values of length to diameter ratio of piles for fs = 0.18MPa and different values of qc 
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Fig. 10 Optimal values of length to diameter ratio of piles for fs = 0.22MPa and different values of qc 

 

5. Conclusions 

Findings from the computational study of the GEP model and the CPT were used to ascertain the 

bearing capacity of offshore steel pipe piles driven in the Persian Gulf (South Pars). The 

outcomes of the piles dynamic tests (PDA) were used to calibrate the GEP models. Based on the 

current data and calibration, the optimized pile dimensions were also computed. Axial bearing 

capacity of piles evaluated with GEP and CPT data has been developed. Pile diameter (D), pile 

tip resistance (qc), friction pile resistance (fs), and pile length (L) are effective factors that 

determine the ultimate loading capacity of the pile. Soil cohesiveness and non-cohesiveness were 

initially defined as part of this study's framework. After that, models were created to forecast 

how much weight piles in cohesive and non-cohesive soils might support. In this instance, the 

models use the pile's diameter and length, as well as its friction resistance, tip strength, and 

bearing capacity to make their predictions. Positive findings from the correlation values in 

cohesive and non-cohesive soils indicate that the data are highly connected. The recommended 

model for cohesive soil has an R2 of 0.91 and an RMSE of 7.1% for the training data, as well as 

0.84 and 5.4% for the testing data. Moreover, the suggested model for non-cohesive soil has an 

R2 of 0.99 and an RMSE of 2.9% for the training data, as well as 0.99 and 1.1% for the testing 

data. The suggested model for cohesive soil shows an R2 value of 0.92 and an RMSE value of 

1.25% for training data after calibration using PDA findings; for testing data, the corresponding 

values are 0.91 and1.2%, respectively. R2 for training data is 0.99 and RMSE for testing data is 

1, respectively, as a consequence of PDA calibration in the suggested model for non-cohesive 

soil. The results demonstrate that, for various fs and qc, a length-to-diameter ratio of 

approximately 40 is best, with a range of 19–75. 
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